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Abstract. The concepts of [A,E,R(B)] and restricted [E,A,R(B)] invariance are 
introduced. The reachable subspace of a descriptor system is shown to be the supremal 
[A,E,R(B)~-invariant subspace contained in the least restricted [E,A,R(B)] subspace 
of R ~. Algorithms to compute the reachable subspace of a descriptor system E~= 
A x  + Bu in terms of E,A and B are given. A new proof of the feedback invariance 
of the reachable subspace is presented. 

1. Introduction 

We consider the linear,  t ime- invar ian t  descriptor system 

D~ : EYe(t) = Ax( t )  + Bu(t) (1.1) 

whereE, A : C n -  C n a n d B : C  ~ -  C ~. We assume that [ X E -  A[ ;~ 0, 
i.e., DI~ is regular. 

It is well known that there exists a basis/vl : i ~ n] for the domain (where 
n = I1,2, ..., nl) and a basis/wl : i ~ n] for the codomain of E and A such 
that in the new coordinates (1.1) decomposes into two subsystems (see[l]) 

D Z W F  v : gl(t) = Jx , ( t )  + B~u(t) (1.2a) 

D ~ W F ~  : Nfc2(t) = x2(t) + B2u(t) (1.2b) 

where x l ( t )  ~ C "~ and x2( t )  ~ C "2. J and N i n  (1.2) are Jordan form matrices 
and N is nilpotent with index of nilpotency o~1. 

It was shown in [2] and [3] that the trajectory of (1.2) starting from an 
arbitrary initial condition may exhibit impulsive behavior. We shall call a 
point Xo = [xgl xg2]' an admiss ib l e  ini t ial  cond i t i on  for (1.2) if there exists 
an (o~ - 1) times continuously differentiable input uT(t)  : [0,oo ) -- C m such 
that the solution x ( t; 0,Xo,U T ( t )  ) is continuously differentiable on [0, T] for 
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some T > 0. With some minor changes in the analyses of  [3] and of [4], 
it was shown in [5] that [x~ x ~ ] '  is an admissible condition for (1.2) if and 
only if [x~l x~2]' ~ C nl @ Coo where Coo = ~ o  I N ~ R(B2) + N ( N )  and 
(~ denotes direct sum. 

Given a point Xo = [x~, x~2]' in C nl§ we say that Yo = [Y~ Y~2]' is 
reachable f rom Xo if there exists an (o~1 - 1) times continuously differen- 
tiable input uT(t) such t h a t x ( t ;  O,Xo,UT(t) ) = yo for some T > 0. In case 
the origin is reachable from :Co, xo is said to be controllable. A slight modifi- 
cation of the analysis of  [3,4] as carried out in [5] shows that any point in 
RF @ Roo is reachable from any other point in R~ O Roo where R~ -- ~n~o1 

j i  R(B~) and R~ = ~ o  ~ N ~ R(B2). It also follows from [2] and [5] that if 
C~ = R~ and if C~ is as above, then a point [xg~ x~2]' is controllable if and 
only if [x~ x~2]' ~ Cp @ Coo. Consequently, Rr  @ R~ and Cr <~) C~ are 
called the reachable and controllable subspaces of  (1.2). Equation (1.2) is 
said to be reachable (controllable) if Rr  @ Roo = C ~+n2(C~ ~) Coo = 
C ~1+~2). This definition of  reachability is equivalent to the controllability 
of  [3], C-controllability of  [4], and the absence of input decoupling zeros 
(finite or infinite) of [ s E A  B] in the sense of  [6]. On the other hand, control- 
lability, as defined above, is equivalent to modal controllability of [2]. 

This analysis of  reachability and controllability, which is the prevalent ap- 
proach used in the literature, has a main drawback in that it depends on the 
decomposition of  DY into two subsystems Dr.WF~ and DYWF~.  A 
characterization of  the reachable and the controllable subspaces in terms of  
E,A,  and B should be welcome for two main reasons. First of all, the decom- 
position has a computational cost associated with it. Secondly, decompos- 
ing the system into two subsystems (using the Weierstrass decomposition or 
any other one [3,7]) destroys one of  the main advantages of  the descriptor 
variable formulation. As it was pointed out in [6,8], the descriptor variable 
formulation is preferable to the state-space formulation, even when the latter 
exists, simply because it is "more  natural"  in the sense of  displaying and 
preserving the information content of  the dynamical equations and the 
physical significance of  the variables. It is exactly this advantage which is 
being subverted by the decomposition of  the system into two subsystems. 

In Section 3 we circumvent these difficulties by showing that the reachability 
and the controllability of  a descriptor system can be assessed and the reachable 
and the controllable subspaces can be constructed by using the original system 
matrices E,A ,  and B. The results of  Section 3 depend on some geometric 
concepts which are introduced and discussed in Section 2. Section 4 will give 
an alternative proof  of  Cobb's result in [3] which states that the reachable 
subspace is feedback invariant. 

In what follows, the superscript - 1 on a linear operator will denote its 
pre-image and @ will be used to denote the direct sum of  subspaces and/or  
of  linear operators. 



REACHABLE AND CONTROLLABLE SUBSPACES 39 

2. (A,E,R(B)) and (E,A,R(B)), invarianee 

Let K be a given but otherwise arbitrary subspace of  C n. We define two 
families of  subspaces of  K as follows: 

~A.E,a(K) = [S C K : A S  C ES + R(B)~ 

~Z,A,a(IO = ~S C C" : S = K N E- t (AS + R(B))] 

An element S of  ~A.e,B(K) will be said to be an ( A , E , R ( B ) )  invariant  
subspace o f  K,  and an element S of ~:E.A,B(K) will be said to be a restricted 
( E , A , R ( B )  ) invariant  subspace,  or in short, an ( E , A , R ( B ) ) r  invariant  
subspace o f  K.  

Our definition of ( A , E , R ( B ) )  invariance is similar to, though not the same 
as, that of  [9], Compare to [11,12] which used these definitions with B = 0. 

We first consider 5:a.E.B(K). As it contains the zero vector it is non-empty 
and if St and $2 are two elements f rom 5:A,e.B(K), we have 

A ( S I  + $2) = ASt  + AS2 C ES~ + R ( B )  + ES2 + R ( B )  

= E ( S ,  + &)  + R ( B )  

Therefore, ~A.e.B(IO is closed under the operation of subspace addition. 
Consequently, it contains a (unique) supremal element. Lemma 2.1 gives an 
algorithm to compute it. 

Lemma 2.1. L e t  L* ( K )  denote  the  l imit  o f  the sequence  [Lk] where  

Lk., = K n A-I(EL~ + R ( B )  ); Lo = K (2.1) 

Then L* ( K )  E 5:A,E,B(K). Furthermore .  i f  S E 5:A,E,B(K), then S C L * ( K ) .  

Proof .  First of  all, note that L1 C Lo. If Lk C Lk-t, then 

Lk§ = K f') A -1 (ELk + R(B))  C K fl A-I(ELk_, + R(B)  

= L k  

Therefore, [Lk~ is nonincreasing. This fact and the assumption of  finite 
dimensionality imply that L*(K) exists. Also, L*(K) ~ ffA,E;8(K) because 
L* (K) C K, and 

AL*(K)  = A [ K  tq A- I (EL*  (K)  + R ( B ) ) ]  

C A K A  ( E L * ( K )  + R ( B ) )  N R ( A )  

C E L * ( K )  + R ( B )  
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To show that L*(K)is supernal, let SE ~YAar.s(K). Then, S C Lo and if S C Lk, 
then 

Lk§ = K N A-I(ELk + R ( B )  ) 

D K A A-I(ES + R ( B ) )  

D K f )  S 

= S  

As S C Lk for all k, clearly S C L*(K). So, L*(K) is the supremal element 
of ~A,e,s(K)and, therefore, it is unique. Q.E.D. 

In case K = C", we shall simply write ~A.e,s, ~e,A,B, L*, etc., rather 
than ~A,e,B(K), ~E,A,B(K), L* (K), etc. 

Since it will not be used in the sequel and since, computationally speaking, 
it is less attractive than the algorithm given by (2.1), we shall not prove it, 
hut the interested reader can convince himself/herself that if the recursion 
(2.1) is run with K = C" and with Lo equal to the supremal (A,E,O) invariant 
subspace o f  C", rather than Lo = C", the limit of the subspace sequence still 
exists and is equal to L*. 

We now consider ~E,A,B(K). Lemma 2.2 below shows that it is nonempty 
and has a (unique) infimum. 

Lemma 2.2. Let  S .  (K) denote the limit o f  the sequence ~S~ where 

Sk§ = K f) E-~(ASk + R(B)) ; So = 0 (2.2) 

Then S .  (K) ~ ~E,A,B(K), and moreover i f  S E ~:E,A,B(K), then S .  (K) C S. 

Proof .  Note that So C S~. If  Sk D Sk-1, then 

S~,1 = K N E-I(ASk + R ( B ) )  

K N E-x(ASk_t + R ( B ) )  

= S~ 

Therefore, [Sk~ is nondecreasing. Hence, by the virtue of finite dimensional- 
ity, S . ( K )  exists. S . ( K )  satisfies 

S,(K) = K N E- ' (AS.(K) + R(B) ). 

So, S.  (K) E 5:e.A.n(K). Let S be another element of ~YZ.A.B(K). Obviously, 
So C S, and if S~ G S, then the argument above shows that Sk+, C S also. 
Since Sk C S for all k, we have S. (K) C S. Moreover, S* (K) is unique as 
it is infimal. Q.E.D. 
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The following lemma shows that if K is "large enough,"  then the initial 
condition in (2.2) can be changed without affecting the limit of  the sequence. 
Let E| be the least (E,A,O) ,  invariant subspace of  C ~ which is given by the 
solution of  the recursion 

EL § = E - ' A E ~ ;  EL = 0 (2.3) 

Lemma 2.3 L e t  Eo. C K C C". Define [gk~ by 

Sk§ = K f"l E-'(ASk + R(B)  ) ;So = E| (2.4) 

Then limk[Sk] exists  and is equal  to S , ( I O .  

Proof. Note that E~ = E -1 AE=.  Then, 

S~ = K (3 E- '(AE= + R(B))  

D K N E-1AE| 

= K N E |  

=Eo, 

=go 

If Sk-, C Sk, then it is easy to show that Sk C gk§ also. Thus ,  [Ski is 
nondecreasing and limk [Ski exists. Let S,  (/tO denote limk [Sk]. 

Let [Sk~ be given by (2.2). So C So is clear, and if S, C ~k, then 

Sk+, = K A E-~(AS~ + R(B))  

C K N E- ' (Agk + R(B)) 

Since Sk c Sk. for all k, S ,  (K) C S,  (K). To show the reverse inclusion, let 
E~be  as in (2.3) and note that E ~ C S, (K) .  Assume EL C S , (K) .  Then, 

Ek+l = E - I A E ~  c o  

c E- ' (AS, (K)  + R(B)). 

Since EL § C E** C K, it follows that 

E ~  1 C K N E- I (AS , (K)  + R(B))  

= S , (K) .  
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Therefore, E~ = So C S.  (K), and if Sk C S,  (K), then 

Sk+, = K N E-'(ASk + R ( B ) )  

C K f"l E - ~ ( A S , ( K )  + R(B)) 

= S * ( K ) .  

This proves that Sk C S, (K) for all k. Consequently, S-. (K) C S,  (K) also. 
Thus, S . (K)  = S . (K)  and the proof  is complete. Q.E.D. 

3. Constructing the reachable and the controllable 
subspaces 

We consider DE given by (1.1). In the light of  our discussion in Section 1, 
we let R denote the subspace of C" with the property that any x E R can 
be reached from any other y ~ R. R is the reachable subspace of DE. Similarly, 
we let C denote the subspace of C" with the property that the origin is 
reachable from any point x in C. C is the controllable subspace of D~. The 
subspace of  admissible initial conditions will be denoted by M. 

We can now present the following lemma which gives a system theoretic 
interpretation of L*, the supremal [ A , E , R ( B ) ~  invariant subspace of C ". 

Lemma 3.1. L* + N ( E )  = M .  

Proof .  Let V and W be the matrices whose columns form a basis for the 
domain and the codomain of  E respectively, so that 

and 

W - 1 E V  = I-1 (~ N: = /~, 

W - ' A V  = J @  1,2: = 

IB, J W-1B = : = B .  
B2 

The sequence ILk] in (2.1), which is defined in the domain of  E ,  becomes 

JL~I = ( W ~ V - I ) - ~ ( W f V - ' ) L ~  + WR(ff)~ ;Lo = C" 

It is trivial to show that ( W A V - 1 )  -1 = V(.A)-IW -1 (where, asbefore ,  the 
superscript - 1 denotes the pre-image of  an operator).  Letting L k  = V-aLk ,  

we get 

L ,  = + ; L = c -  

Now, note that 
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Assuming that  

we have 

tB~J 
= C ~' | ( R ( N )  + R(B2))  

k-1 

Lk = C" | (R(N k) + ~.~R(N'B2)) 
i=O 

k 

,=.l -- ( :  | R ( - - )  § ER NB,) + R 
k i=1 

= C"x | (R(N k§ + ~.~R(N'B2)) [B2J 
i=0 

Since N~I = 0 for some c~, < n2, and since R ( N  k) _ R ( N  k-~) for any 
k > c ~ l  - 1, 

/~*: = limk~Lk~ = C'1|  ~,= R(NiB2)) 

= C "1 | R~ (3.1) 

Furthermore,  V-~N(E) = V-IN(Wff~V -1) = N(ff~) = 0 Q N ( N )  and t h e  
proof  follows f rom the fact that the set of  admissible conditions for DE WF 
is C ~' (~ (R~ + N ( N ) ) .  Q . E . D .  

It is by construction that L* satisfies L* = A-I(EL * + R(B)).  Some other 
properties of  L* are given by lemma 3.2. The proofs are immediate f rom 
the characterization (3.1) o f  V- 'L * and will be omitted. 

L e m m a  3.2 .  
(1) AL* C L* 
(2) EL* C L* 
(3) L* = EL* + R(B)  
(4) L* = EL* + AL*. 

We can now prove our main result which provides us with not only 
geometrical insight into DX; but also with a way (indeed, to our best 
knowledge, the only way) to construct the reachable subspace R using (1.1) 
rather than (1.2) or another decomposition of (1.1), 

Theorem 3.1. 
( l )  R = L* n S ,  
(2) R = L*(S,) .  

Proof. We f i r s t p rove ( 1 ) .L e t [Sk ) be asde f i ne d in (2 . 4 ) . Le tV ,  W,J,N,[BB: j 

be as in the proof  of  Lemma 3.1. Then, letting Sk = V-ISk and noting that 
in the bases used in Lemma 3.1, E~ = 0 (~ C "2 [4], 
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L ,  : (i., G ~ o ' ~ ( s  G i~,)g~ + R [ n , ] ~ ;  ~o = o | c ~ 
LB~J 

Note that 

~, = (1., e m - ' ~ ( :  | ~.~)(0 o c"~) + R In']~ 
LB, J 

= R(B,)  0 C "2 

An induction argument similar to the one in the proof  of Lemma 3.1 yields 
k--1  

g~ = ~R(:'B,) + c"" 
,=o (3.2) 

Then lim~[Sk} = Re G C ~2. Furthermore, Lemma 2.3 shows that this limit 
is V-~S.. Then, by (3.1), V-tL * 0 V-~S * = Re Q R~ which completes the 
proof  of  part (1) .  

Part (2) states that R is the supremal [A,E,R(B)~ invariant subspace of  
the least ~E,A,R(B)} ,  C ~. Then it  is constructed by the recursion (2.1) with 
Kreplaced by S. .  Again, letting Lk = V-~Lk where Lk is as in (2.1) and letting 
Lo = V-~S, = Re G C "~, we have 

L - D  

Noticing that R f  + R(B1) = Re and Rr C J-1Re, we have 

LI = R r  ~ ( R ( N )  + R(B2))  

Using induction, we conclude that 
k - 1  

Lk = Re @ ( R ( N  k) + ]~ItR(N'B2)) 
i = O  

which, as N~1 = 0 for some oq _< n2, implies limk [/~k] = Re e R~. Hence 
the proof.  Q.E.D. 

Remark. In all the examples that we have worked out, the supremal 
[A,E,R(B)~ invariant subspace contained in the least [E,A,R(B))r  invariant 
subspace of C" turns out to be the same as the least [E,A,R(B)~,  invariant 
subspace contained in the supremal (A ,E,B)  invariant subspace of  C ". So, 
we state the following conjecture which remains to be proved (or refuted): 
L*(S , )  = S , (L*) .  

Corollary 3.1. I f  either (1) or (2) below does not hold true then D~ is not 
reachable. 

(1) R ( A )  C R(E)  + R(B)  
(2) R(E)  C R ( A )  + R(B)  

Proof. If  R = C", then by (1) of  Theorem 3.1 L* = S.  = C". Then 



REACHABLE AND CONTROLLABLE SUBSPACES 45 

A - I ( E C "  + R ( B ) )  = C" implies R ( A )  C R ( E )  + R ( B )  and 
E-~(AC" + R ( B ) )  = C" implies R ( E )  C R ( A )  + R ( B ) .  Q.E.D. 

S , ,  the least [ E , A , R ( B ) ] r  invariant subspace of C" was seen to be crucial 
in the construction of R. Lemma 3.3 below summarizes some of the proper- 
ties enjoyed by S,.  Its proof is trivial using (3.2) (with k replaced by nl) and 
will be left to the reader. 

Lemma 3.3. 
(1) E S ,  C S ,  
(2) A S ,  C S ,  
(3) S ,  = A S ,  + R ( B )  
(4) S, = E S ,  + A S , .  

The following theorem on the computation of the controllable subspace 
is included for the sake of completeness. Its proof is imminent from the proof 
of Theorem 3.1 and the fact that C~ -- Ro~ + N(N). 

Theorem 3.2. 
(1) C = S ,  O (L* + N ( E ) )  
(2) C = L * ( S , )  + N ( E ) .  

Corollary 3.2. I f  DE is controllable,  then 
(1) R ( E )  C R ( A )  + R ( B ) ,  and 
(2) R ( A )  C R ( E )  + R ( B )  + A N ( E ) .  

Proof. It follows from the proof of Theorem 3.1 that if Dr~ is controllable, 
then S. = C", from which (1) follows immediately, and L* + N ( E )  = C". 
Then, 

R ( A )  = A ( L *  + N ( E ) )  

= AL* + A N ( E )  

= AA- ' (EL* + R(B))  + A N ( E )  

C EL* + R(B)  + A N ( E )  

= E(L* + N ( E ) )  + R(B)  + A N ( E )  

= R(E) + R(B)  + A N ( E ) .  Q.E.D. 

1. Feedback invariance of  L* and S ,  

Let a feedback u( t )  = F x ( t )  + v ( t )  be applied to DE to yield the closed- 
loop system 

CLD~ : EYe (t) = (A + BF) x (t) + By(t)  
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Let the subscript/superscript CL denote closed-loop quantities. We first show 
that S.  is invariant under the feedback given above. 

L e m m a  4.1.  S cL = S , .  

Proof .  Since ~**~ is the least [E, (A + BF) ,R(B)] ,  invariant subspace of  C n, 
it is given (see Lemma 2.2) by the limit of  [A'~k~] where 

S~x = E-X((A + BF)S~kL+ R(B)) ; S~ L = 0 

Since (A  + B F ) ~ +  R ( B ) =  A ~ +  R(B),  we have S~k L = Sk where Sk 
is as defined in Lemma 2.2 Therefore, S~,~= limk[b'Yk~]= limk[Sk] = S, .  

Q . E . D .  

To show L*c~ = L* we need the following lemma which is given in [9] for 
the case E = 1. However, replacing I by E does not affect the lemma or its 
proof. 

L e m m a  4.2. A subspace S belongs to ~YA,E,B i f  and only i f  there exists a map 
F :  C ~ -- C m such that ( A + BF)S C ES. 

We now prove the following lemma which states that the set of  admissible 
initial conditions of  DE, i.e., L* + N(E) ,  is invariant under the feedback 
given above. 

L e m m a  4.3.  L* = L*.  CL 

Proof .  We first show that L* C L*cL. Note that, by Lemma 3.2, 

(A + BF)L* C AL* + R(B) 

C EL* + R(B) 

* i  Therefore, L* is ((A + BF),  E, R(B) )  invariant and since Lc~ s the sup- 
remal ((A + BF),  E, R (B) )  invariant subspace, we have L* C LSr. 

By Lemma 2.1, L3z is given by limk [Lgz)where 

L~+L 1 = (A + BF) -~ [EL~L + R(B)~ ; L~ = C" 

Then L*L satisfies (A + BF)L3L C E L *  + R(B) .  By Lemma 4.2, there 
e x i s t s a m a p F : C  n -  C" such that (A + B F +  BF)L*z C EL3L, i .e . ,  
(A + B ( F  + F)) cL C ELcz, which, again by Lemma 4.2, implies that 
AL3~ C EL3L + R(B) .  That is, L*z ~ ~YA,e,R(B) and since L* is the supremal 
element of  ~YA,e,RW), L*L C L*. Together with L* C L*c~, this implies that 
L *  * = LcL. Q.E.D. 
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Since, by Theorem 3.1, Rc~ = L*cL O ~**L, Lemmas 4.1 and 4.3 already 
prove the following theorem. 

Theorem 4.1. RcL = R. 

Remarks. (1) It is evident that N(E)  is not affected by the feedback. So, we have 
CcL = (L& + N(E) )  O ~ = (L* + N(E) )  n s .  = C. (2)Al though in 
practice it is required, for the uniqueness of  the solutions of  CLDF.,, to 
guarantee that F preserves regularity, (that is, [ hE - (A + BF) I ~ 0) the 
results in this section are valid for any F. 

5. Conclusions 

The concepts of  [A,E,R(B)~ and restricted [E,A,R(B)~ invariance were in- 
troduced and were shown to be instrumental in manufacturing the reachable 
and controllable subspaces of  descriptor systems. 

Aside f rom the obvious advantage of  bypassing the decomposit ion of  the 
system into subsystems, the geometric analysis of  the reachable and control- 
lable subspaces above yields an alternative proof  of  the feedback invariance 
of  reachability and controllability in descriptor systems. 

It is our hope that the results of  this paper will be helpful in an at tempt  
to generalize Wonham' s  reachability subspaces [10] to descriptor systems. 

Acknowledgements  

The author is grateful to Dr. F. L. Lewis for his help in writing and editing this paper; 
and to the reviewer who pointed out a mistake in the originally incorrect version of 
Corollary 3.2. 

References 

[1] F. R. Gantmacher, Theory of Matrices, Chelsea Pub. Co., New York, 1960. 
[2] G. C. Verghese, Infinite-Frequency Behavior in Generalized Dynamical Systems, 

Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University, 1978. 
[3] J. D. Cobb, Descriptor Variable and Generalized Singularly Perturbed Systems: 

A Geometric Approach, Ph.D. Thesis, Dept. of Electrical Engineering, Univer- 
sity of Illinois, 1980. 

[4] E. L. Yip and R. F. Sincovec, "Solvability, controllability, and observability 
of continuous descriptor systems," IEEE Trans. Automatic Control, Vol. AC-26, 
pp..702-707, 1981. 

[5] K. Ozcaldiran, Control of Descriptor Systems, Ph.D. Thesis, School of Elec- 
trical Engineering, Georgia Institute of Technology, 1985. 

[6] H.H. Rosenbrock, "Structural properties of linear dynamical systems," Int. 
J. Control, Vol. 20, 191-202, 1974. 

[7] S.L. Campbell, C.D. Meyer, Jr., and N.J. Rose, "Applications of the Drazin 
inverse to linear systems of differential equations with singular coefficients," 
SIAMJ. Appl. Math., Vol. 10, pp. 542-551, 1979. 



48 C)ZCALDn~2~ 

[8] G.C. Verghese, B.C. L6vy, and T. Kailath, "A generalized state-space for 
singular systems," IEEE Trans. Automatic Control, Vol. AC-26, pp. 811-831, 
1981. 

[9] W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd 
ed., Springer-Verlag, New York, 1979. 

[10] G. C. Verghese, "Further notes on singular descriptions," Proc. JACC, Paper 
TA-4B, Charlottesville, VA, 1981. 

[ 11 ] V. A. Armentano, "The pencil (sE-A) and controllability-observablity for gen- 
eralized linear systems: a geometric approach," Proc. 23rd IEEE Conf. on 
Decision and Control, pp. 1507-1510, Las Vegas, NV, December 1984. 

[12] K.T. Wong, "The eigenvalue problem XTx + Sx ,"  J. Diff. Eq.,  Vol. 16, pp. 
270-280, 1974. 


