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We give a Lagrange formulation of the gauge invariant n-orbital model for disordered 
electronic systems recently introduced by Wegner. The derivation proceeds analytically 
without use of diagrams, and it identifies the previously discussed n ~ oo limit as the 
saddle-point approximation of the Lagrangian formulation. We discover that the La- 
grangiau model crucially depends on the position with respect to the real axis of the 
energies involved. If the energies occur on both sides of the real axis as is the case in the 
calculation of the conductivity, then the order parameter field takes values in a set of 
complex non-hermitean matrices. If all energies are on the same side of the real axis then 
a hermitean matrix model emerges. This difference reflects a difference in the symmetries. 
Whereas in the latter case normal unitary symmetry holds, the symmetry in the former 
case is of hyperbolic nature. The corresponding symmetry group is not compact and this 
might be a source of singularities also in the region of localized states. 
Eliminating massive modes in tree approximation we derive an effective Lagrangian for 
the Goldstone modes. The structure of this Lagrangian resembles the non-linear a-model 
and is a very general consequence of broken isotropie symmetry. We also consider the 
first correction to the tree approximation which is related to the invariant measure of the 
generalized non-linear a-model. 

1. Introduction 

In two recent papers Oppermann and Wegner [1, 2] 
have considered a model for a disordered electronic 
system with n orbitals per site. In [1] the n = oo limit 
for the averaged one- and two-particle Green's func- 
tions has been obtained by summing all tree graphs 
similarily to the procedure by Wigner [-3] and Ar- 
nold [4]. In I-2] a diagrammatic perturbation expan- 
sion in powers of 1/n was given. It became apparent 
that the system shows features characteristic for a 
broken isotropic symmetry. It was suggested that d c 
= 2 is the lower critical dimensionality at and below 
which no metallic behaviour exists, and critical ex- 
ponents were given for the mobility edge behaviour 
in the limit d ~ 2 + .  The identification of dc=2 as 
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lower critical dimensionality is in agreement with the 
observation by Thouless and Licciardello [5] and 
with the results of G/Stze, W61fle, and Prelovsek [6], 
and of Abraham, Anderson, Licciardello, and Ram- 
akrishnan [7]. The ]?-function in [7] allows the pre- 
diction of critical exponents in the limit d-~2+ in 
agreement with those of [2] for the real matrix 
ensemble. 
The nature of the underlying symmetry was discov- 
ered by Wegner [8]. He showed that the system has 
an internal broken isotropic symmetry with the fre- 
quency being the symmetry breaking source and the 
density of states being the order parameter. The 
property that the Green's functions decay rapidly 
unless the points coincide pairwise led Aharony and 
Imry [9] to introduce a field theory with composite 
variables Q(r) to describe the mobility edge be- 
haviour. A model of interacting Q-fields obeying the 
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isotropic symmetry yields [8] exponents and the lo- 
cation of the mobility edge in agreement with the n- 
orbital model to the extent calculated, and it recently 
has been used to analyse the behaviour near the 
mobility edge of the participation ratio [10]. Using a 
Lagrangian formulation of this model Harris and 
Lubensky [11] have suggested that eight is the upper 
critical dimensionality. 
In Refs. 1, 2 a diagrammatic perturbation theory was 
used. It is the aim of this paper to discuss the 
symmetries of the Lagrangian L[Q] underlying this 
perturbation theory. A peculiar structure emerges: In 
representing an average over a product  of several 
Green's functions ~(rp, r'p; zp) the adequate model cru- 
cially depends on the position of the energies z v. If all 
z v are on the same side of the real axis then a model de- 
fined on the set of hermitean (real symmetric) matrices 
can be used. The set depends on the ensemble consid- 
ered. If the energies are on different sides of the real 
axis then we have to integrate over a set of complex 
non-hermitean matrices. This difference reflects a dif- 
ference in the symmetries of these two cases. In the 
former case the system is invariant under unitary 
(orthogonal) transformations and in mean-field the- 
ory it is governed by a single invariant saddle point. 
In the latter case the symmetry is of hyperbolic 
nature. This symmetry is spontaneously broken and 
we find a non-compact surface of saddle points. 
We stress that our derivation of LEO] is analytically 
rigorous - except for possible problems connected to 
the m-+0 trick which we use without further exam- 
ination, It is only by insisting on mathematical rigour 
that one can detect the important difference between 
the hyperbolic and the unitary case. We prove that 
on the level of perturbation theory the two models 
are equivalent, 
The hyperbolic symmetry is spontaneously broken, 
and we can identify the massive modes and the 
Goldstone modes of broken symmetry. Eliminating 
the massive modes in saddle-point approximation we 
derive a generalized non-linear a-model for the Gold- 
stone modes. This model has been suggested before 
[8]. It is defined on a set of matrices with two m-fold 
degenerate fixed eigenvalues. Models of this type 
have recently been discussed by Br6zin, Hikami, and 
Zmn-Justin [12] from the point of view of renormali- 
zation. Evaluating the gradient-independent contri- 
bution due to Gaussian fluctuation of the massive 
modes, we recover the invariant measure of the set of 
matrices with the above mentioned eigenvalue con- 
straints. This supports the suggestion that the critical 
behaviour of the generalized non-linear o-model and 
the original matrix model should be the same. 
The organization of this article is as follows: In 
Sect. 2 we use the m---0 trick to construct a La- 

grangian for vector fields starting from the gauge 
invariant models of Refs. 1, 2. Here we also discuss 
the symmetries. Section 3 is devoted to the derivation 
of the matrix Lagrangian. We establish the con- 
nection to the work of Refs. 1, 2 by showing that the 
limit of large n is identical to the saddle-point ap- 
proximation and the 1/n-expansion results from ex- 
panding around the saddle point (loop expansion). In 
Sect. 4 we derive the generalized non-linear a-model. 
Section 5 contains our conclusions. Some properties 
of the hyperbolic symmetry operations are discussed 
in Appendix A, and Appendix B contains a very 
general derivation of non-linear a-models which 
sheds some light on the special case considered here. 

2. The Model and its Invarianee Properties 

2.1. 2he Model in Vector Representation 

We consider the gauge invariant model of Refs. 1, 2. 
At each lattice site r of a regular lattice there are n 
orbitals [ r ,c~>~=l , , . . ,n .  In the following we will 
often abbreviate the pair of indices r, c( by x. The 
system is governed by the one-particle Hamiltonian 

Z iX>Lx,<X'l (2.1) 
Vn x,x' 

where either the f~x' are the elements of a real sym- 
metric matrix (real matrix ensemble, RME), or they 
form a complex hermitean matrix (phase invariant 
ensemble, PIE). In both eases the matrix elements fx~, 
are random variables distributed according to the 
normalized Gaussian weight 

P [ f ~  =~a/'-1 exp - a -  2 (Mrr')- ]f~ '  (2.2) 
L. x x '  

with fl=�89 (RME) and fi= 1 (PIE), respectively. First 
and second moments of this distributions are given 
by 

XX" = 0 

f. ,~;fx~i = (6x, xl cS~.i + ~c 5~,x2 5~i &) M,~ rl (2.3) 

where tr = 1 (RME) and ic=0 (PIE). The bar denotes 
the ensemble average 

A = 5  ~ [ f ]  P[f] A[f]. (2.4) 

Here ~ [ f ]  stands for the integrals over the inde- 
pendent matrix elements f~ ,  for the real matrix en- 
semble or Re f~ ,  and Im f~ ,  for the phase invariant 
ensemble. We note that both (M, , ) -~ and (M-~)~, 
=4= (M~,.,)-* will occur in our derivation. 
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The averaged Green's functions can be expressed as 
expectation values of products of vectors S [13] 

< xl(z e - H) -  l[x'> = sv < SPa(x) SPa* (x')> (2.5) 

(X  1 I(Z1 -- H )  - l Ix I ) ( x  2 [(z 2 --  H ) -  l lx 2 ) 

~- $1 $2 (Sla( X 1) Sa 1 * (x ; )  82(x2)  S 2 * (x~) )  (2.6) 

where the system is governed by the new Hamil- 
tonian 

_jXz= ~, (sps/)~S~*(x)d~J(r)S~:(x)+Jt~ (2.7) 
pp',aa',x 

e x p ( - H / ) = e x p { f i n  -�89 ~ spSPa*(x)fxx,S~(x')} (2.8) 
p,xx',a 

with 

~P,~; (r) = fizp~vp, f) ~,, (2.9) 

Sp = - i sign Im zp. (2.10) 

The vector field S is real for the real matrix ensemble 
and complex for the phase invariant ensemble. The 
number of the components SPa, a = l  . . . . .  m; p = l , 2  
vanishes due to the replica trick: m = 0. We note that 

1/2 p* the variables used in [8] correspond to sp S~ (r) in 
the present notation. The expectation value is defined 
by 

(A)  = ~ ~ [S]  A(S) exp ( -  J f ) ~ -  ~ (2.11) 

~ =  ~ ~[S]  exp ( - ~f). (2.12) 

The probability distribution P [ f ]  is invariant under 
orthogonal (RME) and unitary (PIE) transformations 
in the space of the orbitals at any given site. Due to 
this local gauge invariance the averaged Green's 
functions vanish unless the points coincide pairwise. 
Moreover they do not depend on the labels ~ and one 
obtains 

(xl(z~- H)- *l x') =Gx' G(r; zp) (2.13) 

( x , l ( z ,  - H ) -  xlx' ,)(x2[(z 2 - H ) -  l lx~) 

=((}x,x,2(~xlx2 + 1,(5 . . . .  ~Sxlx'2) C(rl, r[ ;zl, z2) 

+ a~,x~ G~a(c(,',;z,) C(r~; z~)+ C'(r>rg;z,,Zz)).(2.14) 

If in (2.7) we allow for general pv' . d, , ,0 )  then these 
functions can be obtained from 

F = in ~e [d] (2.15) 

by functional differentiation with respect to d eva- 
luated for d given by (2.9): 

~SF 
nG(r;zp) cSdPa~(r) (2.16) 

n~ , (x l l ( z  1 - H ) - l l r 2 @ ( r 2 ~ l ( z ~ - H )  1[xl) 
c~ 

c~2F 
= 6~21(rl) t5 dl2(rz) = rig(r1' r2 ;Zl' Z2) (2.17) 

n 2 (X 1 [ (Z 1 - -H)-  x Ix1) (r2~] (z2 - H )  11r2~) 
c~ 

c52F 
--  n 2 a ( r  1 ; z 1) 6(? '2;  z2) ~- a ~a12 (r 1) (5 ~22(r2)  

= nK' ( r> re;z *, z2) (2.18) 

K(r> rz; z 1, zz) = n C(r> r2 ; Zl, z2) 

+ c 5  [K C(rl, rl ;  zl, z2) + G(rl; zl) G(r2; z2) 

+ C"(r~, r~ ;z~, z2) ] (2.19) 

K"(r> r2; z , , z x )=n  C"(r~,r2; zl,z2) 

+6 .... (1 + ~c) C(r> rl;z~, z2). (2.20) 

We stress that as a result of local gauge invariance a 
source term dPaov, ' (r) coupled to a product of  vectors at 
the same point is sufficient to construct any physical 
observable of the system. This is in contrast to usual 
vector models where the source term is coupled to a 
single vector SV,(x). 

2.2. Symmetries 

With the Oaussian distribution (2.2) of fx~' the in- 
teraction ~ is easily evaluated. 

2n ~ Mrr'SpSp' 
xx', pp',aa' 

p ~1~ p" p r p" S~ (x) S, (x) S~(x ) Sr *(x'). (2.21) 

The symmetries of this interaction have been dis- 
cussed before [8], and we here repeat this discussion 
stressing the difference between the cases sa =s  2 or s~ 
= - s >  which will play a crucial role in the sub- 
sequent development. The symmetries follow from 
the fact that J~/ depends on the spin fields only via 
the combination 

p~ p t l~x, = Y, spS~ (xlS,(x) (2.22) 
p,r 

The same combination can be introduced into the 
quadratic part of the Hamiltonian (2.7) 

. pp' 
Z (SpSp') �89 SPa (x) ~aa" (r) SPar(X) 

pp',aa' 

=fieI=-  E %s~,)�89 
pp', aa 

[ ( - 1 ) ~ 2 f i a p v ,  G ~ , -  pp, , o �9 ~5 d~, (r)] SPa;(x). (2.2~) 



116 L. Schgfer and F. Wegner: Disordered System with n Orbitals per Site 

Here we have used the form 

co  
~. = E -  ( - 1 )~ i ,  (2.24) 

and we have explicitly added a source term c~d. In the 
absence of the symmetry breaking terms co/2, cSd the 
Hamiltonian is invariant under all transformations 
which do not affect I~ , .  
For  the case s~=s 2 these transformations are easily 
identified as the global, unitary (PIE) or orthogonal 
(RME), transformations in (2m)-dimensional vector 
space. Thus in this case the Hamiltonian shows the 
normal rotational invariance. For s 1 = - s  2 the situa- 
tion is different since then I~ ,  is constructed with an 
indefinite metric. It may easily be checked that I is 
invariant under transformations S(x)~7"S(x)  obey- 
ing the relation 

~ e  ~ =  ~-~e = 1 (2.25) 

where 

~ e  =s  + ~+ s (2.26) 

PP' = sP (~ pp' (} aa'" (2.27) Sad  

Transformations obeying (2.25) will be called 'pseu- 
dounitary'  (psu). For the real matrix ensemble we 
have to restrict the group of symmetry operations to 
psu transformations the elements of which are real in 
order to guarantee that the vector field is real. We 
note that for s~=s 2 the notion of pseudounitary 
becomes identical to unitarity, and thus the dis- 
cussion of the symmetries may be summarized in 
stating that for co=0, 6 d = 0  the model is invariant 
under pseudounitary transformations. 
A more detailed understanding of the structure of 
pseudounitary operators may be helpful. We show in 
Appendix A that any psu operator can be represented 
in the form 

T = U1 R U 2 (2.28) 

where the U~ are unitary operators which do not mix 
the subspaces p = 1 and p = 2: 

U~, ~,' = cSpp, U~, ~, p . (2.29) 

For s~=t=s z the 'special' psu operator R is para- 
metrized by m real variables ~o, according to 

R~P, ' = boa, R pp' (q~o) (2.30) 

( cosh q0 i sinh qo] (2.31) 
R(q9) = \ _  i sinh q) cosh q) ]" 

This reveals that for sa=t=s 2 the subspaces p+p'  are 
connected by a "hyperbolic" symmetry operation in 

contrast to the spherical symmetry present for s~ = s 2. 
This latter case obviously results from the former by 
choosing cp imaginary. 

3. The Lagrangian in Matrix Representation 

3.1. Formal Derivation 

We assume that the matrix M~, is translational 
invariant and positive definite, and we write 

( M -  ~)~/= 4 w~,/E~ (3.1) 

where 

E0 a = 4 ~ M, ,  (3.2i) 
r '  

1 = Z w~/. (3.2ii) 
r 

Moreover we assume that w r / < 0  for r+r'.  This 
condition and (3.2ii) guarantee that w and con- 
sequently M are positive definite. 
The quantity E 0 is used as energy scale and zp is 
written in the form 

zp = E o ( ~ - ( -  1) p c3) (3.3) 

where 

60 
(b - (3.3i) 

2E ~ �9 

In addition we introduce the notation 

6d(r) = 6d(r). (3.4) 

The interaction ~ (2.21) is difficult to handle since it 
couples vectors at different points x + x ' .  We can 
decouple it by a Gaussian transformation introducing 
a matrix field Q (r) and a Lagrangian L [Q]. Formally 
this Lagrangian is derived via the following steps: 
(i) Decoupling of 

~ e = ~ [ S ] e x p { _  Z (spsp,) ~ 
pp ' , aa ' , x  

p *  pp' S, (x)daa,(r)S~5(x)- ~ Mrr, lJxx,I 2} 
2n xx '  

= ~ 0 - 1 ~ [ S ] ~ [ Q ] e x p { - f i ~  ~ ,  (spsp,) ~ 
x, pp',  ' 

s~*(x) [2~Go, pp" r S~5(x) G~'-  0oo, ( )] 
- f ln~wwTr( �89  }. (3.5) 

Note that Jx'x = - Jxx'* �9 
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Here ~o is a normalization factor for the Q-in- 
tegration 

~eo =~ ~[Q3 exp { - f l n ~  w~, Tr (1Q(r)Q(r') 
rr' 

+&(Q(r'))} exp {nil 2 w,r, 
rr'  

Tr (�89 (5 ~ (r) a ~ (r') + & a,~ (r'))} (3.6) 

and the matrix c5 is defined as 

"PP'- -Spp, a~, 2 ~ ( -  1) p O,) aa, - -  (3.7) 

(ii) Integration over the field S 

= Y'o 1 ~ ~ I-Q3 e -  Lte l -  Y / Y o  

where 

(3.8) 

1 
fin L[Q] =�89 % / T r  (Q(r')) Q(r')) 

+ Z w,./Tr ((& + b'~(r)) Q (r')) 
rr' 

+ ~ Tr In (g - Q (r)) (3.9) 
r 

g~f = 26pp, ha, ,, e. (3.10) 

The Q-integration is defined in terms of the inde- 
pendent matrix elements of Q in order to allow in a 
simple way for the shift of Q implicit in the derivation 
of (3.5). We note that the Lagrangian L[Q] has also 
been given in Ref. 11. 
To make this formal derivation rigorous we have to 
define the domain of the Q-integration in such a way 
that the following conditions hold: 

(i) Convergence of the Q-integrals in (3.5), (3.6), uni- 
formly in S. 
(ii) Convergence of the S-integrals for fixed Q. 
Furthermore the symmetry operation S--, TS induces 
the transformation Q ~ TQ T ~ where 

T=s~ 7"s +~ (3.11) 

For psu T also T is pseudounitary. If T is real then 
T 11 and T 22 are real whereas T 12 and T 21 a r e  

imaginary. Such a psu transformation will be called 
pseudoorthogonal (pso). 
For an explicitly symmetric formulation in the ab- 
sence of symmetry-breaking terms both the La- 
grangian L[Q] and the domain of the Q integration 
should be invariant under global symmetrytransfor- 
mations Q(r)~TQ(r)T ~ Since for & = S d = 0  the 
Lagrangian (3.9) is invariant under any nonsingular 
transformation T the symmetry requirement for L[Q] 
is trivially fulfilled. 

3.2. The Domain of Integration in Matrix Space 

In examining the convergence conditions we have to 
distinguish between the cases s l=s  2 and s l = - s 2 .  
We simplify the discussion by restricting the energies 
zp to the most interesting situations 

a) $1=52, (J~ = 0 ,  I m  e 4 = 0  (3,12) 
b) s l = - s 2 ,  Im o3 >0, Im e=0 .  (3.13) 

For s I =s  2 the set of matrices Q has to be invariant 
under unitary (PIE) and orthogonal (RME) transfor- 
mations, respectively. This suggests to choose Q(r) 
hermitean (PIE) and real symmetric (RME). It is 
easily checked that with this choice condition (i) is 
satisfied. Here it is used that wr,., is positive definite. 
The condition (ii) holds since the energies zp have 
non-zero imaginary parts of the same sign. Thus for 
s,---s 2 the hermitean (real symmetric) matrix model is 
rigorously equivalent to the original vector model. 
(Throughout the paper the reader should replace 
hermitean matrices Q by real symmetric matrices Q 
for the RME.) It is tempting to use these sets of 
matrices also for S l = # S  2 .  However, in that case the 
integral over S is not convergent. We will construct 
an adequate set of matrices below. Here we first note 
that as long as we restrict ourselves to perturbation 
theory the hermitean matrix model is sufficient. This 
follows if we expand the r.h.s, of Eq. (3.5) in powers of 
s ~ ~SP*O pp gP' For each finite power the S-in- p p ' /  a ~ a a '  a" �9 

tegral can be carried out, and the resulting per- 
turbation expansion in powers of (M/z2p) is identical 
to the expansion of the original model (2.7), (2.12). 
To get some hint on the correct choice of the ma- 
trices Q(r) for s 14=s2 we now determine the saddle 
points of the partition function Z in the invariant 
situation c5=0=c~.  For r-independent Q the La- 
grangian L[Q] then depends only on the eigenvalues 
2; of Q, and the saddle point equation reads 

0 1 
0=02i  f inN L[Q] = 2 ~ - ( 2 e - ) @ -  1; 

j = 1 . . . .  ,2m (3.14) 

where N denotes the number of lattice sites of the 
system. This yields 

2 i = e ___ i(1 - e2) ~ - e _+ i20 . (3.15) 

Since for each of the eigenvalues we have two so- 
lutions independently we have to choose the physi- 
cally relevant saddle point. This choice is dictated by 
the requirement that we have to be able to deform 
the integration path in Q-space such that it passes 
through the saddle point. We first consider case a): s~ 
=s ; .  It is obvious that we can shift the integration 
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paths for the diagonal elements of Q(r) as long as we 
do not cross the singularities of the logarithm in 
L[Q I. Since all these singularities are on the same 
side of the real axis only the saddle point matrix 

Qp - 2  (pll (3.16) 
s . p . - -  

2 (pl = ~ + sp2 o (3.17) 

can be reached. Clearly this matrix satisfies all the 
invariance requirements with respect to the transfor- 
mations T. We note that for real ~ we find two 
equivalent saddle points (3.16). For ~ = R e e  _ i 0  this 
symmetry is spontaneously broken. 
For case b) (s 1 = - s2 ,  Im e=0) it seems to be reason- 

P �9 able to consider the generalization of Q~.p.. 

Q~.p. = e l  +2oS. (3.18) 

This choice guarantees that the single-particle 
Green's function G(r;zp) (see Eq. 2.16) is always 
governed by the same saddle-point matrix element 
(Q~.~.)~ independent of whether s I = s  2 or s l = - s  2. 
However, this choice is not invariant under psu trans- 
formations; under these transformations a non-com- 
pact manifold of equivalent saddle points emerges. 
All these saddle points should belong to the set of 
matrices Q(r), and we therefore are led to define 
the matrix field Q(r) for s~ = - s  2 as 

Q (r) = 20 T(r) s T �9 (r) + T O P (r) To ~ (3.19) 

where 

Pf~' (r) = 6pp, Pf,,(r) (3.20) 

and T o denotes a fixed space-independent psu (PIE) 
and pso (RME) transformation. Equations (2.29) and 
(3.19) show that Q(r) is independent of the choice of 
U 2 in the representation (2.28) of T. Thus we can 
restrict T(r) to the set of all psu (PIE) and pso (RME) 
transformations of the form 

T= U~ R U~ (3.21) 

which is the set of all hermitean psu and pso transfor- 
mations. We have absorbed the part el  of Q~.p. into 
P(r) which ranges over the set of all hermitean ma- 
trices obeying the constraint (3.20) ('block diagonal 
matrices'). 
Since (3.19) specifies the set of matrices which we will 
use for s l =  , s  2, a more explicit analysis of this 
expression is appropriate. We find that the first con- 
tribution on the r.h.s, of equation (3.19) can be writ- 
ten in the form 

2 o IT(r) s T G (r)jpp' = Vpp ' ((~12) 

= / - i (2~ l (~)+Q12(r)Q2~(r))Lp=p '= 1 

[ i(,~g 1 (2/+ ~2 ~(r) (~z (r))L p = p' = 2 (3.22) 

where 

(3.23) 

In Eq. (3.22) it is understood that we choose the 
matrix square root continuing analytically from 
Sp ~'0 I(p). The distinction of the sign again implies that 
a discrete symmetry is broken. If T ranges over all 
matrices of the form (3.21) the (~12 ranges over all real 
(RME) and complex (PIE) m x m matrices. To prove 
these statements we note that by construction the 
matrix V(r) has m-fold degenerate eigenvalues - i ;~  o 
(subspace p - l )  and +i)~ o (subspace p=2).  Given 
that the off-diagonal blocks fulfill relation (3.23) the 
diagonal blocks are uniquely specified in terms of 
Q12 and of the eigenvalues. To derive Eq. (3.22) it 
therefore is sufficient to show that 

2o[T ( r ) sT~( r ) ]21=2o[T( r ) sT~( r ) ]12+  (3.24) 

and that ET(r ) sT*(r ) ]  12 is real for the RME. (Note 
that )~o is real by virtue of Im e= 0). Both statements 
are easily checked with the help of (2.26) and of the 
relations s, = - i = - s  2 which holds in the present case. 
This proves that any matrix 20 Ts  T e can be written 
in the form of V(r), On the other hand we can also 
prove that each matrix V(r) can be written in the 
form of 2 o Ts T ~. This proof is quite similar to the 
derivation of relation (2.28) and will be sketched in 
Appendix A. As a consequence the first contribution 
to Q(r) (Eq. 3.19) ranges over all hermitean block off- 
diagonal matrices to which antihermitean blocks in 
the diagonal are added according to Eq. (3.22). On 
the other hand the second contribution ToP(r ) To ~ 
ranges over all hermitean block diagonal matrices to 
which blocks outside the diagonal are coupled by the 
fixed transformation T o. Thus the set Q(r) is similar 
to the set of all hermitean matrices, and it has enough 
freedom to allow for the shifting of variables implicit 
in the derivation of (3.5). 
We now prove that with the set (3.19) the formal 
derivations of Subsect. 3.1 are justified. The conver- 
gence of the S-integrals in Eq. (3.5) (requirement ii) is 
easily established since the S-dependent exponential 
in the integrand takes the form 

% s.,)~ s~* (x)(g- Q (r))Z; spa; (x) 
pp', aa' 

= <s (x) ls~ (~ - 0 (r)) s~lS (x)) (3.25) 

where the hermitean part of the operator s ~ ( ~ - Q ) s  ~ 
is positive definite. Requirement (i) is fulfilled pro- 
vided Imco is not zero. With the choice (3.19) we find 
for the relevant part of the exponential 
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Y~ wry, Tr (~ Q (r) Q (~') + (5 Q (/)) 
r r '  

=�89 w w Tr (P(r) P(r')) 
rr '  

22 
+'~o ~ w~,, Tr (T(r) s T (D (r) T(r') s T | (r')) 

rr" " 

+ 2o ~ W~,., Tr(ToP(r ) To ~ T(r') T+ (r')s) 
rr" 

+ 2i(3 ~, Tr(ToP(r)sT~) 
r 

- 2 i (3 2o ~, Tr (T(r) T + (r)). (3.26) 
r 

The third term on the r.h.s, of (3.26) is purely imag- 
inary. The Q - S S  coupling (3.25) does not affect the 
convergence and thus the P(r)-integrals converge by 
virtue of the first term on the r.h.s, of (3.26). The 
second term can be rewritten as 

22 Z ww Tr (Tw s T~; 1 s) 
rr '  

with 

T~, = T ~ (r) T(r'). (3.27) 

Since T,,, is pseudounitary we may use the repre- 
sentation (2.28). Since the block-diagonal U's com- 
mute with s expression (3.27) reduces to 

Xo: X 2 ,./ w'r' Tr  (R~/sR~/~ s) (3.28) 

which with (2.31) yields 

- ";~ Z G / Z  cosh 2%~,,~. (3.29) 
rr '  a 

This guarantees the convergence of the integral over 
the fluctuations of T(r) provided W~r, < 0 for r # r'. For 
r = r '  one has (0-=0. Similarly one can see that the 
continuum limit w~, ~ (1 - (2d)- 1R 2 A) 6 (r - r') yields 
a convergent integral. Although we need this require- 
ment on w in order to obtain convergence we do not 
see a physical indication for a different behavior of 
the system if this requirement is violated. In per- 
turbation theory a necessity for this requirement does 
not show up. 
If the operators T(r) would represent a compact 
group this discussion would be sufficient to prove the 
existence of the Q-integrals. In our case the saddle 
point manifold is not bounded and this forces us to 
invoke the symmetry-breaking term to guarantee 
convergence. 

- i(3 ~ Tr (T(r) T + (r)) 
r 

= - i2(3 ~ ~ cosh 2(pa(r). (3.30) 
r a 

(Note that by virtue of (3.13) Im (3 is positive.) This 
term essentially cuts off the contribution of the saddle 
point surface at 2q)a,-~-ln Ira&. As a result the Q- 
integrals converge and we have shown that (3.19) to 
(3.21) define a set of matrices for which the matrix 
model (3.8) (3.9) is identical to the original model in 
the case s 1 = - s  2. 
In the present formulation the set Q(r) is not in- 
variant under global transformations T; rather this 
transformation yields a set specified by T O T in place 
of T o. However, the invariance of the theory is re- 
covered since the partition function is independent of 
T o. An attempt to introduce a manifestly invariant 
set of matrices by the choice Q(r)=T(r) (2oS 
+ P(r))T~ leads to serious convergence problems. 
These difficulties are due to a coupling between P(r) 
and the T(r)-fluctuations which for rapid T(r) fluc- 
tuations renders the P(r)-integration divergent, and 
for P(r) of order 20 yields a negative mass of the T(r) 
fluctuations. One possibility to circumvent these prob- 
lems could be to couple in Eq. (3.19) T O locally to 
T(r) in such a way that T(r) fluctuations are strongly 
damped in To(r ) in order to suppress the above 
mentioned effects. Such a formulation would be at 
least very cumbersome and we therefore prefer to 
work with the simpler set (3.19). 
We have mentioned above that in perturbation 
theory it is sufficient to work with the hermitean 
matrix model which rigorously is equivalent to the 
vector model only for sl =s  2. It may be worth while 
to reconsider this question here. Perturbation theory 
formally results from the expansion of ln(~-Q(r)) in 
L[Q] in powers of (g-Qs.v.)-l(Q(r)-Qs.p.). Linear 
and quadratic terms are kept in the exponential 
whereas higher-order terms are expanded in a Taylor 
series. The equivalence in perturbation theory of the 
choice (3.19) and the hermitean matrix model is 
guaranteed if in a Gaussian integral we can deform 
the integration paths from the set (3.19) to the set of 
all hermitean matrices. That this indeed is possible is 
most easily seen for the special choice T O = 1 where 
the off-diagonal blocks Q12 Q21 are those of a her- 
mitean matrix (compare (3.23)). Then it is sufficient to 
shift P(r) for fixed Q~Z(r) (i.e. fixed T(r)) by a finite 
amount such that the matrix Q(r) as a whole becomes 
hermitean. In particular this argument allows us to 
rewrite ~0 in the form 

~ o = S ~ [ Q ] e x p { - ~ - ~ w , . / T r ( Q ( r ) Q ( r ' ) ) }  

�9 exp - -  ~ wr /Tr  [((5 + ~ d(r) (c5 + ~'~(r')) ] (3.31) 
2 ,.,., 

where the integral ranges over all hermitean matrices 
Q(r). If combined with equation (3.9) this shows that 



120 L. Sch~ifer and F. Wegner: Disordered System with n Orbitals per Site 

Z e does depend only on the combination (&+6~(r)) 
apart from the e-dependence. 

Up to constant terms which do not contribute in the 
limit m ~ 0 the Lagrangian (3.9) is transformed to 

3.3. Relation to Earlier Work 

We end this section by presenting the connection of 
the present formulation with the work of Refs. 1, 2. 
Obviously the physical correlation functions can be 
expressed in terms of correlation functions of the 
matrix field Q(r). Equations (2.15) to (2.18) together 
with the results of Sect. 3.1 yield 

G(r; zp) =~o ((QP~(r')) - ( - 1)P2&) (3.32i) 

4 ( 
K(F1,  F2; 3 1 , 3 2 ) = ~ o  0 n r~r Wrlr Wr2r' 

12 , 21 1 \ "(Q~b (r) Qb~ (r) ) c - ~  w .... } (3.32ii) 
I 

1 
fi~ L[(~] = �89 S w,/Tr ((~(r)(~(r')) 

r r '  

+ ~ w,, Tr [($ + 5~'h(r)) O(r')] 
rr 

+ y Tr ln(1 
r 

- ~ Tr (6"h(r)(~- &)). (3.38) 
r 

If we take into account the normalization (3.31) the 
term proportional to Tr(~'h.&) is cancelled and a 

t term ~Tr(bh(r)bh(r)) is added. The remaining part 
of~fojUst provides the normalization. Rewriting the 
result in terms of a field {~=n~(~(~# } we obtain the 
Lagrangian underlying the work of Oppermann and 
Wegner [2]: 

4 n  
K t '  ( r l ,  r2; Zl ,  z2) : ~ 2  Writ  Wr2r' 

~ 0  rr" 

<Q2 (r) Q 2  (r')> (3.32iii) 

where the superscript c indicates the cumulant aver- 
age. The results of Ref. 1 for the gauge invariant 
models in the limit n ~  oo follow immediately from 
the saddle-point approximation applied to these cor- 
relation functions. For example (3.15), (3.32i) yield 

(r) 

U )) Qo, o(r)^"" ' 
co H 1 k/2 ^ n ~ 

--k~3= ~ Tr(Qk) +-~'2~, Tr(Sh(r) 6h(r')) 

pp" 

rr' pp',aa' 
~p p' 

(~(p) $(p'))- 1 W~/Qaa '  (r). (3.39) 

2 
Gs.p.(r; E) = - -  2/p~ (3.33) 

E0 

which for ImE--+0 immediately implies the well 
known semicircle law I-3, 4] for the density of states 
#(E): 

2 
p(E) =l~z Im G(r; E - i0) =~Eoo cos q~ (3,34) 

q) = arc sin E/E o. (3.35) 

This Lagrangian defines a diagrammatic expansion 
with vertices of order k>3  and coupling n ~-k/2 and 
with propagators 

gpp,(q) = [(~(p) ~(p'))- 1 ~ ww ea(~- / /_  1] - t  (3.40) 
r 

These vertices and propagators are identical to those 
introduced in [-2], and a combinatorial analysis 
shows that the diagrams of [2] are those of the 
Lagrangian (3.39) in the limit m -~ 0. 

The results of [1] for K, K" here follow in the 
standard way by solving the saddle-point equations 
for r-dependent Q(r) in the presence of an infinite- 
simal source 5h(r). To construct the Lagrangian 
underlying the 1/n-expansion of [-2] we use the her- 
mitean matrix model and we shift Q(r) according to 

Q(r) : 0(r) + c5 (3.36) 

where 

~pp' __ 

:3, ,3aa,[E~o+Sp(1-\Eo] ! j .  (3.37) 

4. The Effective Lagrangian for Goldstone Modes 

4.1. Analogies to the Ferromagnet 

The model constructed here shows close formal anal- 
ogies to the familiar spin model of a Heisenberg 
ferromagnet. These analogies result from the fact that 
we are concerned with a continuous symmetry which 
is broken by a term coupled linearly to the fluctuat- 
ing field. Thus the symmetry breaking field & is the 
analogon of the magnetic field, and the field con- 
jugate to &, i.e. the analogon of the magnetization, is 
constructed from the expectation value of Q: 
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1 0 ln~e = 2 f l n ~ [ ( & 1 ( r ) _  22 - Qbb (r)) + 4c5] 
m 0c79 ~ ~o  

i.e. 

(4.1) 

2 0 ln~=fin(G(r; z2)-G(r; zO). (4.2) 
mN c~e) 

Equation (4.2) shows that for zp = E 0 ( e - ( - 1 )  p c5) and 
vanishing symmetry breaking field o3 the symmetry is 
spontaneously broken by the nonvanishing density of 
states in the energy band. The density of states there- 
fore is analogous to the magnetization and the energy 
E plays the r61e of temperature. However, at this 
point a difference to the magnetic case is to be 
stressed. The transition from localized to extended 
states will occur for some energy E c in the band, and 
spontaneous symmetry breaking occurs on both sides 
of the transition. Indeed, no pecularities are expected 
for the density of states at E = E c 
Under global symmetry transformations the partition 
function transforms according to the law 

5~[c3 + 6h ''~] = ~e[T~(cb + cS~'h) T]. (4.3) 

For an infinitesimal transformation T= 1 +6T, cST | 
= -c5 7;., this implies the standard Ward identity 

~, [&+~Sh(r),6T]P,f ~ l n : Y = O  (4.4) 
r pp' ,aa" 

where [ , ]  denotes the commutator. Out of the va- 
riety of results following from this relation we es- 
pecially note the identity [8, 14] 

(G(r; zl)-G(r; z2))/(z2- zl)= ~. K(r,r'; (4.5) 

which obviously is the analogon of the relation be- 
tween M/H and the transverse Green's function well 
known for the isotropic magnet. Equations (4.1) and 
(4.5) suggest that the diagonal blocks Qpp of Q play 
the role of 'longitudinal' components whereas the off 
diagonal blocks Qa2, ~21 are the analogon of trans- 
verse fields. This interpretation is supported by an 
examination of the form of the mass matrix in the 
perturbation theory of Ref. 2. Equation (3.40) yields 

(m)~a' -- 1. (4.6) 

For zp=Eo(8- ( -  1)P(~) we find from Eq. (3.37) 

(m2)Z; = ~ , ( e  2~ ~ - 1) + O(~)  (4.7) 

where the angle q) has been defined in Eq. (3.35). For 
e3 = 0 the transverse mass (p + p') vanishes whereas the 
longitudinal mass (p = p') stays finite within the band. 

4.2. Definition of the Effective Lagrangian 

The close analogy between our problem and the 
ferromagnet suggests that we should be able to con- 
struct a generalization of the non-linear a-model, i.e. 
an effective Lagrangian for the Goldstone modes of 
broken isotropic symmetry which correctly treats the 
limit of small momentum transfer. In this limit a 
continuum approximation to the d-dimensional lat- 
tice is adequate: 

~ a  d~d~r (4.8i) 
r 

Wrr, --~ a d (1 - ~ d,.) cSa(r - r'). (4.8 ii) 
R 2 

\ 

In this approximation the Lagrangian (3.9) reads 

1 d d 1 
finLc[Q]=a - ~d r{~Tr [Q(r)(1 R2 

(4.9) 

In the following we restrict ourselves to the case of 
broken symmetry, - s l=s2=i ,  and in Eq. (3,19) 
which defines the set of matrices Q(r) we take for 
simplicity T o = 1. 
The effective Eagrangian is defined by integrating 
over all longitudinal fields Qll(r), Q22(r). With the 
choice T O = 1 this amounts to integrating over P(r): 

e x p { - S [ Q l a ] } = ~ [ - P ] e x p { - L c [ Q ]  }.e . . . .  t.. (4.10) 

To evaluate this expression we determine the saddle 
point and the corresponding saddle point Lagrangian 
for fixed Q12(r)o Q21(r) and vanishing symmetry 
breaking field. Expansion around this saddle point in 
principle allows for the evaluation of 5P to arbitrary 
order in 1In. In a diagrammatic formulation the 
saddle point sums the contributions of all tree-like 
structures of longitudinal lines and the 1/n expansion 
proceeds according to the number of longitudinal 
loops. 

4.3.5~ in Saddle Point Approximation 

For the normal (S2)2-theory it is known [15] that 
elimination of the longitudinal field component in 
tree-approximation below T~ and in zero external 
field yields the Lagrangian of the non-linear a-model. 
In our case this procedure yields a Lagrangian &o0 
which is a generalization of the non-linear a-model: 
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5yO[Q12]=~ i~ ~ der Tr(VV~(r))2 + fina e 

�9 ~ der Tr [(c5 + 8"~(r)) V~(r)] 
2 +O(V4,cSV2,~ShV ). (4.11) 

The cons tan t / (  and the field V~ are determined as 

^ nR2 d 
K = ~ - a -  (4.12) 

V~(r) =e 1 + V(r) (4.13) 

where V(r) is defined in (3.22). Such an effective 
Lagrangian with the coupling constant (4.12) has 
been reported in [,81. We note that the matrix V~(r) is 
Q~.p. transformed by T(r) (Eq. 3.18): 

~(r) = T(r)(e 1 + 2oS ) TO(r). (4.14) 

According to the discussion in connection with (3.22) 
V~(r) ranges over all matrices with hermitean con- 
jugate off diagonal blocks Q12(r)=Q21(r)+ and 
with m-fold degenerate eigenvalues ;l (p} = ~ + 20 sp. 
To derive these results we define Qpp as function of 
Q i z = Q21 + via the saddle point equation 

6L i ^ 
0 g~QVV(r ) KAQPV(r)lev~=e,,to~l (4.15) 

where 

1 L~ = a e ~ d e r {�89 (Q (r) Q (r)) + Tr in (~- (2 (r))} (4.16) 

We decompose QVp[Q12] according to 

Q;p I-Q1 z (r)] = v,;p(r) + F;(r) (4.17) 

the saddle point surface, i.e. for P(r)=el .  This im- 
mediately yields the result (4.14) which then leads to 

L~ [V~] = fin m g(�89 (1)2 q- 2 (2)2) 

+ ln((e - 2 (1)) (e - 2(2)))). (4.20) 

The results (4.11) to (4.13) are a special case of a very 
general statement which we quote here since it allows 
to distinguish general aspects of the broken symmetry 
from properties specific for the Lagrangian Lc (Eq. 
(4.9)). Consider a Lagrangian 

L = K ~ der Tr (VQ) 2 + L i [Q] (4.21) 

where the otherwise arbitrary local interaction is 
invariant under nonsingular transformations 
T - 1 Q T ~ Q .  Assume that the symmetry is broken in 
such a way that the eigenvalues of the saddle point 
matrix fall into l groups with 2j = 2 (p) for j in the p'th 
group and 2~v~# 2 (p') for p =#p'. Writing the matrix as a 
block matrix QVp' we take the diagonal blocks as 
longitudinal, the others as transverse. Eliminating the 
longitudinal blocks in tree-approximation we derive 
a generalized non-linear a-model of the form (4.11) 
where for fixed transverse blocks the longitudinal 
blocks of V~(r) are completely determined by the 
eigenvalue constraints 2 j=2  (p). We will prove this 
statement in Appendix B. It shows that it is not the 
form of ~ 0  but the form of the matrices V~ which is 
specific for the problem under consideration. For the 
disordered electron problem the V~ have only two 
different eigenvalues. This and the hyperbolic sym- 
metry characterize the physics of the disordered sys- 
tem. 

where V:; is defined by 

OLi l 
0 = bQ-~V(r ) Q~ = vf~ (4.18) 

Thus F p is of order V 2 and substituting (4.17) into the 
Lagrangian (4.9) we find 

s =fi  R ~ der Tr(V V~(r)) 2 + L~ [V~] + fina e 
2 

�9 ~ ddr Tr [,(& + 6"~'(r)) V~(r)] +O(V4,&V 2, 6~V z) (4.19) 

where we have used (4.18) to eliminate a term pro- 
portional to F p. 
We still have to prove that L~[,V~] is constant and 
that V~ indeed has the form given by (4.13). This 
immediately follows from the way we have con- 
structed the set of matrices Q(r) (Eq. (3.19)). For fixed 
~ 1 2  and To=l  the contribution 2oT(r)sTQ(r) is fi- 
xed, and (4.18) is fulfilled if the P(r)-integration hits 

4.4. The Fluctuation Contribution 
and the Invariant Measure 

We now analyse the correction of order 1In and we 
show that the gradient-independent part of this cor- 
rection is closely connected to the invariant measure 
on the set of matrices V~(r). Expanding L c around the 
saddle point Qpp[Q12] and keeping the tranverse 
components Q12Q21 fixed we find 

L c = c o n s t + S  ~ + ~ a  e ~der Tr {6Q(r) cSQ(r) 

- (g-- V~(r)) 1 6Q(r)(g- V~(r))- 1 bQ(r)} 
t + O(V 2, & + 6h, n- ~) (4.22) 

where 

n �89 ~Q"p' = Gp, VQp~- QPP[,Q12]]. (4.23) 
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The gradient-independent part of the fluctuation in- 
tegral is found as 

~[cSQ] e x p f - ~ a  a~ ddr Tr {bQ(r)bQ(r) i f =  

- (g-  V~(r))- * 3Q(r)(g- V~(r)) * bQ(r)}}. (4.24) 

Equations (4.14) and (3.21) yield 

(g-  V~(r))-t= gl(r)R(r ) ~_20 s R~ U~(r). 
(4.25) 

The unitary transformation Ul(r) can be absorbed 
into 6Q(r), and taking into account the structure 
(2.30) of the special psu transformation R we find for 
the fluctuation integral 

f f = ~ [ b Q l e x p  - a-a~ ddr ~, 6Qo,(r)[Ovp, 
p p ' , a a '  

} - X,,,Pv (r)X~ V(r)] cSQ,pP' (r) (4.26) 

where 

X,V'(r)= [R(r) (~_2oS)  -1 �9 J ]p;' R (r)/ (4.27) 
aa " 

This integral is easily calculated since it separates 
into a product of integrals with fixed pairs (a,a'). 
Going back to the discretized form of the r-integral 
and using the expression 

( 8 - i 2 ~  c~ - 2~ sinh2qG 1 
Xa= _ 20 sinh2 (G g+i2ocosh2cG] (4.28) 

which follows from (4.27), (3.10), and (2.31) we find 

[ zlrI [ ( ~ )  mm+l ] 2 I~ (c~ + c~ -1 
a<a"  

~ = ) ( R M E )  

n[t2  o2 
[ r  [ \20] ~,[J '(c~176 

((PIE) (4.29) 

Next we wish to introduce a measure I(V~)@[V~ *z] on 
the saddle point surface which is invariant under psu 
(pso) transformations. This measure can be obtained 
from the mapping 

V~+3V= T[Qs.p.+3Q] T • (4.30) 

with Q~.p. + 6Q (as well as V~ + cSV) on the saddle point 
surface. Since I times the volume spanned by the 
variations bV 12 equals the volume spanned by c3Q I2 

I =  

one obtains ! as the Jacobian 

I -  1 =~V12/c~Q12.  (4.31) 

The unitary transformation U 1 in the representation 
(3.21) of T contributes a factor of 1 to the Jacobian 
and we therefore can restrict T to the set of special 
psu transformations R. Equation (4.30) yields the 
relation 

bVld2 = coshqG - 12 oQa,, coshcp a, 

+ sinh ~ 2 . �9 (pa ( (~Qa ,a )  slnhcp a, (4.32) 

and its complex conjugate. These relations couple the 
(real and complex, respectively) independent differen- 
tials ~ 2 - 12 12 12 g) Vd a, , to a V~,a the differentials The a0~,, 6G,o. 
Jacobians are easily calculated and yield 

m+l 
[ I {  2m-2 I~ (c~176 -1} 
r a~r 

(RME) 

~I { 2m2 1-[ (cosh2q),+cosh2%,) '}. 
i" a, a' 

(PIE) (4.33) 

Up to a constant factor .Y and I coincide. This result 
shows that also in order 1/n the infrared singularities 
of the generalized non-linear a-model and the orig- 
inal matrix model are identical. 

5. Conclusion 

We have established a matrix model of a disordered 
electronic system. In our derivation we have taken 
care that the Gaussian transformations involved are 
not only formally but also analytically correct. As a 
result we find two different models, depending on the 
position of the energies involved. If the energies are 
on the same side of the cut representing the energy 
band a hermitean (real symmetric, resp.) matrix 
model is adequate which has an internal unitary 
(orthogonal) symmetry, and this symmetry is not 
broken spontaneously. However, in the limit of 
vanishing imaginary part of z the Green's functions 
depend crucially on the half plane from which the 
real axis is approached. This can be interpreted as a 
spontaneous breaking of a discrete symmetry. 
On the other hand, if the energies are on different 
sides of the cut, the symmetry becomes of hyperbolic 
type. Spontaneous symmetry breaking occurs and 
forces us to define the model on a more complicated 
set of complex non-hermitean matrices. The fact that 
from this latter model we also can determine the one- 
particle Green's function does not contradict these 
statements: Due to the m = 0  property in a calcu- 
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lation of Gp only subspace p is relevant, and if 
restricted to such a subspace both models become 
identical. Also in this case the discrete symmetry is 
broken. Thus if g+ V is a saddle point matrix con- 
tained in the domain of integration, then g - V  does 
not belong to the matrices admitted for the integra- 
tion even though they have the same eigenvalues. 
The hyperbolic symmetry has quite unusual features. 
It does not correspond to a compact group and 
therefore a symmetry-breaking term in the La- 
grangian is necessary to make the functional integrals 
well defined. We believe that this could be the source 
of the difference between the disordered electron 
problem and the normal second-order phase tran- 
sitions. For normal phase transitions the correlation 
functions are completely regular above T~. For the 
disordered electron problem, however, two-particle 
correlation functions are singular on both sides of the 
transition as co goes to zero. Clearly this could be an 
effect of the infinite volume of the saddle point man- 
ifold. As another important feature we note that 
spontaneous symmetry breaking exists on both sides 
of the transition and vanishes only at the band 
edge. 
Eliminating the longitudinal modes in tree-approxi- 
mation we have derived a generalized non-linear a- 
model which should govern the Goldstone modes of 
the broken continuous symmetry. This model is de- 
fined on the set of all matrices with hermitean con- 
jugate off diagonal blocks and fixed (m = 0)-fold de- 
generate eigenvalues 2 (p). We have also been able to 
prove that the Gaussian fluctuations of the longitu- 
dinal degrees of freedom reproduce the invariant 
measure which is connected with this set of matrices. 
Thus it is suggested that the critical behaviour of the 
original model and of the generalized non-linear a- 
model is identical - a suggestion which is supported 
also by the results of Oppermann and Wegner [2] 
who have shown that in perturbation theory based 
on the Lagrangian (3.39) the terms combine to yield a 
vanishing interaction as the momenta go to zero. 
Non-linear a-models of the type described above (but 
with real eigenvalues and unitary symmetry) recently 
have been discussed in Ref. 12. The results for the 
critical behaviour coincide with the results of [2] to 
the extent calculated. This is not surprising since we 
have shown that in perturbation theory there is no 
difference between the normal unitary symmetry and 
the hyperbolic symmetry discussed here. What is 
more important is that these results are in agreement 
with the scaling laws [16] expected for the disordered 
electron system. This suggests that indeed the expan- 
sion on the generalized non-linear a-model can be 
used in in the region of extended states. For  the 
region of localized states, on the other hand, we do 

not know of any appropriate perturbation method 
and we believe that in this region a proper treatment 
of the hyperbolic symmetry is essential. 

Appendices 

A. Properties of  Pseudounirary Operators 
and Related Problems 

In this appendix we explicitly will consider psu oper- 
ators. The result for pso operators follow from ob- 
vious modifications of the arguments. 
Psu operators as introduced in (2.25) to (2.27) form a 
group with respect to matrix multiplication. The spe- 
cial psu transformations represent a subgroup: 
R(go) R(~0') -=- R((p + (p') 
To derive the representation (2.28) 

T =  U1RU 2 (A.1) 

we decompose T into its four blocks T pp' and we 
introduce unitary operators U/(p) which diagonalize 
TPp 

T pp = U}P)A (p) U (p), p = 1, 2. (A.2) 

We note that such a representation with positive 
diagonal matrix A (p) is possible for any m x m matrix. 
We now argue that due to pseudo-unitary also the 
off-diagonal blocks can be diagonalized by this trans- 
formation: 

r p p ' =  U}P)A pp' U(z p'), p + p' (A.3) 

A~, p'= 5aa' A~ p' (A.4) 

Pseudounitary yields 

+T+PPspTPP4-s+T+PP'sp, TP 'P=I  �9 p'ezp. (A.5) Sp 

Using Eq. (A.2) and the expressions for sp,sp, we find 

(A(P)) 2 - C + 6o = 1 (A.6) 

with 

(9 = U(1 p')+ T p'~ U(P~+a , P' + P' (A.7) 

The same calculation starting from T T  ~ instead of 
T e T yields 

(A(P')) 2 - (9(9 + = 1. (A.8) 

Since (9(9§ and (9 + (9 have the same eigenvalues, the 
diagonal matrix elements of A (1) and A (2) coincide 
(we use that they are positive). Multiplication of the 
U's by appropriate permutation operators (which 
themselves are orthogonal) yields 

A (1) = A (2) = A.  (A.9) 
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Thus (9 and (9 + commute which allows to diagonalize (9 

(9 = BDB + (A.10) 

with unitary B and diagonal D. From this one ob- 
tains 

B + A2B  =DD + + 1. (A.11) 

Since A 2 and B + A 2 B  are both diagonal and have the 
same eigenvalues they are identical apart from per- 
mutations which again can be absorbed into B. Then, 
however, it follows that B + A 2 B = A  2 and since A is 
positive B + A B = A .  Finally choosing U I = U I B ,  U2 
--B-- U 2 we conclude that 

T = U 1 A O  2 

where 

ALp', - ~ ' .  - 6 ~ , A o  

It is easily checked that A~ 

(A.12) 

(A.13) 

is psu by virtue of the 
block structure of ~.  The most general 2 x 2  psu 
matrix with real diagonal elements has the form 

cosh (p~ - i eiX sinhep~ (A.14) 
A~= i e_ ~z~ sinh (p ~ cosh (p~ ]" 

The phase X~ can be absorbed into the unitary trans- 
formations ~. and the form (A.1) with R given by 
(2,30), (2.31) results. 
We next prove that any matrix V of the form (3.22) 
can be diagonalized by a psu transformation. We first 
note that the diagonal blocks are antihermitean and 
can therefore be diagonalized by a unitary block 
matrix 

U (p~ V pp U (p)+ = i B (p) (A. 15) 

where B (~) is real diagonal. From the equation 

(V-,)~(1))(V- }~(2))=O (A.16) 

which expresses the fact that V has only two different 
eigenvalues 2 Cp) it follows that U diagonalizes also the 
off-diagonal blocks V pv', in complete analogy to the 
argument given above. We thus find 

V= U + B U  (A.17) 

where 

B~P, ' -  PP' (A.18) - ~ , B a  

The matrix B. is of the structure given by (3.22): 

BJ2, i(22 + iBJ212) �89 . (A.19) 

It is easily checked that this matrix is diagonalized by 
a transformation of the form (A.14) with 

sinh 2 (p~ = IB~ 21/20, e zz~ = B 12/]B~ 2 I. 

B. Generalized a-Model  for  Arbitrary Interaction 

Let Q = Q(r) be a hermitean matrix field. We consider 
a Lagrangian of the type 

L = K ~ ddr Tr(VQ (0) 2 + L i [(2] (B.1) 

where L i is local and is invariant under arbitrary 
non-singular transformations. We eliminate a subset 
of the matrix elements of Q in tree approximation. 
We want to show that as a result we find a La- 
grangian 

~ o  = K ~ ddr Tr(VV(r))  2 + O(U) (B.2) 

provided the set of longitudinal elements was chosen 
correctly. We first note that for any choice of longitu- 
dinal elements we can go through the steps given in 
equations (4.15) to (4.19). As a result we only have to 
prove 

L i [V] = const (B.3) 

where the longitudinal elements Vt(r) of V are defined 
as function of the transverse elements Vt(r)-= Q~(r) by 
the saddle point condition 

c~L~ 
3Vt(r) = 0. (B.4) 

By virtue of the symmetry L~[Q,] depends only on the 
eigenvalues of the N x N matrix Q and thus equation 
(B.4) can be written as 

N 6)% O L i 
0 = _ ~  gU(r )  o2~lz~=a~tv j" 

~B ~ 5~ 

We want to prove 

0_0L~ 
- a2,.lz~=~v I (B.6) 

for all v and all V=V[Vt].  It will be sufficient to 
prove this relation for a neighbourhood of the mean 
field solution 

V~.p .... ' = bcc'Mc (B.7) 

since then it follows for all V by analytic conti- 
nuation. Our proof consists in showing that with the 
proper choice of V I (B.5) yields a set of N homo- 
geneous equations for the N derivatives 3 L j 3 2 , ,  and 
the determinant Det(c~2v/cSV ~) of this set is different 
from zero in a neighbourhood of V~.p.. To calculate 
)~v we use the exact reformulation of the eigenvalue 
problem 

P~[Q-Rv-QP~[P~Q P,,-)~,.] *P,Q]P,,lx~}=0 (B.8) 
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where Ixv> is the eigenvector with eigenvalue 2 v and 
P~ is the orthogonal projection on the subspace of 
components c with Mc=M~=2~[V(Vt=O)]. P~ de- 
notes the orthogonal complement to P~:/~ + P~ = 1. 
Let us first assume that the symmetry is completely 
broken, i.e. Me, # M c if c # c'. Then we identify the set 
of longitudinal components with the set of all diag- 
onal elements of Q. Differentiating (B.8) with respect 
to Q~ we find 

02~ 0 ~ 2 -5c~ + (Q) (B.9) 
#Q~c 

and therefore 

02~ 
Det ~ = 1 + O(Qt) 2. (B.10) 

Equation (B.6) follows. If the eigenvalue 2v is de- 
generate on the mean field level, i.e. Mc=M ~ for c 
=Cl, ...,ck; c : - v ,  then we first diagonalize Q in the 
k-dimensional subspace P, Ix> = Ix) 

k 
0~,~j=6~i ~ U, zQc,~.,(U+)mj. (B.11) 

l,m-- l 

Equation (B.9) then holds for the derivative ~ /0Q~ ,  
and since this derivative is a linear combination of 
the derivatives O/OQ~j Eq. (B.6) holds, provided we 
include in the set of longitudinal components all Qc~, 
with M~=Mc,. In this way the block structure em- 
erges. 
In general any solution ()Ol . . . .  ,2N) of (B.6) represents 
a point in eigenvalue space well separated from the 
other solutions and therefore the elimination of the 
longitudinal components leads to a model with fixed 
eigenvalues ()o:,...,2N), and L~[V] is constant. There 
may be exceptional cases in which the solutions of 

Eq. (B.6) form a continuous set and then the eigen- 
values of V can vary over this set. However, L~[V] 
has still to be constant, and in this exceptional case 
L~ essentially possesses another symmetry not con- 
nected to the transformation T, which should be 
properly taken into account. We also note that the 
choice of a hermitean matrix model is not essential. 
The same arguments apply e.g. to the set defined in 
(3.19). 
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Note Added in Proof 

The non-compactness of the symmetry group has also been ob- 
served by G. Parisi (preprint obtained after submission of the 
present paper). 


