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SCATTERING THEORY

AND MATRIX ORTHOGONAL
POLYNOMIALS

ON THE REAL LINE

J. S. Geronimo?

Abstract. The techniques of scattering and inverse scattering theory are used to in-
vestigate the properties of matrix orthogonal polynomials. The discrete matrix analog
of the Jost function is introduced and its properties investigated. The matrix distribu-
tion function with respect to which the polynomials are orthonormal is constructed.
The discrete matrix analog of the Marchenko equation is derived and used to obtain
further results on the matrix Jost function and the distribution function.

1. Introduction

In recent years the techniques of scattering and inverse scattering theory have
been used with much success to study the properties of scalar orthogonal
polynomials, Case and Kac [1], Geronimo and Case [2,3], Geronimo [4,5],
Guseinov [6], Dym and Iacob [7]. These techniques emphasize the impor-
tant role played by factorization theory and also the close connection be-
tween polynomials orthogonal on the real line and those orthogonal on the
unit circle (see also Nevai [8]).

Here the techniques of scattering and inverse scattering theory are used
to investigate the properties of matrix orthogonal polynomials on the real
line (see also Serebrjakov [9]). These polynomials are known to arise in a
number of physical and engineering problems, Atkinson [10], Christian et
al. [11], and in numerical analysis. In analogy with matrix polynomials or-
thogonal on the unit circle, Delsarte et al. [12]; Geronimo [13], a new set
of recurrence formulas is introduced and it is shown that the solution of one
of the equations leads naturally to a spectral factorization of the matrix
distribution function.

In order to help motivate the problem we begin in Section 2 with the matrix
distribution function. The polynomials orthonormal with respect to this
distribution function are constructed and the three term recurrence formula
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they satisfy is derived. In this section the Wronskian theorem and Christoffel-
Darboux formula are given. We then turn the problem around and take the
recurrence formula as our starting place (Section 3). Conditions are placed
on the coefficients on the recurrence formula that allow us to introduce a
new set of recurrence formulas. The analytic properties of various solutions
of these recurrence formulas are investigated and the discrete matrix analog
of the Jost function is introduced, {(Agranovich and Marchenko [14]). In Sec-
tion 4 the properties of the Jost function are investigated, and these are used
to develop the relation between the Jost function and the distribution func-
tion (Section 5). The discrete matrix analog of the Marchenko equation is
introduced in Section 6 and used to investigate further the properties of the
Jost function. Finally in Section 7 integral representations for many of thé
solutions of the recurrence formula are given.

2. The matrix-valued distribution function

The p X p symmetric function p (N\),A real, is called a matrix distribution func-
tion, Atkinson [10}, Berezanski [15], Krein [16], Rosenberg [17], if it has
the following properties: a) p(A) is nondecreasing in the sense that p(\,)
< p(A,) for all A, = \, (The notation A4 < B for hermitian matrices 4 and
B means B~ A is nonnegative definite.); b) p(\) has infinitely many points
of increase; and c¢) all the p X p matrix moments

S, = gm)\"d,o(k) n =0,12,.. Q.1

are finite. It is known that p (\) has countably many discontinuities, all of
them simple (so that the limits p(\*) and p (\") exist for all A). Therefore
(M) has a derivative almost everywhere denoted by

o(\) = g—"x ae. 2.2)
From the properties of p(\) it is clear that o(A) = 0. In general p(\) can
be decomposed into p = p.. + p; + p, where

A
pulh) = | o0 @.3)

p; is a jump function and p, = p — p.. — p;.

For continuous matrix-valued functions F(\) and G(A) the integral
§G(N)dp(N) H(N) is defined in the natural way: the (i,/)-entry is the (s,1)-
sum of the scalar integrals | g, (\) A;(N)dp..(N\). In fact the above matrix
integral has meaning for much more general functions G and H, Rosenberg
(7).

Define the p(n+1) xp(n+ 1) matrix

S, Sy S, .. S,
S S, S; < Sen
H(n) = ) o Q.49

:Sn :Snﬂ :S'né-l - :an
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It is easy to see that H(n) is positive definite. To show this let u* = (u3,
ulh...ul) be a p(n+1) row vector with u, ¢ R?, i = 0,...,n. Setting
p(Nn) = po + N + ...+ pA", then using (2.1) and (2.4) one finds (see
Delsarte et al. [12]),

g_mlt’()\,n)dp(k) p(hn) = p"H(n)u.

Since the integral is positive for all p(N\,n) # 0, H(n) > 0.
Let R”?({\) be the set of p X p polynomial matrices with real coefficients
and R2* ()\) be the subset of R”?(\) containing polynomials of the form

Y(\n) = Yy + NY, ...+ NY, Y; € R” (real p X p matrices).
Setting V7(\,n) = (LALN,...,\"])
V*(n) = (0,0...,1),
(here I is the p X p identity matrix) and Y"(n) = (YZ,Y1...Y?), one finds
Y(A\nr) = VI(\n)Y(n). 2.5

With p (M) one can associate the symmetric functional L:R*¥(\) — sym
R defined as follows!

L(Y(A\n)) = S_wYT(X,n)dp(MY(X,n) - 2sym(Y,). . (2.6)
Here
symA = 2 (AT + A)

is the symmetric part of the real matrix A. Using (2.3), (2.4) and (2.5) in
(2.6) gives

L(Y(\n)) = Y'(n) Hn)Y(n) — 2sym(V' (n)Y(n)).

Setting X = H(n)v Y(n) — H(n)-% V(n) where H(n)" is the symmetric
square root of H(n) which exists since H(n) is real and positive definite
and substituting X into the above equation yields

L(Y(\n)) = XX — V7T (n) H(n)™ V(n). Q.7

Thus for each degree n there exists a unique W(A,n) e RZ® (M) given by
the expression

W(\,n) = VI(\n) H(n)? V(n) 2.8
that minimizes (2.7) in the sense that

L(W(\n)) = L(X(\n)) X(\n) e RE#(\).
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Note that W(\,n) = W, + WA +...4+ W, and from (2.8)
W. = Vi(n) H(n)" V(n) >0 (2.9)

thus W(A\,n) is a matrix polynomial of degree n. Besides minimizing (2.7)
W (A,n) is orthogonal to all X'e Rz=2 (\). To see this observe that for X (A, »),
e R7? (M)

S WT(\n) dp(N) X(\,n) = VT(n) X(n) = X, Q.10)

where (2.5) and (2.8) have been used. Now X(\,n) € RP% (\) if and only
if X, = 0, proving the result. In order to obtain the matrix polynomials ortho-
normal with respect to dp(\) set

P(An) = KIWT(\n) 2.11)
where
KK = W' = (V'(n) H(n)™* V(n))™. 2.12)
Thus from (2.10)
S_m P(\1) dp(N) PT(Am) =5, I 2.13)

Note that K7 and hence P(A,n) are defined only up to a left orthogonal factor.
As in the scalar case, matrix orthonormal polynomials on the real line
satisfy the following three term recurrence formula

An+1) P(\n+1) + B(n) P(\n) + A(n) P(\,n—1) = AP(A\,n)
n=0,1,.2,.. (2.14A)

P(N\,—-1) =0 P(N0) =1 (2.14B)

(here and throughout the rest of the paper it will be assumed without loss
of generality that Sdp()\) = I) where

B(n) = S=m)\P()\,n) dp(N\) PT(\,n) n=0,12... (2.14)

and

@

An+1) = Lm)\P()\,n) dp(N)P"(MAn+1) n=0,12.. (2.15)
= KL(KL)™
From the above equations it is apparent that B(n) is symmetric and

Am+1)A(n+1)7 positive definite. Since K7 is defined only up to a left
orthogonal factor it is convenient to choose it so that

A+ = A(n+1) > 0. (2.16)
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Letting Q(u,n) be a solution of (2.14A) one finds
Q*(un) A(n+1) P(\n+1) = Q*(wn+1) A(n+1) P(Nn) 5 47)
= (A=u)Q* (u,n)P(\,n) + Q*(u,n—1)A(n)P(\n) — Q*(u,n)A(n) P(An—1)

where A* means the hermitian conjugate of the matrix A. Two consequences
of (2.17) are the Christoffel-Darboux formula,

P*(u,n)A(n+1) PO\n+1)—P*(u,n+1) A(n+1)P(A\n)

= (\-u) Y, Pr(ui) PO\ (2.18)
i-0
and the Wronskian theorem,
WIQ.P] =Q*(\,m)A(n+1)P(\n+1) — Q*(An+1)A(n+1)P(\n) 2.19)

is independent of n. The first follows from (2.17) by setting Q=P then
iterating down using (2.14C). (2.19) follows from (2.17) by setting u = A.
3. The recurrence formula

We now turn things around and begin the recurrence formula. Given two
sequences of p x p real symmetric matrices {A (n+1) } .=, and {B(n) } .o With
A(n) > 0one can construct a set of matrix polynomials according to (2.14).
We now assume that there exists an 4 (o) = a(o)l, a(o) a positive scalar
and B(w) = b()I, b(o) real such that

lim lA(n)—A(x)l =0

n—oo
and

lim {B(n)—B(x)i = 0. 3.1

H—0

For the matrix norm used above it will be convenient to use the Hilbert-
Schmidt norm, i.e.,

1Bl = £ Ib,12)% = 1B*1. 3.2)
i
This norm has the useful property that for matrices 4 and B
l4 Bl< 141 |BI. 3.3)

Considering (3.1) above, it is without loss of generality that one can take

A(w) = [ and B(o) = 0. 3.49)

In analogy with scalar polynomials orthogonal on the real line (see [2]) we
consider the following two equations.
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P(\n) =A@y {(zI-B(n—-1)) P(\,n-1) + %— Y(z,n—1)}, (3.5A)

and

VY (z,n) =A(n)" {% Y(zn-1) + (U-A(mM*)z—B(n—-1YP(\n-1)}, (3.5B)

with
P(NO) = Y (2,0) =1 (3.50)

and

A=z 4+ (3.5D)

(Here we choose the branch so that z—0 as A—~o0.) The above equations
can be recast into the more compact form

&(z,n) = C(n) ®(z,n—1) n = 1,2,... (3.6A)
with
P(\n) I
®(z,n) = , (z,0) = [ } (3.6B)
®(z,n) 1
and
[(z]—B(n-I)) 21; I
= -1 . 3.60)
C(n) = A(n) (I—A(n))z—B(n—1) % J

As a first application of the above recurrence formula the following is proved;

Lemma 3.1. Let ®, and ®, be solutions of 3.6A4 and 3.6C form < n < |, then
0 -1
wiet, &, = &1(z,n) [ } ®,(z,n)
I 0

is independent of n, m =< n < l. Furthermore,
W7, &,]" = — WI®1, &.].

Proof. Calculation.

To proceed further it is convenient at this point to introduce the techniques
of Banach algebras. Let v(n) be a real even function of n with the following
properties

v(0) =1, v(n) =1
v(n) < ov(n+l) n>0
v(n) =vimyuvn-m) nm =0
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and

lim (¢(n))» =R = 1. 3.7

n—o

Let A, be the space of functions such that if g € A, then

L

g(z) = E g(n)z"jle_ <lz|l <R 3.9)
with

lgh = Y vy len) | < o 3.9)

n=-—wx

(Here the g(n)’s are complex numbers), let #; and 4; denote those func-
tions in A4, of the form

g(z) = Y elk)z* (3.10)
k=0
and
0
g = Y ez @3.11)
k=—o0

respectively. If | g I, is the norm on A,, A} and h; are commutative Banach
algebras, # will denote the Banach algebra where v(n) = 1 for all n. It is
obvious that

h, C h. 3.12)

Let H, be the class of p X p matrices such that if G¢H, then the entries in
G are in A, and
Gy = Y Gz % <lzl <R 3.13)
with o
G Il,= E V(MG (k) < oo, (3.14)

k=—o0

Here G(k) is a p X p matrix. The matrix norm used here is the one intro-
duced earlier, the Hilbert-Schmidt norm. H? and H, will denote the collec-
tion of matrix functions in H, of the form

G'(z) = Y,G(k)z* (.15

k=0

and 0
G2 = ), Gz (3.16)

k=—o
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respectively. Again it is clear that
H, C H. 3.17)

Note that if G.(z) € H:, (G-(2) € H; ) then G.(2) (G_.(z)) is analytic in-
side (outside) and continuous on the disk Izl < R. (lzl = R). Let H}
(H5 ) denote those functions analytic inside (outside) the unit circle and con-
tinuous on it except at the points z = =+ 1.

Returning to the recurrence formulas we denote the class M, by those
polynomial systems whose recurrence formula coefficients satisfy the follow-
ing conditions

i nv(2n) {II—A(n)?* + 1B(hn—1)1} < o (3.18)

n=1
The class M, will be denoted by those systems whose coefficients satisfy

Y (I-A(n)? +B(n-1)1) < . (3.19)
n=1

Lemma 3.2. If P(\n) is defined by (3.5A), then

loe(m) 22 PO,

< p(n+1) v(2n) exp (p D Z (i+1) v(2i) v(i)} (3.20)
i=1
where
ali) = HA(j) = A®) A(i—-1) - AQ), x(0) = 1 3.21)
j=1
vy(i) = | I-AG® | + L (B@E-1)1, (3.22)
and
D = max {(la(d™* | La@) 1}.
Furthermore
| z7 a(n)™ P(\n) | <
pC(n+1) cp ¥ G+ D) AG2) (3.23)
1+ | 1~2%] (n+1)exp b z_:l 1+ 11-221 (i+1)
where

A(,z) = H=A®G)?2] 1z 12 + | BG-1) | Izl 3.24)

and C is constant.
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Proof. See [3].

The above lemma leads to;

Theorem 3.1. If ¥ (z,n) satisfies (3.5B), then
hw™(zn) — ¢ (zm)l,

n i-1
<pD Y, iv@hy(hexpip D Y3 G+Do2)v()) (3.25)
and i=m+ 1 j=1

W (zn) — ¥ (zm))l

H

(+DAG) 3.26
exp {pCdEH_n?FGTH} (3.26)

iA(1,2)

< pCD -
PCD Y, o T=2i

i=m+1 =1

where ¥ (z,n) = a(n)™ 7" Y (z,n).
Since H, is a Banach space one has;

Corollary 3.1. If (3.18) holds then there exists a function z7f.(z) e H, such
that

liml ¢ (z,n) — 27} (), = 0.

n—oo

If (3.19) holds then there exists a function zf.(z) € H such that

lim | 9" (zn) — z/2z) | =0

n—-oo

uniformly on compact subsets of the unit disk excluding the pointsz = £ 1.

In the theory of scalar polynomials orthogonal on the real line the scalar
analog of the matrix function f, (z) = «a(o0)f? (z) plays an important role
in such things as, the spectral factorization of the measure, asymptotic for-
mulas, etc., Case [18], Geronimo and Case [3]. It will be shown below that
f+(2) plays an analogous role in the theory of matrix orthogonal polynomials
and we shall call it the matrix Jost function.

Before developing further the properties of f. (z) we introduce three other
solutions of (3.6A) and (3.6B). Let

Pl()\:n) I
&, (z,n) = [\I/l(z,n)} nzl, &,(z,1) = A(1)™ [1] . 3.27

In analogy with the previous solutions one has;

Theorem 3.2. If (3.18) holds then there exists a function zf5. (z) e H* such
that
im I ¥ {(zn) — 2/ (DI, = 0.

n—x
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If (3.19) holds then there exists a function 7f1. (z) € Hi such that

lim 19, (z,n) = zfh(z) = 0

n—on

uniformly on compact subsets of the unit disk excluding the pointsz = x1.
For the other two solutions, let

P+(Z,n)
®.(z,n) = [‘Iﬁ(z,n)} (3.28A)
and
P_(z,n)
®_(z,n) = [\y-(z,nj (3.28B)

be solutions of (3.6A) and (3.6B) satisfying the following boundary conditions

lim P.(z,n) = z71lim Y.(zn) =0, Izt =1 (3.29
and
lim P_(z,n) = zI, lim Y.(z,n) = (1-2)z"1, Izl = L. (3.30)

In what sense the limit exists is given in the following theorem.

Theorem (3.3). If (3.18) holds then

1"P.(zny I, spexp (p N Y, (mn) v(2n-2m+2)y(m+1)} n=0, (.31
m=n+1

WPz —I N < pN Y, (i-m)v(2-2n+2)y(i+1)

i=n+1

exp (p N Y, (m—i)v(2m—2i+2)y(m+1)} n=0, (3.32)

m=i+1

and P.(z,n) ¢ H? .
If (3.19) holds then
(m—m)A(m+1,2)

"P,(z,n)| = Cpe N Cc Fa
(z.m) pexp {p E 1+ 11—z (m—n) z

A

m=n+1

"P.(zm) 11 = CpN Y} _YmAlF L)
—_ 2 j —
imne 1+ 1=221 (i=n) (3.33)

(m—-i)A(m+1,2)

exp {coN
E 1+ [1—221 (m—i)

m=i+1
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and "“P,(z,n) ¢ H; . Here "P,(z,n) = z7"a(n+1,0)P.(z,n), a(nm),

= [IAG)= A(n)A(n+1)~A(m), and N = max { la(k,o)| la(k+1,m)l
n mk

lae(m+1,00)1173.

Proof. From the recurrence formula one has,

e

"Pozmy =T~ Y, "z (3.34)

i=n+l

where " V. (z,n) = z"a(n+1,0) Y. (z,n).
Iterating upwards the lower component of (3.28A) and (3.6C) then
substituting the result into (3.34) gives

"Pzn) =1+ Y, Y alk+1l,0)a((k+1,m)

m=n+lk=n+1

3.35)
(I—A(m+1)?)z—B(m) Ja(m+1,00)7g2=%"P, (z,m).
Writing
"P.(zn) = Y, G(zn) (3.36)
i=0
with G(z,n)° = I and
Glzmy* = Y, Y a(k+l,0)a((k+1,m)
m=n+lk=n+1 (3.37)

{I—A(m+1)*)z—B(m)}a(m+1,0)"27"**'G(z,n)!,
one finds I1G(z,n)°ll, = p and by induction

p

WG (z,n)"l, < By

(PN E (m—n)v(2m—2n+2)y(m+1))*.(3.38)

m=n+1

(3.31) now follows by substituting the above equations into (3.35). (3.32)
is obtained by substituting (3.31) into (3.35). (3.33) follows from arguments
similar to those given above and from the fact that each of the G(z,n)’ can
be shown by induction to be matrix functions analytic inside the unit circle
and continuous on it except perhaps at the points z = % 1.

To obtain the analytic properties of P_{z,n) note that if one eliminates
Y.(z,n) and V_(z,n) from the recurrence formula one finds that P (z,n)
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satisfy (2.14A) with boundary conditions given by (3.29) or (3.30). Therefore
P_(z,n) = P.(1/z,n) 3.39)

and the following corollary is a consequence of the recurrence formulas and
the above equation.

Corollary (3.2). If (3.18) holds then " .(z,n) € H', n = 0, "¥_(z,n)
€H, n=2, and "P_(z,n) € H, n=0.1If 3.19) holds then Y .(z,n)
€Hy,n=0,Y.(z,n) €e H, n = 2, and P_(z,n) € H,, n = 0.

Utilizing the above analytic properties of ®. and ¢., and the fact that they
are linearly independent solutions of (3.6) except at the points z = =+ 1, one
can write

d(z,n) = CI)+(Z,n)C(z)_jlf;(zjn)D(Z) z# =l (3.40)

where C(z) and D(z) can be evaluated using Lemma 3.1. Thus

D(z) = - W2L8] = L (Pl(z.n) ¥ (z,n) = ¥1(z,n)P(\n))
(3.41)
% im ¢ (z,n) = fi(z)
and
C(z) = W[‘I’ @] = zlim z‘"q?{— n) —f+( ) = /(2). (3.42)
Another useful representation of f, following from (2.19) is
fi(z) = WIP,P] = P/(z,—1) (3.43)
with 4(0) =
Likewise the following formula for &, may be obtained
&, (zn) = 2@ 22 GE Ly (3.44)

z~1/z

where f1.(z) = PI(z,0), and f,_(z) = f1.(1/z). Using procedures similar
to those above gives,

d.(z,n) = ®(5,n)f1.(z) — 2 (2N)f{(2) (3.45)

where the fact that W[®7,®] = —z has been used. An analogous equation
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for . may be obtained by replacing + by — in the subscripts of f.
An immediate consequence of the above formulas is obtained by setting
n = —1in (3.40) yielding

FU)f(2) = L2 f(2). (3.46)

The regions of validity of the above equations are determined by the analytic
properties of their constituents.

4. The properties of the matrix f.(z)
Let 7, denote the Hilbert space of vector functions w = (w;,ws,...,w,) Where
w €li(ael? e q= {a(i))T and <aga> = f] la(i)|? <o.) The scalar
i=0
product on ffp is the natural one (f,g2) =Y (f.g:), where (f,g.) is the
=1
scalar product in the £2 sense. Assuming (3.1) holds the infinite dimensional
matrix given by (2.14A) acting on vectors y = (¥1,Y2...,¥,) With boundary
condition y(—1) = 0, may be thought of as a bounded self-adjoint operator
Jon £2,. Thus the eigenvalues of J are real.

Suppose (3.19) holds and det f.(z,) = 0, Izl < 1. Then there exists a
px 1 vector p such that f7(z,)p = 0, and (3.32) and (3.43) imply that the
sequence {P.(zo,n)p}2., € £2,. Thus the points z, |zl < 1 where
det fi(z:) = 0 are real and A\, = (z;+ 1/z;) are eigenvalues of J.

Consider now the system solving (2.14A-C) with

An+1) =1L, B(n) =0 n=N .1

Then zf.(z) = "V (z,N) is a matrix polynomial in z of order 2N. Further-
more it is easy to see that P.(z,n) is a polynomial in z while P.(z,n) and
f-(2)/z are polynomials in 1/z. Since P.(z,n) and P_(z,r) are linearly in-
dependent except at z = =+ 1, the theory of second order difference equa-
tions (Atkinson [10]) says that any vector solution y(\,n) of (2.14A) and
(4.1) can be written as a linear combination of P.(z,n) and P-(g,n) times
appropriate constant vectors. From (3.32) and (3.39) it is clear that in order
for the components of y(zn) to be square summable for Izl < 1,
(IN] > 2), it is necessary and sufficient that y(No,n) = P.(z0,n)a, be a
constant vector. Furthermore in order for A, to be an eigenvalue of JV (defined
in the same manner as J except with restriction (4.1)), y(he,—1) =
P.(zo,—1)a = 0. This of course implies that det f.(z,) = 0. Now letting
N— oo and using the fact that z,f.(2,) and P.(z,n) converge uniformly for
Izl = 1, one has

Theorem (4.1). If (3.19) holds then the points z,, lz:.| < 1 where
det f,(z;) = Oarereal and \;, = (7. + zi') are the only eigenvalues of J for
IN > 2. Furthermore f.(z) is nonsingular for 1z1 =1,z # 1.
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Proof. Only the last sentence remains to be proved. From (2.17) one has

Pizn)A(n+1)P.(z,n+ 1) =Pizn+1)A(n+ 1)P.(zn) = (z—-i—)l,
4.2)

zl =1 z# x1.

Therefore if there exists a nonzero vector a such that P.(z,n)a = 0 then
a*P}(z,n) = 0. Multiplying the above equation on the right by @ and on
the left by @* one finds that for z # +1a*a = 0 which implies ¢ = 0. Thus
det P.(z,—1) #0 Izl =1,z # 1.

Lemma (4.1). If (3.18) holds then z = x1 is not an eigenvalue of J.
Proof. See Appendix A.

From the preceding arguments it is clear that the zeros of det z f.(z) in-
side the unit circle are real with the only possible accumulation points being
z = =+ 1. Therefore f,(z)™ is analytic inside the unit circle except at the points
where det f.(z) = 0, and it is continuous on the unit circle excepting the
points z = * 1. The next lemma of Newton and Jost {19] will prove useful
in investigating the points where f,(z)™ is singular.

Lemma (4.2). Let B(z) be a square matrix, which is analytic in the circle
Izl < 1, such that det BO) = 0and det B(z) # 0for0 < Izl <1. Then
the matrix B(z)™ has a simple pole at z = 0 if and only if the relations

B(0)a = 0,
“.3)

B)b+B'(0)a =0

where a and b are constant vectors or matrices imply that a = 0.

Theorem (4.2). If (3.19) holds all the singularities of f.(z)™* for Izl <1
are simple poles.

Proof. This is a discrete analog of the proof given by Newton and Jost
[19] for the matrix Schrédinger equation. Setting Q* = Pfin (2.17), iterating
upwards then differentiating with respect to z using (3.5D) and setting i = A
one finds

Hz,n—1)A(n)Pi(z,n) — PX(Z,n)A(n)Pi(z,n—1)

= - (1-1/2%) ), PHZ)P.(z0). @.4)

Suppose that det P.(z,, —1) = O then there exists a vector a such that

P.(z0, —1)a = 0. Setting n = 0 in the above equation then multiplying
through by ¢ and ¢* yields
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a*Pi(20,0)Pi(zo, —1)a = (1 —1/23)2 a*PX(zo,))Pi(20,0)a # 0. (4.5)
i=0

Suppose now that @ also satisfies the bottom equation in (4.3) with
B(0) = P.(z0, —1). Taking the hermitian transpose then multiplying on the
right by P.(2,,0)a gives

b*P¥(zo, —1)Pi(20,0)a+ a* P} (2o, — 1) P+ (20,0)a = 0. 4.6)

But from (2.19)

P20, —1)Pi(20,0) = P(20,0)P. (20, — 1). @.7

Substituting this into (4.6) then comparing the result with (4.5) leads to the
conclusion that @ = 0, and implies through Lemma (4.2) that fZ(z)™!, and
therfore f;'(z) has a simple pole at z,.

Having shown that the poles of f.*(z) for Izl < 1 are simple let us ex-
amine the residues of f,' (z) PT(x,0) at the points of singularity. These residues
will play an important role in the construction of the distribution function
with respect to which the matrix polynomials are orthogonal. With that in

.mind we will use (3.5D) (and the branch mentioned below it) and consider
f+ and P, as functions of the variable A. Consider again the system given
by (2.14A) and (4.1). Assuming f.(A)™* has a pole at \; one finds

f+()\) =f+()\i)+()\_)\i)f+f()\i)+ A (4.8)

and

L) = AN=N)M A M+ - 4.9)
Since

S NS =T=FL(NTLN), N#EN
(4.8) and (4.9) imply
SM. =M f. =0 4.10)

and

fAMAf M, = M f+ M, fl = 1. @.11)

(The dependence on A will be suppressed when there is no confusion. All
differentiations in the rest of this section are with respect to A.) Let E; be
a hermitian matrix which projects onto the null space of the matrix f7(\,)
so that

Si(N)E: = 0. 4.12)

From (4.10) it is clear that the set of vectors M’a where a is an arbitrary
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vector coincides with the the null space of f7()\;). Consequently

E. M =M". (4.13)
From (4.4) one has

¥(his — DPIAL0) — PENL0)PI(N, —1) = — E Pi(NuYPe(N]) = —z. (4.14)
Jj=0
Multiplying on the left by M, and on the right by M} = M7 gives, using (3.43)
and the fact that A, is real
MPHN,OP( N, —1)M? = M, ZM} 4.15)

Taking the hermitian conjugate of (4.11) and substituting it into the above
equation using (4.7) yields

pi = M,-Pf()\,-,())

Thus p, is a nonnegative hermitian matrix. Furthermore multiplying the up-
per component of (3.45) on the right by M¥then its hermitian conjugate on
the left by M, and substituting the result into (4.16) one finds

pi = p:yy P*ON)P(Nf)ol @.17)
j=0
Now letting N—oc yields;
Theorem (4.3). If (3.19) holds then
pP: = Min()\i,O) = Mifn()\i)

is the residue of £.' (N\)PT(N,0) at X\ = N\, where \; is a simple pole of f,' (\)
with INl > 2. p, is non-negative with rank < p, and the orthonormal
polynomials satisfy (4.17).

Considering now the upper component of (3.40) one has

POun) = (P:(z,n)8(z) — P-(z,n)) [ (2) Izl = 1 @.18)
z—1/z z # =x1
where
S(z) = f~-(2)f+ (=) 4.19)

is the discrete matrix analog of the scattering operator in quantum mechanics
(see Agranovich and Marchenko {[14], also Serebrjakov [9]). From (3.46)
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S(z) = f()f () = fL(2) Y (2).

Therefore
S(z2)8*(z) = §*(2)8(z) =1 Izl = 1 4.20)
z # *1
and
S(z) = 5G) = §*(2) Izl = 1 @.21)
z # 1.

S(z) will play an important role in the discrete analog of the Marchenko
equation (see Section 6). A consequence of (4.18) is;

Lemma (4.2). Suppose (4.1) holds. If f.(z)™ has a pole at 7 = %1, it is
simple.

We now turn to the problem of determining the number of zeros of
det fi(z), lzl < 1.

Theorem (4.4). If (3.18) holds then J has a finite number of eigenvalues.?

Proof. Only the case where v(n) = 1 for all n will be considered as all
other cases follow. Instead of considering the matrix associated with (2.14A),
J, consider J' = J— 21, with the boundary condition y( —1) = 0. J’ is now
a negative self-adjoint operator acting on {;, = £2(0,). Consider the
operators J! and J? represented by

Jt = (B(O)—ZI A(l) h
A1) B(1)-2I A(2)

An—-2) B(n-2)-21 A(n-1)

g A(n-1) B(n—1)-2I)
with y(—1) = y(n) = 0, and
J*= (B(n+1)=2I A(n+1)
A(n+1) B(n+2)—-2I A(n+3)

A(n+3) B(n+3)-21 A(n+4)
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with y(n) = 0. J* and J? act on £(0,n—1) and & (n+1,%) respectively.
The proof now follows from arguments similar to those given in [3]. (Note
the squaring argument in [3] is not needed.)

5. Construction of the distribution function

Returning to the system satisfying (2.14) and (4.1) consider the following
integral,

z+1/z  (5.1)

It

I = ngop(x,m)ﬁ(z)"ﬁ(z)"P*(>\,n)sin20d0- A
7 = €%

This integral is well defined since, by Lemma 4.2, (z—1/z)fi(z)™* is analytic
{zl = 1. Using (3.46), the upper component of (3.40), and (3.39) one may
recast the above equation into, (see [3]),

= ~L_§)P()\,m)f+(z)“Pf(z,n) (1—2z)dz.
27

The residues of the above integral are at z = 0 and at the simple poles of
f+(2)*. These residues can be evaluated using the recurrence formulas and
Theorem (4.3). This leads to

Theorem (5.1). Given the system of polynomials | P(\,n)} satisfying (2.14)
and (4.1) one has

S‘mP()\,n)dp()\)PT()\,m) = nm

where
a(0)dA
do(\) = A = 2cosf 0=<fb=<nrm
i PO (N —N)dN A not as above L < oo
with -
a(8)dn = fi(e*)f2(e”) sinfd\
and

p: = Min()\iao)'

M. is the residue of f.(N) ™ at N, I\;| > 2. p, is non-negative with rank < p.
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Since (here we introduce the superscript N to denote the system satisfying
(4.1))

o

o0 = | Lo < | dwen =1

and p¥(A\) is nondecreasing, one can use the matrix Helly-Bray theorem
{Atkinson [10]) to obtain a limiting distribution function. (This holds even
if only (3.1) is assumed.)

Lemma (5.1). If (3.18) holds, then

Al/im [(z—=1/2)B¥(2)f2(z)" — (z— 1/2)B(2)f; (z)| =0

uniformly on compact subsets of the open unit disk. Here

LN

N N|
zi—z |z}l
8@ = [T {55

r L 1-zzY 2
i=1

L

z—z lzl
Bz) = H 1—-2zz —zz—

i=1
where zX(z;) are the singular points of fY(z)7 (f+(2)™), lzl < 1.

Proof. Since det z/¥(z) and det zf.(z) are analytic functions for Izl < 1,
the result follows from Hurwitz’s theorem, and Theorem (4.4).

Theorem (5.2). Given (3.18) one has (z—1/2)B(2)f.(2)™ € H5® (the
Hilbert space of p X p matrix functions analytic in the open unit disk).

Proof. Using the fact that (z—1/z2)B¥(z)f%(z)™ is analytic on the unit
disk (see Lemma (4.2)) one has for 0 = r < 1 and for all N

Q= Vwa_W [(z—1/2)B¥(z)f~(2)'1%d8 z = re® 5.2)
< ‘ZLTj‘—ﬂ’ |(eiv_ -iO)ﬂ(eio)—llzdo

L

4 SO 1Y (e?)*12sin0d6

T

sin’6
™

4 trace SO () (e) do

< 4 trace S_w'dp”()\) = 4p
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Thus (5.2) remains the same for fixed r < 1 when (z—1/z)B¥(z)f1(z)™
is replaced by its limiting function (z— 1/z)B(z)f.(z)™* proving the theorem.

Corollary (5.2). (e —e ) f;*(e?) € LY (T) (the Hilbert space of pXp
matrix functions on the unit circle).

As a consequence of the theorem above and the previous techniques one
has

Theorem (5.3). Theorem (5.1) holds when the coefficients in the recurrence
formula satisfy (3.18).

6. The discrete Marchenko equation

Returning again to the upper component of (3.40) one has
PO\MnfH(2)(z—1/2) = —P-(z,n) +P.(2,n)8(2) Izl =1,z = %1

where S(z) is the discrete scattering matrix.

From (4.18) and (4.19) one sees that S(z) is unitary and continuous for
Izl = 1, z # +1. Assuming (3.18) holds it is a consequence of Theorem
(3.3) that P.(z,n) € H* and can be written as

P.(zn) = ) A(n0z" ©.1)

{=n

Substituting this into the previous equation multiplying by z™* then in-
tegrating around the unit circle gives

1 o E
EE&P()\,HM(Z) Z"(z l/z)z

- _2%' ezz:"A(n,f)(?P zm % + E A(n0) (§ S(Z)ZH,.I%’ ©.2)

Here (3.39) and the fact that (z—1/z) f.(z)™ € L**(T) have been used.
Note that because of the unitarity of S(z) and the summability of A (n,f)
the interchange of orders of summation and integration is justified.

For m=n=0 one can evaluate the L.H.S. using the residue theorem

1 L 3 .4z
pye & P(A\n)fI(2)(z—1/2)z .

L
= E P()\,-,n)MiZ:"‘AT(n,n)_lan,m (6'3)
i=1

where the last term on the R.H.S. comes from the residue at z = 0. To recast
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P(\,n)M; multiply the upper component of (3.45) on the right by projec-
tion operator E; (see (4.12)), which gives

P.(N,n)E; = P(\,n)P.(N,0)E..

Replacing M, in (4.16) by E} taking the hermitian transpose, then substituting
the result into the above equation using (4.13) yields

P.(\n)E; = P(\,m)M.T, 6.4

where
T, = EEZE+1-E,

is positive definite. Multiplying (6.4) on the right by T;'E; gives

P,(A\,n)N; = P(\,n)M,
with

N; = E;T}'E, (6.5)

a non-negative hermitian matrix. Substituting the above into (6.3) then com-

bining the result with (6.2) gives the discrete analogs of the matrix Marchenko
equations,

o

a(nm) *o(n+m)+ Z a(n, Dw(+m) =0 m>n=0

I=n+1
and
A(mn)PAT(nn)" = 1+w(2)+ Y a(nhe(t+n) n=0
f=n+1
where
a(n,m) = A(n,n)*A{n,m) (6.6)
and
w(k) = _ L (5) S(z)z"—d—z+zL: Nzt . ©.7
27i 2 D '
For n = —1 the L.H.S. of (6.2) vanishes and one has

a(—l,m)+w‘(m—1)+f: a(-1L,)w'({+m)y =0 m= -1 6.8)
=0
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where
1 d
W (k) = —— <§> S(z)z 2,
27 z

With the above equations one can now prove
Theorem (6.1). Given (3.18) the following holds

z
11—z

a)

E.P.(z,—1) € H' if det P(1,—1) = 0

b) % E.P,(z,—1) € H ifdet P.(—1,—~1) = 0
1+z2

Z((1=—2)E,+ (1 +2)E\)P.(z—1)
1-22

<)

€ H: if det P(x1,-1) = 0

E, and E., are hermitian matrices which project onto the null spaces of
P.(1,— 1) and P.(—1,—1)" respectively, (i.e. P.(1,— 1)'E, = 0).

Proof. Sece [3] p. 478 and [14] lemma 5.62.

Lemma 6.1. Given (3.18) then Df.(e?) is nonsingular where
a) D=lifdet fi(£1) # 0

b) D= (I-E + i‘z) if det £,(1) = 0
E_l .

o) D= (I-E.,+ ) if det fi(—1) = 0
1+z

d) D= (I—E_1+£‘—)(I—El+ E, ) if det fi(x1) =0
1+z -z

Proof. See Agranovich and Marchenko [14], Lemma 5.6.3.
Lemma 6.2. Given (3.18) then D* Ei%@ D** € H, and sinf D*o™'D ¢ H,.

Proof. This follows from Theorems (5.4) and (6.1), Lemma (6.1), Corollary
(3.2) and the Weiner-Levy theorem.

7. Integral representations

Having the distribution function one can find explicit integral representa-
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tions for the matrix function used in the earlier sections. For example

P(\n)-P(\,n)
A=A

Pi(\n) = S_m do(N') n=0. a1

Substituting this equation into the upper component of (3.45), then multiply-
ing on the left by P(A\,n)! and letting n— oo yields

o

dp(N")
A=\

fi(z) = S fi(z) N=z4+1/2 Izl <1 .2

—

N =z’ +1/2" \ ¢ support dp(A).

Now using (7.2) in (3.45) gives

PN,
Pi(z,n) = S_m _)\(__)\n,_)_ dp(N)f7(2) Izl <1, A=z+1/z (1.3)
N ¢ support dp (N\).
Notes
1. For analogous results on matrix polynomials on the unit circle, see Delsarte et

al. {12]. )
2. This proof is adopted from Agranovich and Marchenko [14]; see also Serebrjakov

[9].
Appendix A
Here we prove
Lemma (4.1). If (3.18) holds then z = +1 is not an eigenvalue of J.

Proof. Only z = 1 is considered as the other case follows in exactly the
same manner. Consider the polynomials {P,.(\,n)} and { V¥ ,.(z,m)] satis-
fying (3.6A) for n = m with P,,(\,0) = V¥,.(2,0) = I. From the recurrence
one can show [3] that, ‘

| — g2n#2 n e
Pﬁ(z,n) = z2 I+ oz,,,(i—1)"{[I—A(i+m)2]z2(11z 2) (A1)
-z i=1 -
_ 2n=2i42
—B(i+m—l)<—11z—2-)zam(i—l)P,'l(z,i—l)
-2

where P, (z,n) = z'a.(n)"P,.(z,n) and

n

-

anln) = Y3 AQ).

J=m+1
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Using successive approximations leads to,

| z7 o, (R) P (M) | < p(n+1)Cexp{pCDmE (i+ 1)yy(i+m)}

i=1

where D, is defined in (3.22). Thus substituting this equation into A.1 yields

P.(1,n) ‘ i+ . A
—n_—{-T—I‘ Sig:D Cp(——-}-——l-—>(1+1)|')/(l+m)|

xexpi{p CDmE G+DyG+m)l.

Jj=1

If (3.18) holds then for large enough m the R.H.S. can be made less than
15 for all n > m. Therefore P.(z,n) and P,,(\,n) are two linearly indepen-
dent solutions of 2.14A for n = m at z = 1. Since all solutions of 2.14A
and B can be written in terms of these two for n = m and since neither
ps(1,n)c nor P,(z,n)d are summable where ¢ and d are arbitrary nonzero
vectors one can conclude that J does not have an eigenvalue at 7 = 1.

i
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