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SCATTERING THEORY 
AND MATRIX ORTHOGONAL 
POLYNOMIALS 
ON THE REAL LINE* 

J. S. G e r o n i m o  1 

Abstract. The techniques of scattering and inverse scattering theory are used to in- 
vestigate the properties of matrix orthogonal polynomials. The discrete matrix analog 
of the Jost function is introduced and its properties investigated. The matrix distribu- 
tion function with respect to which the polynomials are orthonormal is constructed. 
The discrete matrix analog of the Marchenko equation is derived and used to obtain 
further results on the matrix Jost function and the distribution function. 

1. Introduction 

In recent years the techniques of  scattering and inverse scattering theory have 
been used with much success to study the properties of  scalar orthogonal 
polynomials, Case and Kac [1], Geronimo and Case [2,3], Geronimo [4,5], 
Guseinov [6], Dym and Iacob [7]. These techniques emphasize the impor- 
tant role played by factorization theory and also the close connection be- 
tween polynomials orthogonal on the real line and those orthogonal on the 
unit circle (see also Nevai [8]). 

Here the techniques of  scattering and inverse scattering theory are used 
to investigate the properties of  matrix orthogonal polynomials on the real 
line (see also Serebrjakov [9]). These polynomials are known to arise in a 
number of  physical and engineering problems, Atkinson [10], Christian et 
al. [11], and[ in numerical analysis. In analogy with matrix polynomials or- 
thogonal on the unit circle, Delsarte et al. [12]; Geronimo [13], a new set 
of  recurrence formulas is introduced and it is shown that the solution of one 
of  the equations leads naturally to a spectral factorization of  the matrix 
distribution function. 

In order to help motivate the problem we begin in Section 2 with the matrix 
distribution function. The polynomials or thonormal  with respect to this 
distribution function are constructed and the three term recurrence formula  
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they satisfy is derived. In this section the Wronskian theorem and Christoffel- 
Darboux formula are given. We then turn the problem around and take the 
recurrence formula as our starting place (Section 3). Conditions are placed 
on the coefficients on the recurrence formula that allow us to introduce a 
new set of recurrence formulas. The analytic properties of various solutions 
of these recurrence formulas are investigated and the discrete matrix analog 
of the Jost function is introduced, (Agranovich and Marchenko [14]). In Sec- 
tion 4 the properties of the Jost function are investigated, and these are used 
to develop the relation between the Jost function and the distribution func- 
tion (Section 5). The discrete matrix analog of the Marchenko equation is 
introduced in Section 6 and used to investigate further the properties of  the 
Jost function. Finally in Section 7 integral representations for many of the 
solutions of the recurrence formula are given. 

2. The matrix-valued distribution function 

The p • p symmetric function o (k),  k real, is called a matrix distribution func- 
tion, Atkinson [10], Berezanski [15], Krein [16], Rosenberg [17], if it has 
the following properties: a) p (k) is nondecreasing in the sense that p (kl) 
_< p(k~) for all kl _< k~ (The notation A _<B for hermitian matrices A and 
B means B - A  is nonnegative definite.); b) p (k) has infinitely many points 
of increase; and c) all the p •  matrix moments 

S, = dO(X) n = 0,1,2 .... (2.1) 

are finite. It is known that p (k) has countably many discontinuities, all of  
them simple (so that the limits p(k+) and p(k-) exist for all k). Therefore 
p(k)  has a derivative almost everywhere denoted by 

o(X) = d p  a.e. (2.2) 
dk 

From the properties of p(k) it is clear that a(k)  -> 0. In general p (k)  can 
be decomposed into 0 = po~ + oj + as where 

ooc(k) = S ~_= a(x)dx, 

% 

(2.3) 

pj is a jump function and ps = p - p~c - pj. 

For continuous matrix-valued functions F (k )  and G(k)  the integral 
I G ( k ) d p ( k )  H(X) is defined in the natural way: the (i , j)-entry is the (s , t)-  
sum of the scalar integrals I g,s (k) hu(k)dps , (k) .  In fact the above matrix 
integral has meaning for much more general functions G and H,  Rosenberg 

[171). 
Define the p ( n + l )  •  + 1) matrix 

H(n) = 

So S, $2 
S~ $2 $3 

s .  s.+, s~ 

�9 . Sn  

�9 , S n §  

�9 ' S2n 

(2.4) 
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It  is easy to see tha t  H ( n )  is posi t ive definite. To  show this let /z  r = ( /~ ,  
#r , . . . t~,  r) be a p ( n + l )  row vector  with m e R p, i = 0 , . , . ,n .  Setting 
/z(X,n) = ~o + /~IX + ... + /~,~,", then using (2.1) and (2.4) one finds (see 
Delsarte  et al. [12]), 

f~_J~r(X,n)dp(X)  /z(X,n) = #rH(n)/z. 

Since the integral is posi t ive for  a l l /~(X,n)  ~ 0, H ( n )  > O. 

Let R ~"~ (h)  be the set o f  p • p po lynomia l  matr ices with real coefficients 
and R ,  ~ (),) be the subset o f  R"x~(x) containing polynomia ls  o f  the fo rm 

Y(~,,n) = Yo + XYI ... + X"Y. Y~ e R ~ (real p •  matrices). 

Setting V~(~,,n) = ( L M ,  k2I, . . . .  ~"I) 

Vr(n) = (0,0 .... I ) ,  

(here I is the p •  identi ty matr ix)  and YT(n) = ( Yo r, y r . . .  y T), one finds 

Y() , ,n)  = Vr (k ,n )  Y (n ) .  (2.5) 

With  p (~)  one can associate the symmetr ic  funct ional  L:R"~" (k )  --  sym 
R ~`p defined as follows ~ 

L ( Y ( X , n ) )  = _ Y r ( X , n ) d o ( X ) Y ( X , n )  - 2sym(Y~).  (2.6) 

Here  

s y m A  = XA(A r + A) 

is the symmetr ic  par t  o f  the real matr ix  A.  Using (2.3), (2.4) and (2.5) in 
(2.6) gives 

L ( Y ( X , n ) )  = y r ( n )  H ( n ) Y ( n )  - 2 sym(V "r ( n ) Y ( n ) ) .  

Setting X = H ( n )  ~ Y ( n )  - H ( n ) - ~  V ( n )  where H ( n )  ~ is the symmetr ic  
square roo t  o f  H ( n )  which exists since H ( n )  is real and posit ive definite 
and subst i tut ing X into the above equa t ion  yields 

L ( Y ( ~ , , n ) )  = X r X  - V T (n) H ( n )  -1 V(n) .  (2.7) 

Thus  for  each degree n there exists a unique W ( k , n )  e R~, xp (k)  given by  
the expression 

W(), ,n)  = W(~. ,n)  H ( n )  -1 V(n)  

tha t  minimizes  (2.7) in the sense tha t  

L ( W ( ~ , , n ) )  < L ( X ( • , n ) )  X(X,n) e RP, xP(~,). 

(2.8) 



474 GERONIMO 

Note that W ( X , n )  = Wo + W,X + ... + W,X" and f rom (2.8) 

W. = V~(n) H(n )  -~ V(n) > 0 (2.9) 

thus W ( X , n )  is a matrix polynomial of  degree n. Besides minimizing (2.7) 
W(X,n) is orthogonal to all X e  R~,~_~ (X). To see this observe that for X(X,n) ,  
e R~. xp (X) 

S W~'(X,n) do(k)  X(X,n) = Vr(n) X ( n )  = X .  (2.10) 

where (2.5) and (2.8) have been used. Now X ( X , n )  e R~.~_f (X) if and only 
if X.  = 0, proving the result. In order to obtain the matrix polynomials ortho- 
normal  with respect to do(X)  set 

where 

Thus f rom (2.10) 

P(k ,n)  = K.~W'r(X,n) (2.11) 

K,K~, = W : I =  (VT(n)H(n)  -~ V(n))  -~. (2.12) 

f~_= P(X,n) do(k)  P~'(X, rn) = 6,,,ml. (2.13) 

Note that K,  ~ and hence P (X, n) are defined only up to a left orthogonal factor. 
As in the scalar case, matrix or thonormai  polynomials on the real line 

satisfy the following three term recurrence formula  

A(n+ l )  P(X,n+l )  + B(n)  P(X,n) + A ( n )  P(X,n -1 )  = XP(X,n) 

n = 0,1,2 .... (2.14A) 

P ( k , - 1 )  = 0 P ( X , 0 )  = I (2 .14B)  

(here and throughout the rest of  the paper it will be assumed without loss 
of  generality that Ido(X)  = I) where 

B(n)  = =ooXP(k,n) alp(X) Pr(X,n) n = 0,1,2... (2.14) 

and 
A(n+l )  = = kP(X,n) do(X)PT(Xn+I) n = 0,1,2... (2.15) 

T T - 1  = K.(K.+I) 

From the above equations it is apparent  that B ( n )  is symmetric and 
A(n + 1 )A (n + 1 )T positive definite. Since K T is defined only up to a left 
orthogonal factor it is convenient to choose it so that 

A ( n + l )  T = A ( n + l )  > 0. (2.16) 
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Letting Q(u ,n )  be a solution of (2.14A) one finds 

Q*(u,n) A ( n + l ) P ( k , n + l )  - Q * ( u , n + l ) A ( n + t ) P ( X , n )  (2.17) 

= (X-  ~) Q* (u,n)P(X,n) + Q* (u,n - 1 )A (n)P(X,n) - Q* (u,n)A (n) P(X,n - 1 ) 

where A* means the hermitian conjugate of  the matrix A. Two consequences 
of  (2.17) are the Christoffel-Darboux formula,  

P*(u,n)A(n+ l) P(X,n+ l ) - P * ( u , n +  l) A (n+ l)P(k,n)  

= (X - fi) ~ P*(u,i) P(X,i) (2.18) 
i-0 

and the Wronskian theorem, 

W[Q,P] =Q*(X,n)A(n+I)P(X,n+I)  - Q*(X,n+I)A(n+I)P(X,n)  (2.19) 

is independent of  n. The first follows f rom (2.17) by setting Q = P then 
iterating down using (2.14C). (2.19) follows f rom (2.17) by setting ~ = X. 

3.  T h e  r e c u r r e n c e  f o r m u l a  

We now turn things around and begin the recurrence formula.  Given two 
sequences o f p  x p  real symmetric matrices {A (n + 1 ) },--o, and {B(n) 1,--o with 
A (n) > 0 ,one can construct a set of  matrix polynomials according to (2.14). 
We now assume that there exists an A (oo) = a (oo)/, a (oo) a positive scalar 
and B(oo) = b(oo)L b(oo) real such that 

lim IA(n) -A(o~) l  = 0 

and 

lim IB(n)-B(oo) l  = 0. (3.1) 
n ~ r  

For the matrix norm used above it will be convenient to use the Hilbert- 
Schmidt norm, i.e., 

IBI = { ~  Ib,jl2} 'n = IB*I. (3.2) 
/J 

This norm ihas the useful property that for matrices A and B 

IABI_< IAI IBI. (3.3) 

Considering (3.1) above, it is without loss of  generality that one can take 

A ( ~ )  = I and B ( ~ )  = 0. (3.4) 

In analogy with scalar polynomials orthogonal on the real line (see [2]) we 
consider the following two equations. 
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P(X,n) = A ( n ) - l { ( z I - B ( n - 1 ) ) P ( X , n - 1 )  + + u2 (z ,n-1)} ,  (3.5A) 

and 

( z , n ) = A ( n )  -~ { +  ~ (z ,n-1)  + ( ( I - A ( n ) 2 ) z - B ( n - 1 ) P ( X , n - 1 ) } , ( 3 . S B )  

with 

and 

p(x,0) = $ (z,0) = I (3.5C) 

X = z + + .  (3 .5D)  

(Here we choose the branch so that z - -0  as X - - ~ . )  The above equations 
can be recast into the more compact form 

~?(z,n) = C ( n ) ~ ( z , n - 1 )  n = 1,2 . . . .  ( 3 .6A)  

with 

and 

,b(z,n) = , O(z,O) = 
~(z ,n)  

(3.6B) 

C(n) = A ( n )  -1 I l'l ( z I -  B ( n - 1 ) )  ~ . 

1 I ( I - A ( n ) 2 ) z - B ( n - l )  -~ 
(3.6C) 

As a first application of the above recurrence formula the following is proved; 

L e m m a  3.1. Let  ~1 and ~2 be solutions o f  3.6A and 3.6C f o r  m <_ n < l, then I~ 
~v[~, ~21 =- ~ ( z , n )  ~2(z,n) 

I 0 

is independent o f  n, m <_ n <_ l. Furthermore,  

wIc f ,  ,~d ~ = - w l c L  ~11. 

Proof.  Calculation. 

To proceed further it is convenient at this point to introduce the techniques 
of Banach algebras. Let v (n) be a real even function of n with the following 
properties 

v(O) = 1, v(n) > 1 
v(n) < v (n+ l )  n > 0 
v(n) <- v ( m ) v ( n - m )  n,m >_0 
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and 

lim (~(n)) ~/" = R ~ 1. 
n~co 

Let hv be the space of  functions such that if g E h~ then 

g(z )  = ~a g(n)z"  1_2_ < I z I < R 
R tr= - o o  

with 

II g IIv = ~ v(n)  I g (n)  I < oo. 
n= - - o o  

(Here the g ( n ) ' s  are complex numbers),  let h S 
tions in hv of  the form 

o o  

g+(z) = E g ( k ) z k  
k = 0  

and 

(3.7) 

(3.$) 

(3.9) 

and h; denote those func- 

(3.10) 

0 

g-(z)  = E g(k)zk  (3.11) 
k = - o o  

respectively. I f  II g IIv is the norm on h ,  h~ + and h; are commutat ive Banach 
algebras, h will denote the Banach algebra where v (n) = 1 for all n. It is 
obvious that 

hv C h. (3.12) 

Let Hv be the class of  p •  matrices such that if GEHv then the entries in 
G are in h~ and 

o~ 

G(z)  = ~.~ G ( k ) z  k _1 _< I z I _< R. (3.13) 
k = - o~ R 

with 

I1 G IIv: ~ v(k) l ;G(k) l l  < oo. (3.14) 
k=  - o o  

Here G ( k )  is a p x p  matrix. The matrix norm used here is the one intro- 
duced earlier, the Hilbert-Schmidt norm. h~ and H;  will denote the collec- 
tion of  matrix functions in Hv of  the form 

G§ = ~ a G ( k ) f f  (3.15) 
k = 0  

and 0 

G-(z)  = ~ G ( k ) z  k (3.16) 
k =  - o o  
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respectively. Again  it is clear that  

H, C H. (3.17) 

Note  tha t  if G§ ~ H+~, (G-(z) ~ Hi ) t h e n  G§ ( G_(z) ) is analytic in- 
side (outside) and cont inuous  on the disk Izl < R.  ( Iz l  > R) .  Let  H~ 
( H 3 )  denote those functions analytic inside (outside) the unit  circle and con- 
t inuous on it except a t  the points  z = + 1. 

Returning to the recurrence fo rmulas  we denote  the class My by those 
polynomial  systems whose recurrence fo rmula  coefficients satisfy the follow- 
ing condit ions 

~ n  v(2n) [ II-A(n)21 + I B ( n - 1 ) l ]  < oo (3.18) 
n = l  

The class Mo will be denoted by  those systems whose coefficients satisfy 

~ {l l-A(n)2l+B(n-1)l}  < oo. (3.19) 
n = l  

L e m m a  3.2. 

where 

l f  P(k,n) is defined by (3.5A), then 

[Ic~(n) -~ z" P(k,n)I1~ 

< p ( n + l  v(2n) exp {pD ~ ( i+1)  v(2i) 7 ( i ) ]  
h 

i = l  

a( i )  = I I A ( J )  = A(i) A ( i - 1 )  ...A(1), c~(O) --- I 
j = l  

(3.20) 

(3.21) 

and 

Furthermore 

7(i) = I I -A( i )  2 I + t ( B ( i - 1 ) I ,  

D = max { I ~(i)  -1 I I ~(i) I I. 
i 

I z" c~(n)  -1 P ( h , n )  I <__ 

(3.22) 

where 

pC(n+ l) exp [pCD ~ ( i+1)  A(i,z) 
1+ I l - z 2 1  ( n + l )  1+  I I - z  2 I ( i + 1 )  

i = 1  

A(i,z) = II-A(i)21 Iz 12 + I B(i-1) I Izl 

(3.23) 

(3.24) 

and C is constant. 
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Proof .  See [3]. 

The above lemma leads to; 

Theorem 3.1. I f  ~ (z ,n)  satisfies (3.5B), then 

Itq;A(z,n) - q;^(z,m)ll~ 

i -1  

<_p D iv(2i)3,(i)exp{p D B (J+l)v(2j)T(J)} 
and i = m  + 1 j =  1 

I q J A ( z , n ) -  W^(z ,m)) l  

i (j+ 1)A (j,z) 
,_; pCD iA(i,z) exp {pCd B 1+ Ii-z2l  ( j + l )  

i=rn+l 1+ II-z2l i  j= l  

where q~^(z,n) = ~ ( n )  -~ z" q~ (z,n).  
Since/_jr is a Banach space one has; 

(3.25) 

} (3.26) 

Corollary 3.1. / f  (3.18) holds then there exists a funct ion zf+ (z) E H+~ such 
that 

A limll W (z,n) - z, fff (z)llv = 0. 

I f  (3.19) holds then there exists a funct ion z,f§ c Hg such that 

lim I v~^(z,n) - zfA.(z) I = 0 

uniformly ,on compact subsets o f  the unit disk excluding the points z = + 1. 
In the theory of  scalar polynomials orthogonal on the real line the scalar 

analog of  the matrix function f§ (z) = o~ ( )f+~ (z) plays an important role 
in such things as, the spectral factorization of  the measure, asymptotic for- 
mulas, etc., Case [18], Geronimo and Case [3]. It will be shown below that 
f§ (z) plays an analogous role in the theory of matrix orthogonal polynomials 
and we shall call it the matrix Jost function. 

Before developing further the properties off+ (z) we introduce three other 
solutions of (3.6A) and (3.6B). Let 

,~,(z,n) = [ ~,(z,n)_J n > l ,  ~l(z, 1) = A(1) -1 . (3.27) 

In analogy with the previous solutions one has; 

Theorem 3.2. If(3.18) holds then there exists a funct ion zjff+ (z) e H*~ such 
that 

lim II qJ ~(z,n) - zJ~+ (z)llv = 0. 
n~cr 
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I f  (3.19) holds then there exists a function zf~§ (z) ~ H~ such that 

A 
lim I~1 (z,n) - zf~,.(z) l = 0 
n~e~ 

uniformly on compact subsets o f  the unit disk excluding the points z = + 1. 
For the other two solutions, let 

~b+(z,n) = ~_ ~§ J (3.28A) 

and 

I P-(z,n) 

,b-(z,n) = L_ q~-(z,n)J (3.28B) 

be solutions of (3.6A) and (3.6B) satisfying the following boundary conditions 

lim P . ( z , n )  = z"I l im  ~+(z ,n )  = O, tzt <_ 1 (3.29) 

and 

lim P_(z,n) = z-"l, lira t~-(z,n) = (1-z~)z-"I, Izl >- 1. 
n ~  n~oo 

In what sense the limit exists is given in the following theorem. 

(3.30) 

T h e o r e m  (3 .3 ) .  I f  (3 .18)  holds then 

U^P+(z,n) I1~ <__pexp [pN ~ (m-n) v(2n-2m+2)3~(rn+l)l n>_O, 
r n = n + I  

(3.31) 

II^P+(z,n)-IIIv ~ p N ~ ( i -n )v (2 i -2n+2) 'y ( i+l )  
i = n + l  

exp {p N ~ (m- i )v (2m-2i+2)3 , (m+l)}  n>_O, 
m = i + l  

(3.32) 

and P.(z ,n)  ~ H+~ . 
I f  (3.19) holds then 

I^P+(z,n)l <- Cp exp (pN 
(m--n)A(m+ l,z) Z c  
1+ II-zZ[ ( m - n )  

m = n + l  

IAp+(z,n)-II ~ CpN E (i--n)A(i+ 1,z) 
i = n + t  1+ I I - - z 2 [  ( i -n )  

exp (cpN ~ (m-i)zk(m+ l,z) 
m = i + l  1 +  II-z21 (m- i )  

Izl -< 1 

n _>0 

(3.33) 
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and ^P+(z,n) e 14;. Here ^P,(z,n) = z-"c~(n+ 1,oo)P+(z,n), ot(n,m), 
in 

= I I A ( i ) -  A(n)A(n+l) . . .A(m) ,  a n d N =  max{ la(k, oo)l Ic~(k+l,m)l 
m , k  n 

l a ( m +  1,~)-~11. 

Proof. From the recurrence formula one has, 

00 

^P,(z,n) = I -  ~_~ ^~+(z,i) 
i = n + l  

(3.34) 

where ^qJ § = z-"~(n + 1,oo) u2 § 
Iterating upwards the lower component of (3.28A) and (3.6C) then 

substituting the result into (3.34) gives 

^P§ = I+ ~ ~ o~(k+ 1,oo)c~((k+ 1,m) 
m = n + l k = n + l  (3.35) 

{ I - A  (m+ 1 )2)z-B(m) Ic~ (m + 1,oo)-~Z~m-2~+lAP+(z,m). 

Writing 

with G(z,n) ~ = I and 

G(z,n) ~§ = 

oo 

^P+(z,n) = ~ G(z,n) i 
i=0  

~ ~x(k+l,oo)o~((k+l,m) 
m = n + l k = n + l  

(3.36) 

(3.37) 

[ I - A  (m+ 1)2)z-B(m) la(m+ 1,~)-lz2~-~*lG(z,n) ', 

one finds IIG(z,n)~ = p and by induction 

o0 

iiG(z,n),+~llv < 19 (pN ~ (m-n)v(2m-2n+2)7(m+l))i§ 
(i+ 1)! m=n+l 

(3.31) now follows by substituting the above equations into (3.35). (3.32) 
is obtained by substituting (3.31) into (3.35). (3.33) follows from arguments 
similar to those given above and from the fact that each of the G(z,n)' can 
be shown by induction to be matrix functions analytic inside the unit circle 
and continuous on it except perhaps at the points z = + 1. 

To obtain the analytic properties of P_(z,n) note that if one eliminates 
~§ and ~_(z,n) from the recurrence formula one finds that P(z,n)  

+ 
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satisfy (2.14A) with boundary conditions given by (3.29) or (3.30). Therefore 

P-(z,n) = P+(1/z,n) (3.39) 

and the following corollary is a consequence of the recurrence formulas and 
the above equation. 

Corollary (3.2). I f  (3.18) holds then ^q /§  E I-I~, n >_ O, ^ud- (z ,n)  
H-~, n >_ 2, and ^P_(z ,n)  E H-~, n >_ O. I f  (3.19) holds then ud§ 
Ho, n >_ 0, 'I'_(z,n) 6 Ho, n _ 2, and P_(z ,n )  ~ Ho, n >_ O. 

Utilizing the above analytic properties of ~.  and q,_, and the fact that they 
are linearly independent solutions of (3.6) except at the points z = + 1, one 
can write 

,b+(z,n)C(z) - ,b_(z,n)D(z) 
O ( z , n )  = Z # + 1 (3 .4 0 )  

z -  1/z 

where C ( z )  and D ( z )  can be evaluated using Lemma 3.1. Thus 

D ( z )  = _ 1  iTv[~b~+,~] = • (pr+(z,n) q~ ( z ,n )  - U;T+(z,n)P(X,n) ) 
Z Z 

_ 1 l ira Z~ ( z ,n )  = jq (Z)  
Z / ' / ~  Oo 

(3.41) 

and 

C ( z )  = - I  PV[0_~,~I : z l i m  z-"t~ { •  = f §  =- f - ( z ) .  
Z Z Z 

(3.42) 

Another useful representation of  f§ following from (2.19) is 

f+ (z) W[P~,P] ~ 1) = = P+(z , -  (3.43) 

with A (0) - I. 
Likewise the following formula for ~ may be obtained 

rb+(z,n)f~_(z) -~ - ( z ,n ) f ,+(z )  
cb,(z,n) = z ~ _1 (3.44) 

z -  1/z 

where fx§ (z)  = P~.(z,O), and f l -  (z)  = f x§  Using procedures similar 
to those above gives, 

r~.(z,n) = ~5(z,n)f~+(z)-~51(z,n)fr+(z) (3.45) 

where the fact that (V[~,~]  = - z  has been used. An analogous equation 
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for q,_ may be obtained by replacing + by - in the subscripts of  f .  
An immediate consequence of  the above formulas is obtained by setting 

n = - 1  in (3.40) yielding 

T Z r f . ( z ) f - (  ) = f ! ( z ) f . ( z ) .  (3.46) 

The regions of  validity of  the above equations are determined by the analytic 
properties; of  their constituents. 

4. The properties of the matrix f§ 
Let e2., denote the Hilbert space of vector functions o~ = (COl, Oh . . . . .  %) where 

o~i E e2.(aE e. ~ ~, a = [a(i)}i=o and <a,a> = ~ la(i) l  2 <oo.)  The scalar 
i=0 

P 
product on e.2p is the natural one (f ,g) = ~] (f~,g,.), where (f~,g,.) is the 

/=1 

scalar product in the e2. sense. Assuming (3.1) holds the infinite dimensional 
matrix given by (2.14A) acting on vectors y = (Yl,y2 . . . . .  yp) with boundary 
condition y ( - 1) = 0, may be thought of  as a bounded self-adjoint operator 

2 J on g+p. 'Thus the eigenvalues of  J are real. 
Suppose (3.19) holds and detf§ = 0, Izl < 1. Then there exists a 

f~(zo)l~ = 0, and (3.32) and (3.43) imply that the p • 1 vector iz such that r 
sequence {P§ n)#}.%_ 1 E e2§ Thus the points z,, Iz,.I < 1 where 
detf§ = 0 are real and X, = (z i+  1/z,) are eigenvalues of  J. 

Consider now the system solving (2.14A-C) with 

A ( n + l )  = L B(n) = 0 n >- N. (4.1) 

Then zf§ (Z) = zSU2 (z ,N) is a matrix polynomial in z of  order 23/. Further- 
more it is easy to see that P§ is a polynomial in z while P_(z,n)  and 
f - ( z ) / z  are polynomials in 1/z. Since P§ and P-(z ,n )  are linearly in- 
dependent except at z = -+ 1, the theory of  second order difference equa- 
tions (Atkinson [101) says that any vector solution y ( k , n )  of  (2.14A) and 
(4.1) can be written as a linear combination of  P+(z,n) and P_(z,n) times 
appropriate  constant vectors. From (3.32) and (3.39) it is clear that in order 
for the components  of  y ( z , n )  to be square summable for Izl < 1, 
(Ikol > 2), it is necessary and sufficient that y(Xo, n) = P+(zo, n)a, be a 
constant vector. Furthermore in order for Xo to be an eigenvalue of  jN (defined 
in the same manner  as J except with restriction (4.1)), y ( X o , - 1 )  = 
P§ 1)a = 0. This of  course implies that det f§ = 0. Now letting 
N--oo  and using the fact that zof+ (Zo) and P§ converge uniformly for 
Izl - 1, one has 

Theorem (4.1). I f  (3.19) holds then the points z ,  Iz, I < 1 where 
det f§ = 0 are real and X, = (z~ + •  are the only eigenvalues o f  J for  

z i  

IXl > 2. Furthermoref§ is nonsingularfor Izl = 1, z ;~ + 1. 
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Proof .  Only the last sentence remains to be proved. F rom (2.17) one has 

P*+(z,n)A(n+ 1)P§ + 1) -P*(z ,n+ 1)A(n+  1)P.(z,n) = ( z - 1 ) I ,  
Z 

(4.2) 

Izl = 1 z ;~  +1. 

Therefore  if there exists a nonzero  vector a such that  P§ (z ,n)a = 0 then 
a*P*(z,n) = 0. Multiplying the above equat ion on the right by a and on 
the left by  a* one finds that  for z ~ +- 1 a*a = 0 which implies a = 0. Thus 
d e t P §  ;~0 Iz[ = 1, z ;~ _+1. 

L e m m a  (4.1). I f  (3.18) holds then z = +- 1 is not an eigenvalue o f  J. 

Proof .  See Appendix  A. 

F rom the preceding arguments  it is clear that  the zeros o f  det z f §  in- 
side the unit circle are real with the only possible accumula t ion  points being 
z = -+ 1. Therefore f§ (z) -1 is analytic inside the unit circle except at the points 
where det f+(z)  = 0, and it is cont inuous on the unit circle excepting the 
points z = -+ 1. The next lemma of  Newton  and Jost  [19] will prove useful 

in investigating the points where f§  -1 is singular. 

L e m m a  (4.2). Let B ( z )  be a square matrix, which is analytic in the circle 
Izl < 1, such that det B(O) = O and det B ( z )  ;~ O forO < Izl < 1 .  Then 

the matrix B ( z )  -~ has a simple pole at z = 0 i f  and only i f  the relations 

B(O)a = O, 
(4.3) 

B(O)b + B' (O)a = 0 

where a and b are constant vectors or matrices imply that a = O. 

Theorem (4.2). I f  (3.19) holds all the singularities o f  f§  -1 for  Izl < 1 

are simple poles. 

Proo f .  This  is a discrete analog o f  the p roo f  given by Newton  and Jost  
[19] for the matrix Schr6dinger equation. Setting Q* = P* in (2.17), iterating 
upwards then differentiating with respect to  z using (3.5D) and setting/2 = k 

one finds 

P*(Z,n - 1)A (n)P:(z,n) - P*(2,n)A (n)P'(z,n - 1) 
oo 

= - (1 - 1 / z2 )E  P*(g,i)P+(z,i). (4.4) 
i = n  

Suppose that  det P §  -- 0 then there exists a vector a such that  
P §  = 0. Setting n -- 0 in the above equat ion then multiplying 
th rough  by a and a* yields 



SCATTERING THEORY 485 

a*P*(zo, O)P~(zo, - 1 ) a  = (1 - 1 / ~ )~ ]  a*P*+(zo, i)P+(zo, i)a ;~ O. 
i=0 

(4.5) 

Suppose now that a also satisfies the bot tom equation in (4.3) with 
B(0) = P~ (Zo, - 1 ). Taking the hermitian transpose then multiplying on the 
right by P+(zo,0)a gives 

b*P*(zo, - 1 )P+(zo,O)a + a ' P * '  (Zo, - 1)P+(zo,O)a = O. (4.6) 

But f rom (2.19) 

P*(zo, - 1)P§ (zo,O) = P**(zo,O)P+ (Zo, - 1). (4.7) 

Substituting this into (4.6) then comparing the result with (4.5) leads to the 
conclusion that a = 0, and implies through Lemma (4.2) that f ~ ( z )  -1, and 
therfore f~ '  (z) has a simple pole at Zo. 

Having shown that the poles o f f ~ ( z )  for Izl < 1 are simple let us ex- 
amine the :residues o f f~  ~ ( z ) P ~ ( x , O )  at the points of  singularity. These residues 
will play an important  role in the construction of  the distribution function 
with respect to which the matrix polynomials are orthogonal.  With that in 
mind we will use (3.5D) (and the branch mentioned below it) and consider 
f§ and P§ as functions of  the variable X. Consider again the system given 
by (2.14A) and (4.1). Assuming f§  -~ has a pole at kl one finds 

f . (x )  = f .(x,)  + ( x -  x,)f'(x~) + �9 �9 �9 (4.8) 

and 

f+(X)-I = ( k - k ~ ) - ~ M ~ + M ~  �9 �9 (4.9) 

Since 

f . ( X ) f §  -1 = z = f . (x) - l f+(x) ,  x ~ x, 

(4.8) and (4.9) imply 

and 

f+Mi = M~ f§ = 0 (4.10) 

f+ M ~  = M ~ f . + M ~ f "  = L (4.11) 

(The dependence on X will be suppressed when there is no confusion. All 
differentiations in the rest of  this section are with respect to X.) Let E,  be 
a hermitian matrix which projects onto the null space of the matrix f~(Xl) 
so that 

f r ( X l ) E i  = 0. (4.12) 

From (4.10) it is clear that the set of  vectors M ~ a  where a is an arbitrary 
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vector coincides with the the null space of f+r(X,). Consequently 

E~ M r = M r. (4.13) 

From (4.4) one has 

P+*(Xi,- 1)P+(X,O)-P+(X,,O)P+(X,, - 1) = - P*(X,j)P+(XI,j) = - z ,  (4.14) 
j = 0  

Multiplying on the left by M, and on the right by M* = A/[gives, using (3.43) 
and the fact that X, is real 

M,P*+(XI,O)P'(X,, - 1 )M? = MiZ,M* (4.15) 

Taking the hermitian conjugate of  (4.11) and substituting it into the above 
equation using (4.7) yields 

p, =- M, pr,(X.O) 

= M~P*+(X,O) = MiZiM* (4.16) 

Thus p, is a nonnegative hermitian matrix. Furthermore multiplying the up- 
per component of  (3.45) on the right by M ' t h e n  its hermitian conjugate on 
the left by Mi and substituting the result into (4.16) one finds 

p, = p,~_~ P *  ( X u j ) P ( X , , j ) p * .  

j=O 

(4.17) 

Now letting N - - ~  yields; 

T heorem  (4.3).  / f  (3.19) holds then 

p, = M ,  Pr (X , ,O)  = M f f ' , . ( X , )  

is the residue o f f21  (x)Pr(X,  0) at X = X, where X, is a s imple  po le  o f  f 2 '  (X) 
with IX l > 2. pe is non-negat ive  with rank  <_ p ,  and the o r thonormal  

po l ynomia l s  sat is fy  (4.17). 

Considering now the upper component of  (3.40) one has 

where 

P(X.n) = ( P + ( z , n ) S ( z ) - P - ( z , n ) ) f + ( z )  Izl = 1 (4.18) 
z - 1 / z  z ~ • 

" - 1  S(z)  = f - ( z ) f§  (4.19) 

is the discrete matrix analog of the scattering operator in quantum mechanics 
(see Agranovich and Marchenko [14], also Serebrjakov [9]). From (3.46) 



SCATTERING THEORY 487 

S(z)  = f - ( z ) f+(z)  -1 = f~ ( z ) - ' f r ( z ) .  

There fore  

S( z )S* ( z )  = S* ( z )S ( z )  = I I z l  : 1 (4 .20)  

z #_+1  

and 

S(z)  = S(z) = S*(z)  Izl = 1 (4.21) 

Z # + 1 .  

S ( z )  will p lay an impor t an t  role in the discrete analog of  the Marchenko  
equat ion  (see Section 6). A consequence of  (4.18) is; 

L e m m a ( 4 . 2 ) .  S u p p o s e ( 4 . 1 )  holds. I f f + ( z ) - l  h a s a p o l e a t z  = +_l, i t i s  

s imple.  

We now turn to the p rob lem of  determining the number  o f  zeros o f  
d e t f §  Izl < 1. 

T heo rem (4.4). I f ( 3 . 18 )  holds then J has a f i n i t e  n u m b e r  o f  eigenvalues. 2 

P r o o f .  Only  the case where o (n)  = 1 for  all n will be considered as all 
other cases follow. Instead o f  considering the matr ix  associated with (2.14A), 
J, consider J '  = J -  2L with the bounda ry  c o n d i t i o n y (  - 1) = 0. J '  is now 
a negative self-adjoint  opera to r  acting on e+2~ = e~(0,~) .  Consider  the 
opera tors  j1 and j2 represented by 

j1 = ~ B ( O )  - 2 I  A ( 1 )  

A(1)  B(1) - 2 1  A(2)  

A (n - 2 )  B ( n - 2 ) - 2 I  A ( n -  1) 

A ( n -  1) B ( n -  1) - 2 J  

with y ( - 1 )  = y ( n )  = 0, and 

j2 = ~ B ( n + l ) - 2 I  A ( n + l )  
| 
A(n  + 1) B ( n + 2 ) - 2 I  A ( n + 3 )  

A ( n + 3 )  B ( n + 3 ) - 2 I  A ( n + 4  
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with y ( n )  = O. J '  and j2 act on f~(0,n- 1) and ~(n  + 1,oo) respectively. 
The proof now follows from arguments similar to those given in [3]. (Note 
the squaring argument in [3] is not needed.) 

5. Construct ion of  the distribution funct ion 

Returning to the system satisfying (2.14) and (4.1) consider the following 
integral, 

P = )f.(z)-lf+(z)-lP*(X~n)sin2OdO. X = z+ l / z  (5.1) 

Z = e ~~ 

This integral is well defined since, by Lemma 4.2, (z  - 1/z)f§ (z)  -~ is analytic 
[z[ = I. Using (3.46), the upper component of (3.40), and (3.39) one may 

recast the above equation into, (see [3]), 

F = 1 ~P(k ,m) f§  -1 (z) P,(z,n)(1-z-2)dz.r 
27ri d 

The residues of the above integral are at z = 0 and at the simple poles of 
f §  These residues can be evaluated using the recurrence formulas and 
Theorem (4.3). This leads to 

Theorem (5.1). Given the system o f  polynomials  [P(k,n)  } satisfying (2.14) 
and (4.1) one has 

l~ P(?, )dp() , )P (?, ,n r ,m) = &..~ 
- o o  

where 

with 

do(X) = t ~  ~ 

i = 1  

k = 2cosO 0 _< 0 _< ~r 

k not as above L < oo 

a(O)d'h = f ,  (ei~176 

and 

T Pl = MiP+(k,0). 

Mi is the residue o f f . (  k )  -1 at ki, Ik~ I > 2. o, & non-negative with rank <_ p.  
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Since (here we introduce the superscript N t o  denote the system satisfying 
(4. I)) 

PN(X) = IX-=dpN(K) <--- f[=dpN(K) = I  

and pN(M is nondecreasing, one can use the matrix Helly-Bray theorem 
(Atkinson [10]) to obtain a limiting distribution function. (This holds even 
if only (3.1) is assumed.) 

Lemma (5;.1). I f  (3.18) holds, then 

lim I ( z -  1/z)B~(z)fn+(z) - ' -  ( z -  1/z)B(z)f:+~(z)l = 0 
N ~  

uni formly  on compact  subsets o f  the open unit  disk. Here  

: z ~ - z  Iz~l 
B~(Z) = H 1-ZZ~ zn 

i = l  z 

L Z,--Z Iz, I 
B(z)  = H 1-ZZ, z, 

i=1 

where z~(z/) are the singular poin ts  o f f , ( z )  -1 (f§ Izl < 1. 

Proof.  Since det zf+~(z) and det zf§ are analytic functions for Iz[ < 1, 
the result follows from Hurwitz's theorem, and Theorem (4.4). 

Theorem (5.2). Given (3.18) one has ( z -  1 / z ) B ( z ) f + ( z )  -x E H~ x" ( the  
Hilbert  space o f  p •  matr ix  func t ions  analytic in the open unit disk) .  

Proof .  Using the fact that ( z -  1 / z ) B N ( z ) f ~ ( z )  -~ is analytic on the unit 
disk (see Lemma (4.2)) one has for 0 __< r _< 1 and for all N 

S Q = �89 I ( z -  1/z)BN(z)f~(z)-ll2dO z = re '~ (5.2) --Tr 

<-- _,~ I(e'~176 (e'O-~l~dO 

= -- If~.(e,O) -~ I~sin~OdO 
"IF 

I~ sin20 dO q~ i8  - 1  N .  i o  - 1  = 4 trace of+(e ) f§ ( e )  r 

S -d, 
_< 4trace -~ N(X) = 4p 
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Thus (5.2) remains the same for fixed r < 1 when ( z -  1/z)BN(z)fN+(Z) -1 
is replace d b y its limiting function (z - 1/z) B (z)f§ (z) -~ proving the theorem. 

L ~ (T) (the Hilbert space o f  p x p Corollary (5.2). (e,O_ e_~O)f~,, (elO) ~ px, 
matrix functions on the unit circle). 

As a consequence of  the theorem above and the previous techniques one 
has 

Theorem (5.3). Theorem (5.1) holds when the coefficients in the recurrence 
formula satisfy (3.18). 

6. The discrete Marchenko equation 

Returning again to the upper component  of  (3.40) one has 

P(k,n)f~,~(z)(z-1/z) = -P_(z,n)+P§ Izl = 1, z # +1 

where S(z)  is the discrete scattering matrix. 
From (4.18) and (4.19) one sees that S(z)  is unitary and continuous for 

Izl = 1, z # + 1. Assuming (3.18) holds it is a consequence of  Theorem 
(3.3) that P,(z ,n )  E H § and can be written as 

oo 

P§ = ~ A(n,e)z e. (6.1) 
f = n  

Substituting this into the previous equation multiplying by z m-~ then in- 
tegrating around the unit circle gives 

~ P(k,n)f§ -~ z " ( z - 1 / z )  dz 
2~ri z 

-T z '  
f = n  e = n  

(6.2) 

Here (3.39) and the fact that ( z - 1 / z )  f§ E L~xp(T) have been used. 
Note that because of  the unitarity of  S(z)  and the summabili ty of  A (n ,0  
the interchange of orders of  summation and integration is justified. 

For m>_n>_O one can evaluate the L.H.S.  using the residue theorem 

1 ~ p(k,n)f~+l(z ) ( z -  1/Z)Z mdz 
27ri Z 

L 

= ~.~ P(k,,n)Miz~-A~(n,n)-16,. ,. 
i = 1  

(6.3) 

where the last term on the R.H.S.  comes from the residue at z = 0. To recast 
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P(k , , n )AL  multiply the upper component of (3.45) on the right by projec- 
tion operator E~ (see (4.12)), which gives 

P§ = P(k~,n)P+()~,,O)E,. 

Replacing M, in (4.16) by E* taking the hermitian transpose, then substituting 
the result into the above equation using (4.13) yields 

where 

P+(ki, n)E, = P(X,,n)M,T, 

Ti = EiZ~E~ + I -  E~ 

is positive definite. Multiplying (6.4) on the right by T~IEz gives 

P+(ki, n)Ni = P(X,,n)M, 

with 

(6 .4 )  

a non-negative hermitian matrix. Substituting the above into (6.3) then com- 
bining the result with (6.2) gives the discrete analogs of the matrix Marchenko 
equations;, 

and 

o0 

a(n,m)-l-o~(n+m)+ ~a a(n, e)o~(e+m) = o 
f = n + l  

A(n,n)-IAr(n,n)  -~ = l+co(2n)+ ]~ a(n,Oo~(e+n) 
f = n + l  

where 

a(n,m) = A(n,n)- lA(n,m) 

and 

w(k) = - - -  
L 

1 S(Z)Zk dz+ E N~Z~ 
27ri Z 

i = 1  

For n = - 1  the  L.H.S. of (6.2) vanishes and one has 

o ~  

a ( - 1 , m ) + o ~ * ( m - 1 ) + ~ a a ( - 1 , O c o ' ( f + m )  = 0 
f=O 

m > n ~ O  

n_>O 

(6 .6 )  

(6.7) 

m _> - 1 (6 .8 )  

Ni = EIT~IE, (6.5) 
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where 

~l(k ) _ 1 ~ S(z)z, dz - - .  

2 ~ri z 

With the above equations one can now prove 

T h e o r e m  (6.1). Given (3.18) the following holds 

a) z E~P§ E H i i f d e t  P§  = 0 
1 - z  

b) z E_~P+(z, - 1 )  e HS i f  det P §  = 0 

c) z( ( 1 - z ) E - ~  + (I + z ) E 1 ) P §  ~ H + i f d e t P §  = 0 
1 - z 2 

El and E_~ are hermitian matrices which project onto the null spaces o f  
P§ 1 , -  1) ~ and P §  1 , -  1) r respectively, (i.e. P+(1, -  1)~EI = 0). 

P r o o f .  See [3] p. 478 and [14] lemma 5.62. 

Lemma 6.1. Given (3.18) then Df§ i~ is nonsingular where 

a) D = I i f  det f§ +_l) # 0 

b) D = ( I - E ~  + E~ ) i f  det f§ = 0 
1 - z  

E_~ ) i f  det f§ - 1) = 0 c) D = ( I - E _ ~ + I + z  

d) D = ( 1 - E - ~ +  I ~ z ) ( I - E ~ +  1-zEI ) i f  det f§ = 0 

P r o o f .  See Agranovich and Marchenko [14], Lemma 5.6.3. 

O" D , _  1 Lemma 6.2. Given (3.18) then D -1 s-~nO ~ Hv and sin0 D*a-ID E Hv. 

P r o o f .  This follows from Theorems (5.4) and (6.1), Lemma (6.1), Corollary 
(3.2) and the Weiner-Levy theorem. 

7. Integral  representa t ions  

Having the distribution function one can find explicit integral representa- 
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tions for the matrix function used in the earlier sections. For example 

P,(X,n) = f~ P ( X , n ) - P ( h ' , n )  
h - h '  dp(h ' )  n _> 0. (7.1) 

Substituting this equation into the upper component of (3.45), then multiply- 
ing on the left by P (k ,n )  -1 and letting n--oo yields 

f ~ , ( Z )  = f ~ - ~  d p ( X ' )  f ~ ( z )  
X-X' 

k = z +  1 / z  Izl < 1 (7.2) 

k '  =z '  + 1/z '  k ~ support do(k). 

Now using (7.2) in (3.45) gives 

f ~ P ( h ' , n )  , 
P§ = -~  ~ - ~ '  dp(~ )f~(z)  Izl < 1, h = z + l / z  (7.3) 

X ~ support dp(X). 

Notes  

1. For analogous results on matrix polynomials on the unit circle, see Delsarte et 
al. [12]. 

2. This proof is adopted from Agranovich and Mar'chenko [14]; see also Serebrjakov 
[9]. 

Appendix  A 

Here we prove 

Lemma (4.1). I f  (3 .18)  holds then z = +-1 is no t  an eigenvalue o f  J. 

Proof .  Only z = 1 is considered as the other case follows in exactly the 
same manner. Consider the polynomials [Pm(X,n) } and { q~ m(z ,m)  } satis- 
fying (3.6A) for n ___ m with Pro(X,0) = qJ re(z,0) = L From the recurrence 
one can show [3] that, 

n (1_Z2n_2i ~ 
P2(z ,n )  - 1-z2"§ 2 I + ~ / = l ~ m ( i - 1 ) - l [ [ l - A ( i + m ) 2 l z 2 ~ _ z ~ ]  (a.1) 

/-1-z2~-2i+2 / ' l)P~(z,l-- 1) - B ( i + m - 1 )  ~ _ - ~ .  zotm(t-  ^ " 

A where Pm(Z,n)  = z n ~ . , ( n ) - l P m ( z , n )  and 
n 

~.,(n) = ~.~ A ( j ) .  
J = m +  1 
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Using successive a p p r o x i m a t i o n s  leads to,  

n 

Iz"o~m(n)-lPm(X,n)l < p(n+ 1)Cexp{pCDm E (i+ 1)-y( i+m)} 
i = 1  

where Dm is def ined  in (3.22). Thus subst i tu t ing this equa t ion  into  A.  1 yields 

[ Pm(l'n)In+l t < i = ~ D ~ C p ( n - i + l )  

i 

xexp{pCDm E (j+ l)7(j+m)l. 
j = l  

I f  (3.18) holds  then for  large enough m the R . H . S .  can be made  less than  
V2 for  all n > m. There fo re  P§ and  P,,(k,n) are two l inear ly  indepen-  
dent  so lu t ions  o f  2 .14A for  n _> m at z -- 1. Since all so lu t ions  o f  2 .14A 
and  B can be wri t ten  in te rms o f  these two for  n _> rn and  since nei ther  
p,(1,n)c nor  P,,(z,n)d are summab le  where  c and  d are  a rb i t r a ry  nonzero  
vectors  one can conc lude  tha t  J does not  have an eigenvalue at z = 1. 
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