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Slow Broad Side Motion of  a Flat Plate in a Viscous Liquid 
By SVBHAS CI~ANDRA GUPTA, Agra, India 1 

1. Introduction 

The problem of slow broad-side motion of a fiat plate in viscous liquid has 
been solved in terms of a function ~0 which turns out to be the electrostatic 
potential of the plate kept at a constant potential in vacuum. The hydro- 
dynamical problem thus reduces to a problem in electrostatics with known 
boundary conditions. The function ~0 satisfies LAPLACE'S equation and the 
boundary conditions can be expressed in terms of 9). The problem corresponding 
to a disc of any ~rbitrary shape can be easily worked out by setting up an 
experiment based on this analogy. 

The method has been applied to the case of a circular disc by introducing 
transforms and solving the problem as a boundary value problem in electro- 
statics. This problem has been also worked out by RAY 2) by using an ad-hoc 

method, but the present method gives a systematic and logical approach to 
problems of this kind. It  has a distinct advantage over RaY's method in which 
a correct form of the solution has to be guessed at the outset and later integral 
solutions have to be constructed which give desired discontinuity at the edges 
of the plate and this quite often is not easy. 

2. The Equations of Motion, Their Solution and the Electrical Analogy 

The hydrodynamical equations of slow viscous motion after neglecting the 
quadratic terms of inertia are: 

op' V2 
Ox -- # u ,  (1) 

where 

op ' V2 
o y  - ~ v ,  (2) 

Op' V2 
oz  - ~ w ,  (3) 

02 02 02 
V2 =- Ox2 + ~ + Oz~ ' 

1) Department of Mathematics, agra College. 
2) M. RAY, Phil. Mag. 21 (7), 553-558 (1936). 
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and the equation of cont inui ty  is 

Ou Ov _a Ow = 0 
Ox- + -b-y- ' Oz 

Let  

u = z  Ox-, v z OjT'  

Equat ion  (4) now reduces to 

029 + 0'29 + 0~9 = 0  

F rom equations (1), (2) and (3) we find tha t  

(4) 

(5) 

(6) 

P ' = P o +  2 #  09 Oz ' (7) 

P0 being a constant.  The plate coincides with the piane z = 0 and is bounded 
by  the curve z = 0, /(x,  y) = 0 and is moving in the direction of the z-axis with 
a small velocity V. The boundary  conditions are 

~ u = v = 0 ,  w =  V 

z = O ,  /(x,y)  o ,  

v = w = O ,  

on the plate, i.e., within 

and 

at infinity. Thus the conditions expressed in terms of ~ are 

~ = - V ,  
on the plate, .i.e., within 

z = 0 ,  l (~ ;y )=O,  

and cp must  tend to zero at infinity in a manner  such tha t  

09 09 09 
z - 0 7 ,  z - ~ ,  and z 0~- 

m a y  also tend to zero. Also we see from (5) tha t  on the plane z = 0, u = v = 0, 
i. e., there is no flow in the plane z = 0. The flow of the fluid is normal  to the 
plane z = 0, and so the pressure throughout  this plane must  be constant.  
Therefore from (7) 

09 _ 0  on z = 0  (8) 
0 z  ' 

outside the plate. Thus the problem m a y  be briefly restated as follows: 

V ~ 9o = o ,  (9) 
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and 

= - V ,  within z = 0 ,  / ( x , y ) = O ,  

09 _ 0  outside z = 0  / ( x l y ) = O  

09 09 09 
z ~ - ,  z O-y-' z OT and ~o 

(lO) 

(11) 

must  all tend to zero at infinity. 
This problem is same as that  of determining the electrostatic potential of 

a conducting electrified disc in the plane z - 0, bounded by  the curve/(x,  y) = O, 
kept at a constant potential -- V in vacuum. 

3. T h e  C a s e  of a C i r c u l a r  D i s c  

As an example of the above general t reatment  we take the case of a circular 
disc. Without  loss of generality we take the radius of the disc to be unity and 
z-axis centrally perpendicular to it. Transforming the equation (9) in cylindrical 
coordinates (r, O, z) we get 

0~9 1 09 329 = 0 (12) 
V 2 ~ =  0 ~  + r X  ~rr + ~ z ~  - 

Here we have omitted the term c)29/002 due to symmetry  about the z-axis. 
The boundary conditions are 

= - V  ( 0 < r <  1), (13) 

09 _ 0  ( r > l ) .  o n z = 0 .  
0z (14) 

Introducing Hankel  transform defined by  the relation 

oo 

~(p) = j  ~o ~ yo(p ~) dr, (15) 
0 

we find that 
o o  

j ' g 2  9 ~r fo(P r )dr  = [ ~  -- p2] ~(p) . 
0 

Equation (12) becomes 

dag~(p) _ p~ ~(p) (16) 
dZ 2 * 

Since the boundary conditions (13) and (14) are of a mixed type, we invert 
for 9 before satisfying them. 

In view of the symmetry  of the problem it will be sufficient to consider tile 
region z > 0. Since the potential must  vanish at infinity, the  appropriate 
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solution of (16) is 
~(p) = A(#) e-P" (z > 0), (17) 

A (p) being an unknown function of p. 
Inversion for ~0 gives 

oo 

9 =fA(p) e-P* p So(r P) alp. 
0 

(is) 

If we insert (18) in the boundary conditions (13) and (14) we get the following 
dual integral equations: 

f # A(p) f0(~ #) ~P = - v  
0 

(0 = < r <  1), (19) 

oo 

/p~A(P) Io(r#) = 0  (r > 1). (20) dp 
0 

TITCI-IMARSH 3) and BUSBRIDGE r have considered dual integral equations of 
this type and their solution is 

2 V sinp (21) A ( p ) = - ~  • ~ -  . 

Thus the required solution is 
c o  

2 V j~ fo(r p) sinp dp. (22) 

0 

In this particular case Legendre transform can also be used employing 
oblate spheroidal coordinates. The result can be expressed in a neat form. 
Suppose (~,~) are oblate spheroidal coordinates related to the cylindrical 
coordinates (r, z) by 

z = ~ ,  
and 

r = ( 1 -- ~)1/~ (l + ~)1/~. 

Transforming LAPLACE'S equation into oblate spheroidal coordinates and 
employing Legendre transform of ~o defined by 

+1 

~(~) = f ~  P~(~) d~, 
- - 1  

3) E. C. TITCHlgARSI~, Theory o/Fourier Integrals (Oxford 1937), p. 335. 
4) I. W. BOSBRIDGE, Proc. Lond. math.  Soc. 44 (2), 115-129 (19~8). 
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we find tha t  5) 2 V 
- c o t - l ~ .  (23) 

3g 

This solution can be shown to agree exact ly with the more complicated form 
given by  (22). 

The resistance of the fluid to the motion of the disc calculated from either 
(22) or (23) is 16 V#. If  the radius of the disc be a the resistance can be shown 
to be 16 Va#, which is identical with tha t  obtained by  RAY2). 

I thank  Dr. S. D. NIGAM for suggesting this problem to me. 

Zusammen/assung 
Das Problem der langsamen Querbewegung einer ebenen Plat te  in einer zgthen 

Fltissigkeit ist zuriickgefiihrt worden auf ein Problem der Elektrostatik. Die 
Geschwindigkeitskomponenten und der Druck k6nnen berechnet werden aus 
einer Funktion 9, die als die gleiche erscheint wie das elektrostatische Potential 
einer Platte unter konstantem Potential im Vakuum. Die Str6mungsverh~tltnisse 
an einer Platte vom allgemeinen Umriss k6nnen mit Hilfe tier Experimente auf 
Grund dieser Analogie bestimmt werden. Der Fall einer kreisrunden Platte wnrde 
analytisch behandelt mit Hilfe der Abbildungen. 

(Received: July 3, 1956.) 

Charge and Discharge of a Non-Linear Condenser 
Through a Linear Non-Dissipative Inductance 

By ASOKENDU MOZUMDER, IZharagpur, India I) 

I n t r o d u c t i o n  

The capaci ty  of a condenser with semi-conducting di-electric depends upon 
the voltage across it. This non-l ineari ty arises f rom the processes of diffusion 
and recombination which occur within the di-electric, and is impor tant  at 
voltages below the breakdown value. At higher voltages, normal  metallic con- 
duct ion takes place and the non-linearity becomes inappreciable. Considering 
the building up of space charge at a blocking electrode by  free charge carriers 

C = C O sinh= V a) (la) 
~V 

5) C. J. TRANTER, Integral Trans/orms in Mathematical Physics (Methuen, 1951), p. 100. 
1) Indian Institute of Technology, Department of Physics and Meteorology. 
8) Numbers in brackets refer to References, page 279. 
a) Note that in [1] the differential capacity (dQ/dV) is deduced, whereas here the corresponding 

integral capacity (Q/V) is used since it is the latter capacity which appears in ]KIRCHHOFF'S circuit 
equation (cf. [6]). 

MACDOZ,IALD Ill 2) has deduced the formulae 


