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SINGULAR VALUE ANALYSIS 
OF DEFORMABLE SYSTEMS* 

E d m o n d  A .  J o n c k h e e r e  1 

a n d  L e o n a r d  M .  S i l v e r m a n  l 

Abstract. Singular value analysis, balancing, and approximation of a class of de- 
formable systems are investigated. The deformable systems considered herein include 
several important cases of flexible aerospace vehicles and are characterized by 
countably infinitely many poles and zeros on the imaginary axis. The analysis relies 
completely' on the so-called asymptotic singular value decompositon of the Hankel 
operator associated with the impulse response of the system. A parametric study of 
a six-dimensional single-input single-output case is performed. 

1. Introduction 

This paper  addresses s ingular  value analysis,  ba lancing,  and  approx imat ion  

[16]-[25] of  a class of s ingle-input  s ingle-output  t ransfer  funct ions  having 

the general form 

1 oo Ck 
= E 2" (1) h~ ~ +k l s2+wk 

= 

To take care of  several convergence issues, we shall assume th roughout  the 

paper  that  

0 < wl < ... < w~ < wk§ < . . . .  (2a) 

Ickl <oo .  
k = l  

(2b) 

This indeed guarantees that  the formal  inverse Laplace t r ans fo rm of  h ~ (s ) ,  
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that is, h~ = t+ ~ c_~ sin wd exists uniformly, is continuous and dif- 
k=I Wk 

ferentiable over [0,oo). 
Transfer functions of the type (1), consisting of a double integrator and 

countably infinitely many oscillators interconnected in a parallel structure 
as depicted by Figure 1, are common in the description of the linearized 
dynamics of flexible aerospace vehicles [1]-[15]. The q ' s  are real constants, 
called modal constants or modal gains; the wds are the so-called global 
eigen frequencies. 

The particular example that one will refer to is the case of the linearized 
roll dynamics of a satellite consisting of a main rigid body and two flexible 
panels undergoing skew-symmetric bending [12], [13]. In this particular case, 
the input u is the torque acting on the roll axis divided by the overall roll 
moment of inertia, and the output y is the roll angle of the main rigid body. 
The linearized dynamical equations take the form of a second order differen- 
tial equation, accounting for the dynamics of the main rigid body, and a 
partial differential equation, accounting for the dynamics of the deforma- 
tion of the panels, intercoupled via the angular acceleration of the main rigid 
body and the deformation acceleration of the panels. Eigenmode analysis 
then yields countably infinitely many differential equations. Finally, taking 
Laplace transform yields a transfer function of the type (1). For this par- 
ticular case, it is noteworthy that ck > 0, Vk; further, ckl0 and wkToo, in 
a strict monotone sense as kloo; finally, Condition (2b) is satisfied [7]. 
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Figure 1. Parallel connection structure of  a transfer function of  Type (1). 
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This paper provides a brief case study of  applying singular value analysis, 
balancing, and related approximation procedures [16]-[25] to systems having 
transfer flmctions of  Type (1). A deeper aim of the paper is to investigate 
what the rather theoretical machinery of  [16]-[25] becomes in the physical 
world. 

An outline of  the paper follows. In Section 2, we introduce the so-called 
asymptotic singular value decomposition of  the Hankel operator associated 
with the impulse response of  the class of  systems considered. This concept, 
which is the key to the entire paper, provides a nice physical interpretation 
of  the singular values of  a deformable system. In Section 3, asymptotic 
singular value decomposition is used to derive approximations of the transfer 
function (1) and allows us to prove that several approximations are equivalent 
in some asymptotic sense. Section 4 provides a parametric study of singular 
value analysis, balancing, and approximation of  a transfer function of  Type 
(1), where only two oscillators have been retained. Section 5 is the conclusion. 

2. Asymptotic singular value analysis 

Singular value analysis of linear systems is, so far, restricted to asymptotically 
stable systems [17], [18], [21]-[25], so that it is not directly applicable to 
transfer functions of  Type (1). It is, however, simple to circumvent this dif- 
ficulty. Indeed, deformable systems like flexible aerospace vehicles exhibit 
the so-called structural damping. From a purely technological point of view, 
structural damping is not easy to assess because very small; here, we choose 
a more mathematical avenue of approach by shifting all of the poles of  h ~ (s) 
to the left by a quantity e. This yields the " d a m p e d "  transfer function 

o 0  

h~(s ) _ _ _ 1  + ~ ck 
(s+c) ~ = s2+2es+w~+e2 (3) 

Generally, the superscript e will denote the quantity resulting from this pole 
shift. In this paper, we shall rather perform singular value analysis of  h ' (s), 
as el0. 

Still a difficulty with (3) is that it is infinite dimensional. There are several 
ways of introducing singular values of  a transfer function [25], and some 
of  them are conveying an underlying finite dimensionality assumption. 
However, singular values of a transfer function can be equally defined as 
the singular values [19], [26], [27] of  the Hankel operator associated with 
the impulse response h ~ (t) of the system [18], [191, [25], and this definition 
can be carried over in the infinite dimensional situation, with some addi- 
tional care. 

To be more specific, it is easily seen from (3) that the impulse response is 

ho(t) = te -~ + - - e - " s i n  wet = e-"h~ (4) 
= W k  
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which is readily checked to exist uni formly  and to be cont inuous  and d i g  
ferentiable over [0,oo). Then the Itankel operator 3C ~ associated with the 
impulse response h ~ (t) is, by  definition, 

3C ~ : L2[O,~) ~L2[O,~), (Sa) 

f 
co 

u ~ o u  = h~(t+r)u(r)dr. 
0 (5b) 

L e m m a  1. With Condi t ion  (2), and for  any e > 0, the opera tor  ~ ~  is self- 
adjoint and Hilbert-Schmidt. Moreover,  3C~ = 3C~ ~ is self-adjoint, 
positive semi-definite, and Hilbert-Schmidt. 

Proo f .  Self-adjointness o f  3C ~ is clear f rom (5). Further,  if Condi t ion  (2) 
is verified, 

oo 

A k ~  1 Ck f ( t )  - -  sin wkt 
= Wk 

exists as an almost periodic funct ion [28, VI.IO1]. Further,  h~(t) 
= [ t+f ( t ) ]e  -~. It is then readily verified that  

f~ fo (h~ 

exists and is finite. Hence ~ ~  is Hilbert-Schmidt;  see Kato [29, V.2.4]. 
Finally, the operator  3~2~ ~ = 3~2E3C ~ ---- (3C~) 2 is obviously self-adjoint 

and positive semi-definite; fur thermore,  it is also Hilbert-Schmidt ,  as the 
produc t  o f  two Hilbert-Schmidt  operators;  see Kato [29, V.2.4]. The p roo f  
is completed.  

~E~ is Hilbert-Schmidt  and hence compact .  Since it is also self-adjoint 
and positive semi-definite, it has a countab ly  infinite set [ ~ : n = 1, 2 .... I 
o f  (repeated) eigenvalues classified in decreasing order, i.e., 0 _<... 
-< a,+l -< a, -< .... vn.  Further, by virtue o f  the Hilbert-Schmidt property o f  
3C ~2, we have 

E 2 a, < oo; (6) 

see Kato  [29, V.2.4]. Let u~ ~ L2[0,oo) be a normalized eigenvector o f  3C ~ 
corresponding to a,, i.e., 

2/1 3C~ -- o . . ,  Ilu.II -- 1, (7a) 

It follows that 3r = ~(3C~ If  a . ~  O, let 3C~u. = 113C~u.llv., with 
v. E L2[O,oo), [Iv.ll = 1. We have 113C~ = ( ( ~ ~ 1 7 6  1/2 = 
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( (u , ,~ '2u , )  ) '/2 = (u , ,~u , )  1/2 = o,.  Hence  

~ ' zv .  = ~v. .  IIv.II = 1, (7b) 

and 

~ ' u .  = ~r.v., IluJI = IIv.II = 1. (Sa)  

F r o m  the above,  it fol lows that  ~~  = a . ~ ~  But ~ ' 2 u .  = a]u.. Hence 

3~2"v. = o.u.. (8b) 

The  singular funct ions v. associated with ~, = 0 are defined as those func- 
t ions in the kernel o f  3E "2 comple t ing  the previous singular funct ions into 
an o r t h o n o r m a l  basis o f  L2[0,oo). 

The  a , ' s  are called the singular values of  the opera to r  ~ ' ,  see Kato  [29, 
V.2.3]. Equat ions  (8) (or (7)) define a so-called Schmidtpair (u, ,v,)  for  ~ ~  
corresponding to ~,, see [19]. Obviously, [ u, : n = 1, 2 ... .  } and { v, : n = 1, 
2 . . . .  } are o r t h o n o r m a l  bases for  L2[0,oo). Finally, 3C" admits  the so-called 
singular value decomposition 

o o  

~~ = ~ o.u~ (v. , .) ,  (9a)  

n=I 

or 

h' ( t+r)  = ~ o.u.(t)v.(r); 
n=l 

(9b)  

see Kato  [29, V.2.3]; f rom (6), it follows that  the convergence o f  the right- 
hand side of  (9a) is uniform; f r o m  (8), it follows that  the lef t -hand side and 
the right-lhand side o f  (9) coincide on the dense subset generated by 
[ v, : n = 1, 2 , . . .  }, so that  the two member s  in (9) coincide everywhere and 
are hence equal.  

It  is no easy task to derive the exact singular value decompos i t ion  of  a 
system whose impulse  response has the f o r m  (4). However ,  an approx ima te ,  
more  precisely, an asymptotic as ~ 1 O, singular value decompos i t ion  is easily 
derived. By direct calculat ion,  one finds that  

h'( t+r)  = ~ ao,,Uo,.(t)Vo,.(r), 
n=l 

where 

( l O a )  

~ 3 + 2 ~  
oo,, - , ( l O b )  

4e a 
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u . , , ( t )  - _ _  (1 +v~et)e-~t, ( lOt)  

V~,~ (v) = _ (1 + ~ e T ) 7 - %  (lOd) 
~/2 + 2 ~  

~/3 - 2 ~  
a . a  - , (lOe) 

4e 2 

uo,~(t) - - -  ( - 1 + x/2et)e-% (lOf) 
~ / 2 - ~  

V~,2 (~) - - -  (1 - ~/2e~)7 -~T, (lOg) 
x/2-~ 

Ic~ [ 
ao,~k+~ -- a~,2k+2 - 4ewk k 1, 2, (10h) 

u . . . . . .  ( t )  = 2x/~-e sign (ck)e-~cos w~t, k = 1, 2 . . . . .  (10i) 

voak+~ (z)  = 2 ~ - e - ~ ' s i n  wkr, k : 1, 2 . . . . .  (10j) 

uo,2k+2(t) : 2 ~ s i g n ( c k ) e - " s i n  w~t. k = 1, 2 . . . . .  (10k) 

vo,2~+2(r) -- 2x~-e e-~cos  wkz, k = 1, 2 . . . .  ; (105] 

f u r t h e r ,  t h e  a b o v e  is a n  asympto t i c  s i n g u l a r  v a l u e  d e c o m p o s i t i o n ,  in  t h e  s e n s e  

t h a t  t h e  o r t h o n o r m a l i t y  r e l a t i o n s h i p s  a r e  n o t  v e r i f i e d  exac t l y ,  b u t  o n l y  asymp-  
tot ically as e J 0, i . e ,  

f o l u o , . ( t )  12dt - 1, as elO, vn .  ( lOm) 

fo,Vo,,,(~-) ,~dT--1,  as etO, Vn, (lOn) 

i o ou~,~(t)uo,.(t)dt--O, as elO, v m # n, (10o) 

f 
oo 

ovo,~(7)vo,.(T)d7--O, as ~[0, V m # n. (lOp) 
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The asymptotic singular value decomposition is useful, because it is easi- 
ly derived in terms of the physical parameters of  the system, and also because 
it gives a rather precise idea as to what the e x a c t  singular value decomposi- 
tion is, as asserted by the following theorem. 

Theorem 1. Let Condition (2) be verified; then 

a---z-" ~ 1, as el0, vn.  (lla) 
O-a, n 

Ilu~- uo,.ll--0, as elO, vn, (11b) 

tlv.-v~,.ll--0, as et0, vn,  (11e) 

Proof .  This is most easily proved by showing that a],., and u~,. and v.,. 
are "approximate"  eigenvalue and eigenvectors of the self-adjoint, positive 
semi-definite operator ~~ whose kernel is given by 

H ( t , r )  = f f  h ' ( t + x ) h ~  

After some l o n g -  but e lementary-ca lcula t ion ,  the above and (4) yield 

tr 1 t+r'~ 
H ( t . z )  = e -"~+7' ~ + 4e-- S + 4-~2] 

~o C2 

+ = 4ew~ e-~247176 w k ( t - - r )  

with 

+ ] ~  Ck 

k = 1 4e2 q- w2 k 
- -  e -'(~§ (tcos wkz+ rcos wkt) + 6(t,7), (12) 

lira e211dill~s = 0, 
e~0 

where 11611~s = fo fol6(t, T) ]2dtdz, that is, the H i l b e r t - S c h m i d t  norm; see 
Kato [29, V.2.4]. 

For n := 1, 2, (12) and (10) yield 

S o H ( t . r ) u . , . ( r ) d r  = o] , .u . , . ( t )+c~. ( t ) ,  n = 1, 2, (13a) 

foH(t.r)vo,.( 'c)dz = o],.vo,.(t) +13.(t). n = 1, 2, (13b) 

where a .  ,and 3. are in L2[O,oo) and such that 
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lim e"llc~~ = O, n = 1, 2, (13c) 
elO 

lim e41h3.11 = O, n = 1, 2, (13d) 
eiO 

Hence (11) is verified for  n = 1, 2. 
F o r  n = 2 k + l  ( k  = 1, 2 , . . . ) ,  the  p r o b l e m  is a l i t t le m o r e  d i f f icul t .  

Obse rve  tha t  

1 Ck 12e 2 + W 2 
+ te-~,2,(.~c ~ + 2,f~e_o, k (14a) 

4e 2 + w~ 4e~(4e 2 + w~) ~, 

f = q~e-"w~( t  + i) 
o H ( t , r ) v o , . ( r ) d r  = cr2,,,v=,,(t) +j3"( t )  + 2e=(4e2+ w~) " 

where c~" and/32 are in L=[0,w) and such that  

lim E~llc~'ll = 0, n = 2 k +  1, k = 1, 2, 
el0 

(14b) 

(14c) 

lim e211/3"11 = O, n --- 2 k +  1, k = 1, 2, (14d) 
elO 

Let  ago be the  o p e r a t o r  whose  kerne l  is g iven  by  

tr 1 t + r ' ~ .  
H o ( t , r )  = e -~ ~ + 4---- 7 + 4e~. ] 

I t  is easily seen tha t  (1 + ~!2~t)e -~ are e x a c t  n o r m a l i z e d  e igenvectors  
~/2 + 2~/2 

3 +2q2 
o f  ago c o r r e s p o n d i n g  to  the  e x a c t  e igenva lues  ~ .  Hence ,  if  we def ine  

16~ 4 

we have 

f l ( t )  ~ - ( ~ . r -  12e2 + w~ 
_~- - -  ~ o  I L v e e  - ~ .  _ _ _  

\ 4E2(4~2 + w1)2 

3C_, ( ~ e - ~  + l ) )  
: . ( , )  --- - o I. 

1 ck ~ ) "  (15a) 
+ te-~'2"~ 4e 2 + wk 

(15b) 

l im~ IIf~ il < 0% (15c) 
~10 e 

l i m !  llf~ll < <~, (lSd) 
elO e 



SINGULAR VALUE ANALYSIS 455 

Combining  (14) and (15) yields 

F = o . , . [ u . . . ( ) + f ~ ( t ) ] + a . ( t ) .  o H ( t , r ) [ u . , . ( r )  + f ~ ( r ) ] d r  ~ t 

n = 2 k +  1, k =  1, 2 . . . . .  (16a) 

F o H ( t . r ) [ v . , . ( r )  + f 2 ( r ) l d r  = 0 2o,-[vo ~(t), +f~ (t)] + B ~ ( t ) .  

n = 2k+  1, k =  1, 2 ..... (16b) 

with 

lira dlla, II = 0, n = 2k=  1, k=  1,2,..., (16c) 

lira e211/3nll = 0, n = 2k+  1, k =  1, 2 ..... (16d) 
el0 

(16) together with (15,c,d) means that  (1 1) is verified for n = 2k + 1 (k  = 1, 
2 .. . .  ). 

The p r o o f  for  the c a s e n  = 2 k + 2  (k  = 1 , 2  .. . .  ) is the same as for  the 
case n = 2k + 1 (k  = 1, 2 . . . .  ) and is hence omitted. The proof  is completed. 

The preceding theorem provides the asymptot ic  singular values o f  the 
transfer funct ion (3), consisting o f  the summat ion  of  infinitely many  elemen- 
tary transfer  functions.  It is o f  interest to look at the singular value o f  each 
elementary transfer  f u n c t i o n . . .  

T h e o r e m  2. We have 

i 4e z �9 

) (7i 
2 + 2es + w~ + e 2 

[Ck [ 

41~ W k 

(17a) 

- 1, as elO, i = 1, 2. (17b) 

P r o o f .  The e x a c t  singular value decomposi t ion o f  the kernel o f  the Hankel  
1 

opera tor  associated with the inverse Laplace t r ans fo rm o f  - -  is 
( s + e y  
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+ 
4e ~ L ~ 2 7 ~  ( -  1 + ~/2et)e-" 

* I  ~e~/2-~2 ( 1 - x / 2 e r ) e - ~ l "  

From this, (17a) follows. 

To prove (17b), consider the kernel of  the product  of  the Hankel  operator  

associated with the inverse Laplace t rans form of  ck s 2 + 2es + w 2 + e 2 by itself: 
k 

K ( t , r )  A_ G e-~..x)sin w,(t+x)e-oCx+~)si n w ~ ( x + r ) d x  

C 2 
k 

i 

4ew~ 
- - -  e-~ Wk(t - - r )  

Then observe that  

C 2 
k 

2w~ 
_ _ _ _  e - ~ ( t + ~ )  

ecos wk ( t + r) - wksinwk ( t + r) 

2(e2+ w~) 

c2 
K(t,r)2x/Te-~sin w~rdr - k 

2 2 16e w~ 
2",/Te-~'sin wd + #* ( t ) ,  

lim e211#,ll = O, lim 112x/e e-"sin w~rll = 1 ,  
~10 el0 

fo 2 (t,r)2x/Te-'Tcos w~rdr - G 
16e2w~ 

- - -  2~e-~tcos w d + v ( t ) ,  

lim e2lloll = 0, lim ll2~e-~ wkrll = 1, 
el0 el0 

From this, (17b) follows. This completes the proof .  

We finally have 

Theorem 3. The set of  singular values of  the t ransfer  funct ion (3), con- 
sisting in the summat ion  of  infinitely many  elementary t ransfer  functions 
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as depicted by the parallel connection structure of the block diagram of Figure 
1, is the union of the sets of singular values of the elementary transfer func- 
tions taken separately, asymptotically as el0. 

Proof. Combine the results of Theorems 1 and 2. 

It should be stressed that the above is not  a general property of a transfer 
function c, onsisting in the summation of many transfer functions of any kind. 
In our case, it is rather the fact that the elementary transfer functions are 
a double :integrator and oscillators which endows the overall transfer func- 
tion with a rich structure, responsible for the rather exceptional result of 
Theorem 3. 

3. Approximation 

An obvious approximation procedure for the transfer function (3) consists 
in cutting the expansion at a given order. This stems from the fact that the 
higher order terms are higher frequency terms which have a minor contribu- 
tion to the input-output map. This is the so-called modal  truncation. Although 
widely used in aerospace engineering [1]-[15], this procedure is, however, still 
heuristic and in need of justification. 

As we shall see, the systematic approximation procedures [17]-[25] 
developed these last few years provide a justification of modal truncation, 
at least in an asymptotic sense. 

One should distinguish two systematic approximation schemes - t h e  
balanced and the optimal approximations. Both of them can have rather easily 
been derived from the singular value decomposition of the Hankel operator 
associated with the impulse response of the system. 

Consider the exact singular value decomposition (9). Define 

O(t) = ['falu,(t) x/-J2u2(t) . . . .  
- ~ ,  v , ( r ) -  

e(r) = 

(18a) 

(18b) 

The singular value decomposition provides a factorization 

h~( t+r )  = O( t )C(r ) .  (18c) 

It is fairly well-known that a factorization of the Hankel operator associated 
with the impulse response of a sytem readily leads to a state space realiza- 
tion [18], [30]. In addition,'in this case, the fact that the factorization (18c) 
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comes from a singular value decomposition leads to a very special state space 
realization. Indeed, recalling that h ' ( t )  is differentiable, one can write 

1 h o ( t + r ) ,  which yields r  = O ( t ) ~ ( r ) ,  from which d h ~  = g  

it follows that 

O(t) = O(t o e ( r ) e §  (18d) 

with 

e ( r )  = o O§  (lSe) 

O+(t) = 

- 1 
u,( t )  

1 
~o~  u~(t) 

(lSf) 

1 
e§  = v , (r)  ~o~  v2(r) . . . .  

(18d) further yields 

O+(t t)dt = o r ) e+(r )dr  A. 

With this notation, (18d,e) yield 

O(t) = o ( t ) A ,  

Define 

e ( r )  = A e ( r ) .  

B -~ e(o), 

0 ~ 0(o). 

Hence, from (18i-l), one deduces 

o( t )  = Oe a', 

e ( r )  = d 'F .  

It follows that 

(18g) 

(18h) 

(18i) 

(lSj) 

OSk) 

(180 

(18m) 

(18n) 
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h ' ( t + r )  = O ( t ) e ( r )  = CeA(t+rlJB; (18o) 

hence ( A , B ,  C)  is a realization of  h" (t).  This realization is quite particular; 
indeed, the controllability and observabiltiy grammians are, respectively, 

S So o e~'BBrear~dr = e ( r ) e r ( r ) d r  = I~,, (19a) 

,1,b, 

with 

E = 

(71 

r 

(19c) 

Hence, in the state space realization (,,t,/3, C), the controllability and obser- 
vability grammians are equal, diagonal, and equal to E. (~,/~, (~) is the so- 
called bai'anced realization of  h ~  [17], [25]. 

Now, let ol - a2 - ... -> ar > a~+l >- ... From the singular value decom- 
positon (9), the best rank r approximation [25, Section III] of  the Hankel 
operator 3C ~ is the operator with kernel O r ( t ) e , ( r ) ,  where 

Or(t) = b/~, ul ( t ) . . .x /~,  ur(t)], (20a) 

e ~ ( r )  = 

-~/~, v, (r)- 

(20b) 

since 

I I h ~  = a .... 

where II �9 II denotes the spectral norm, i.e., the square root of the supremum 
of the spectrum of the operator premultiplied by its adjoint. The big prob- 
lem is that 0 r ( t ) e r ( r )  does not, in general, depend only on the sum t +  r 
of the two arguments [25]; in other words, the operator of  kernel Or ( t )  e r  ( r )  
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does not have Hankel structure. Nevertheless, a decent approximation [18, 
Section III] of this operator is the Hankel operator associated with the im- 
pulse response 

flto( t) = dre~r'Br, (20c) 

where 

I=o;( = t)Or(t)dt  
�9 0 

~ = e~(o), 

(20d) 

( 2 0 e )  

d~ = O~(o). (2or) 

(The equality between the two integrals in (20d) stems from the fact that they 
are both the same top left-hand corner submatrix of A; see (18h).) (Ar,/~, Cr) 
is the so-called ba lanced  approximation of (A,/~, C) [17], [25]; observe that 
,4~ is the top left-hand corner submatrix of dimension r o f / l ,  and that/~r 
and Cr are the corresponding submatrices of /~  and C, respectively. 

Amazingly, Krein [19] has proved that there exists a H a n k e l  operator 3~2; 
of rank r such that 

t 1 ~  ~ - 3~;tl = ~ .... 

The impulse response/~; (t) corresponding to 3~2; is the so-called op t imal  ap- 
proximation of h ~(t). 

Note that, if the operator of kernel 0r (t)e~ (T) has Hankel structure, then 
/~;(t) = /~(t) ;  in other words, balanced and optimal approximations are 
equivalent. 

Applied to the transfer function (3), the above yields the following rather 
surprising result: 

T h e o r e m  4. Consider the transfer function (3) with the sequence (10h) 
monotone decreasing. For any even order r = 2/) of approximation, modal 
truncation, balanced approximation, and optimal approximation are 
equivalent, asymptotically as el0. (Two operators are "asymptotically 
equivalent as e L 0" i ff the spectral norm of their difference goes to zero as e l 0,) 

P r o o f .  First, it is easily seen that cutting down the asymptotic singular value 
decomposition (10) is equivalent to modal truncation; indeed, direct calcula- 
tion shows that 

2p p--I 

o., .uo,.(t)v. , .(r) = (t+r)e-~247 ~a C~e-~"§ w . ( t + r ) .  
n = l  h = i  W k  
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Consider  now app rox ima t ion  in the ba lanced and opt imal  senses. The cen- 
t ra l  issue is Or( t )Cr(~-) ,  as def ined  above .  C o m b i n i n g  (10), T h e o r e m  1, and  

(20) yields 

p - 1  

I[Or(t)Cr(r)- ( t + r ) e  -'"§ - ]~  c~ e_o,.T>sin wk(t+~-)ll--0, as el0. 
k= 1 Wk 

It fol lows that  Or ( t)  C~ ( r )  has Hanke l  structure,  asymptot ica l ly  as e ! 0. Thus,  
as said above ,  ba lanced  and  op t ima l  a p p r o x i m a t i o n s  are  equivalent ,  and  

_ ^ ~ -.,+~) p-1 c~  e_o(,+~)si n w ~ ( t + r ) ,  where - -- h ~  =_ h ' ( t )  = ( t + r ) e  + 
Wk 

k = l  

means  tha t  the  n o r m  o f  the  d i f ference  between the two memebers  goes to  
zero as e lO. Hence ,  m o d a l  t runca t ion ,  ba lanced ,  and  op t ima l  a p p r o x i m a -  
t ions are  equivalent ,  a sympto t i ca l ly  as elO. 

4 .  P a r a m e t r i c  s t u d y  o f  s i x - d i m e n s i o n a l  c a s e  

This sect ion offers  a pa r ame t r i c  s tudy  o f  s ingular  value analysis ,  ba lanc ing ,  
and  a p p r o x i m a t i o n s  o f  the  t rans fe r  func t ion  

2 

h ' ( s )  - 1 + (21) 
( s + e )  2 �9 s 2 + 2 6 s + w ~ + 6 2 "  

A min ima l  state space rea l iza t ion  is p rov ided  by  

.f = A x  + bu,  (22a) 

y = cx,  (22b) 

with 

A = 

- - 6  1 0 0 0 0 

0 - 6  0 0 0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0 - 6  w~ 0 0 

0 0 - wl - 6  0 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 0 0 0 - e  w2 

0 0 0 0 - w2 - e  

0 

1 

, b = i ' (22e) 

1-  
1 

C = E I 
C1 el  

2w~ 2w~ 

7 
C2 r | 

J 2w2 2w2 
(22d) 
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The controllability and observability grammians are defined by 

W~= foeA'bbreAr'dt, (23a) 

S Wo = o eArrcZcemdt ;  (23b) 

obviously, W~ = W~ > 0 and Wo = W~ > 0. Let T be a similarity trans- 
formation of the state, i.e., ( A , b , c ) - - ( T A T - ~ , T b ,  cT-~) . - I t  is readily 
verified that 

Wo T T-rWoT-1, 

Wc T TWiT  r, 

WoW~ T--T" T-TWoWoTT. 

Consider the eigenvalue decomposition of the controllability grammian 

W~ = UoZoU T, (24) 

where Uc is the (orthogonal) matrix of eigenvectors of Wo arranged colum- 
wise and ~o the diagonal matrix of eigenvalues of W~. It is easily checked that 

wo 

E:l:~Ur 
Wo ~ ~ 1:5 ~ 1,~= Woo. go u'~ WoUc~c 

Consider now the eigenvalue decomposition 

WOn 2 T = Uon~ Uo.  , (25) 

where Uon is the (orthogonal) matrix of eigenvectors of Wo. arranged column- 
wise and ~2 = diag { ~ . . . . .  ~ } the diagonal matrix of eigenvalues of Wo.; 
the singular value notation is purposely used, and it will be justified very 
soon. Now, it is easily seen that 

1,2 T 1:~ E ' ~ U ~  
~o UcWoUoZo - " r~. 

In other words, the similarity transformation 

T = FY2I/r ~-l/2Ur V0n~c r (26) 
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defines a state space realization 

(A,b,c) T-Z. (TAT-1,Tb, cT -1) = (.~,b~r (27a) 

in which the controllability and observability grammians are equal and 
diagonal, i.e, 

Wo ._~T ~, (27b) 

Wo _Tz. (27c) 

It follows that (A, b, 5) is the balanced state space realization of c ( s / -  A )-lb, 
and that the a,'s are the singular values. This is another approach for deriv- 
ing balanced state space realization and singular values, computationally more 
tractable [31] than the singular value decomposition avenue of approach. 

Numerical exploration (in single precision on a DEC 10 computer) of 
singular value analysis, balancing, and balanced approximation has been per- 
formed, as well as comparison between pole/zero configurations of the high 
order model and the reduced order models. 

Computation of Poles/Zeros of High Order Model 

The poles of the original model are easily computed from (21). The zeros 
were computed as the Smith zeros of the system matrix associated with the 
state space realization (22), which were themselves computed as solutions 
of a generalized eigenvalue problem [38], by making use of the subroutines 
QZHES, QZIT, and QZVAL of EISPAK [35], [36]. 

Computation of the Grammians 

In place of computing the grammians either as the numerical integrals (23) 
or as numerical solutions to associated Lyapunov equations [33], [37], it turns 
out to be more reliable to compute them via their analytic values derived 
from (22-23). The derivation of the analytical formulas of Wc and Wo is easy 
and left to the reader. 

Singular Value Analysis, Balancing, and Approximation 

This was done by roughly following the procedure outlined in [31]. The eigen- 
analyses (24) and (25) of the controllability grammian We and the new observ- 
ability grammian Won, respectively, were performed in single precision using 
the routines TRED2 and TQL2 of EISPAK [35]-[37]. Although these eigen- 
analyses are badly conditioned because of the rather large spectra of the eigen- 

values of Wo and Wo, (typically, X~=(W,) ~ 103 and •max(Won) ~ 107, 
)kmin (We) ~kmin (Won) 

for e = 0.05) due to the underlying physics of the problem, the TRED2 and 
TQL2 subroutines performed more than satisfactorily, even in single preci- 
sion. The eigenanalysis of Wc could have been replaced by its Cholesky fac- 
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torization [31], with equal numerical reliability. The singular values of the 
transfer function (21) were computed as the square roots of the eigenvalues 
of Wo,; see (25). The "balancing" transformation T was computed as given 
by (26). The balanced state space realization (A, b, ~) was computed accord- 
ing to (27a). The coefficient matrices At, b~, and ~ of the balanced approx- 
imation were simply derived as submatrices of .4, b~ and ~, respectively, as 
outlined in Section 3. 

Computation of Poles/Zeros of Balanced Approximation 

Poles of the balanced approximation were computed as the eignevalues of 
At, using the routines BALANC, ELMHES, and HHQR of EISPAK [35], [36]. 
These routines performed more than satisfactorily. However, the computa- 
tion of the zeros of the balanced approximation (Ar, b~,~r) is no easy task. 
It appears, indeed, that these zeros are extremely sensitive to the data 
(-,4r, b~,gr). This great sensitivity can be justified by the fact proved in Section 
3 that the balanced aproximate system is asymptotically the modally trun- 
cated system and hence has its zeros close to the flexible poles; this sensi- 
tivity issue can also be more precisely justified by a condition number analysis 
[39]. Further, the data (Ar, b~,gr) is uncertain, since it comes from the balanc- 
ed realization (A, b, ~) which is itself uncertain, because the whole balanc- 
ing procedure is badly conditioned due to the large spread of singular values 
typical for this class of systems. It is hence not surprising that the zeros of 
(Ar, 6r,(,) are hard to compute. These zeros were computed as the Smith 
zeros of  the associated system matrix, using the routines QZHES, QZIT, 
and QZVAL of EISPAK [35]-[38]. These zeros were also computed as the 
poles of the inverse system, that is, as the eigenvalues of the matrix 

A brcrA~'~ using BALANC, ELMHES,  and HQR of EISPAK. 
r crArb~]' 

Both procedures gave pretty close results. They both provided realistic 
numerical zeros in the case of a moderate spread of singular values, with 
a slight preference for the inverse system procedure; in the case of a wide 
spread of singular values, the numerical zeros were completely irrelevant. 

Numerical Results and Interpretation 

The numerical results are summarized in Tables 1, 2, and 3. Table 1 pro- 
vides the singular values and the asymptotic singular values as functions of  
e. Observe that the singular values fit well with the asymptotic predictions, 
except that os and ~o,5 are quite apart for ~ = 0.001, but this is a numerical 
pitfall due to the (too) large spread of  singular values for e = 0.001. Also 
observe that the spread of  singular values increases as e 10. Table 2 provides 
the singular values and the asymptotic singular values as functions of  the 
modal constant c~. Observe that the singular values ~3, a, and the asymp- 
totic singular values o.,~, ao,, corresponding to the first flexible mode in- 
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crease as cl increases, whereas the other singular values are roughly left un- 
changed, which is not surprising in view of (21). Finally, Table 3 provides 
the singular values, the asymptotic singular values, and the fourth and second 
order bal~taced approximations for some sample values of the parameters. 
As already' said, the computation of the zeros of the balanced approxima- 
tions was too unreliable for the small values 0.05 and 0.1 of e, because the 
spreads of singular values were too large, so that these zeros are not listed 
in Table 3. However, for e = 0.5, the spread was moderate enough to allow 
a fairly reliable computation of the zeros, and these are given in Table 3. 
The important fact is to observe that the pole/zero configuration of the 
balanced approximations is close to the pole/zero configuration of the original 
transfer function (21) after modal truncation, thereby confirming Theorem 4. 

From all the numerical results, it follows that for realistic values of the 
physical parameters the rigid mode has large singular values and the first 
and second flexible modes have low singular values, Since singular values 
provide a measure of controllability/observability, it follows that the flex- 
ible modes, and especially the second one, are "weakly controllable/obser- 
vable," thereby recovering a result already obtained via the Linear-Quadratic- 
Gaussian avenue of approach [12], [13]. 

5. Conclusions 

We have attempted in this paper to perform a first evaluation of the recently 
emerged tools centered upon singular value decomposition as applied to 
physical systems. We have chosen a class of flexible systems, because of their 
importance with the advent of Large Space Structures, and also because for 
these systems measures Of controllability/observability and systematic ap- 
proximation procedures like those provided by singular value decomposi- 
tion are badly needed. In a flexible system consisting of the interconnection 
of a double integrator and Oscillators, singular values have been shown to 
provide a measure of the contribution of each subsystem to the overall in- 
terconnected system and has allowed a fairly rigorous justification of the 
deletion of the low singular value subsystems in reduction procedures. 

Although from a very specific sensitivity standpoint balanced realization 
is desirable [40], one should, however, keep in mind that balancing so far 
requires a lot of eigenanalyses which are more and more ill-conditioned as 
the spread of singular values increases. Hence the computed balanced realiza- 
tion may be' far enough from the true value as to invalidate conclusions drawn 
from this computed balanced realization, as shown by the difficulties en- 
countered in computing the zeros of the balanced approximation. 

More reliable numerical procedures for balancing seem to be called for. 
Specifically', a procedure not involving the unessential multiplications bb  T 

and cTc, typical in the grammians and making the spectral spreads twice as 
big, would be welcome. In other words, it would be desirable to compute 
the ~,'s, rather than the ~ ' s  as is usually done with the currently available 
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0.20 

3.15 

3.10 

3.05 

].03 

3.02 

).01 

),005 

),001 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

2.7 

I0,0 0.4 

I0.0 0.4 

I0.0 0.4 

I0.0 0.4 

10.0 0.4 

I0.0 0.4 

10.0 l 0,4 

I0.0 0,4 

I0.0 0,4 

0.05 

0.05 

0,05 

0.05 

0.05 

0.05 

0.05 

0,05 

0.05 

15.88909 

15.08884 

26.82473 

26.82459 

60.35540 

60.35534 

241,4214 

241,4214 

670.6149 

670.6149 

1508.883 

1508.883 

6035.529 

6035.534 

24142.11 

24142.14 

603544.3 

603553.4 

2,583373 

2.588835 

4.599166 

4.602373 

10.35387 

10,35534 

41.42099 

41,42136 

115.0592 

115.0593 

258,,8833 

258,8835 

1035.529 

1035,534 

4142.115 

4142.135 

I03545,3 

i103553.4 

0.1881321 0.1665404 

0.1851852 0.1851852 

0.252944 0.2289220 

0.2469136 0,2469136 

0.379266] 0,3534001 

0.3703704 0,3703704 

0.7523660 0.7251955 

0.7407407 0.7407407 

1.246698 1.219699 

1.234568 1,234568 

I.~64733 1.837369 

1.851852 1.851852 

3.721410 3.689781 

3.703704 3.703704 
7,425319 7.393704 

7.407407 7.407407 

40.25545 36,99051 

37.03704 37.03704 

~5 ~6 

~a,5 ~a,6 

0,006326852 0,006155446 

0,00625 0.00625 

0.00840336 0.008242955 
0,0083333 0.0083333 

0.01255293 0.01239213 

0.0125 0.0125 

0.02609735 0.02497378 

0.025 0.025 

0.04162987 0,03814798 

0.04166667 0.04166667 

0.06313205 0.06239883 

0.0525 0.0625 

0.1706231 0,1249703 

0.125 0.125 

0.2896103 0.2499762 

0.25 0.25 

19'.45976 1.251383 

1.29 1.25 

Table 1. Singular values and asymptotic singular values of h'(s), as a function of ~. 

0,05 

0,I 

0.5 

0,5 

1.5 6.0 

1.5 6,0 

1.5 6.0 

1,5 3.0 

0.5 0.2 

0.5 0.2 

0.5 0.2 

0.7 0.5 

o a o a 

241.4216 41.,167 

241.4214 41.42186 

60.3561 9 1 0.33783 

60.35534 10.35584 

2.446824 0.3173643 

2.414214 0.41421 

2.464407 0.2679445 

2.414214 0.4142135 

1.705022 

1.666667 

0.8508420 

0.83333 

0.I004465 

0.1666667 

0.1231249 

0.23338 

1.598849 

1.666667 

0.7584192 

0,83333 

0.07340009 

0.1656667 

0.1112925 

0,233333 

0.16779 

0.1666667 

0.084271 

0.083333 

0.015308 

0.01666667 

0.0622465 

0.083333 

cr 
6 

~ ,6 

0.1657916 

0,1666667 

0.0823207 

8.083833 

0.01460638 

0.01666667 

0.0470495~ 

0.083333 

Table 3. Singular values, asymptotic singular values, fourth order and second 

softwares. A possibility of  avoiding the unessential "squaring up" might be 
provided by [21], where it is shown that the inherent structure of  the con- 
trollable canonic form allows the computat ion o f  the a / s  as the solutions 
to a generalized eigenvalue problem. Another such possibility is given in a 
recent report [41] on the solution of  Lyapunov equations in a "square-root" 
fashion. 
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?.05 

).05 

].05 

3.05 

].05 

2.7 I0.0 

2.7 I0.0 

2.7 10.0 

2.7 I0.0 

2.7 10.0 

241.4214 0.6 0.05 
241.4214 

0.5 0.05 241.4214 
241.4214 

241.4214 0.4 0.05 
241.4214 

241.4213 0.3 0.05 
241.4214 

0,2 0 , 0 5  241.4213 
241.4214 

41.42083 

41.42136 

41.42091 

41.42136 

41.42099 

41.42136 

41.42106 

41.42136 

41.42115 

41,42136 

I.~8332 

l . l l l l l l  
0.9403207 

0.9259259 

0.7523660 

0.7407407 

0.5641830 

0.5555566 

0.3761815 

0.3703704 

1.087769 

l . l l l l l l  

0.g064842 

0.9259259 

0.7251955 

0.7407407 

0.5438994 

0.5555556 

0.3625994 

0.3703704 

0.02497815 

0.025 

0.02524023 

0.025 

0.02609735 

0.025 

0.0251145 

0.025 

0.02547584 

0.025 

06 

%,6 

0.02452533 

0.025 

0.02496893 

0.025 

0.02497378 

0.025 

0.02492053 

0.025 

0.02496273 

0.025 

Table 2. Singular values and asymptotic values of h~(s) as function of C 1. 

I 
zeros of original poles 

-0.05+ j 5.644228 -0.049~ j 1.499732 

- j 1.222964 i -0.049_+ j 0.0007557145 

-O.l+ j 5.644227 -0.0990~ j 1.499144 

- I  - j 1.222964 !~ 0.003074864 

-0.5 • 5.644228 i-0.47867~ j 0.0877055 
_ +j 1.222964 i -0.5064326~ j 1.550953 

-0.5+ j 2.685597 i -0.405 
_ -0.7686 

_ j 1.]29693 -0 .6538~j  1.143566 

fourth order balanced approximation second order balanced approximation 

zeros poles zeros 

-0.0495~ j 0.0046498 

g = 
u 

-0,460507 

! j  1,392281 

-0,6209861 

~j 0.934361 

-0.09687~ j 0.017242 

-0.3329831+ j 0 

-0.9285787~ j 0 

-0.3297905 

-0.93333 

~ o ~  

order balanced approximations of h~(s). 
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