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Abs t r ac t .  Let M = G/F be a compact nilmanifold endowed with an invariant complex 
structure. We prove that on an open set of any connected component of the moduli space 
C(g) of invariant complex structures on M, the Dolbeault cohomology of M is isomorphic 
to the cohomology of the differential bigraded algebra associated to the complexification gC 
of the Lie algebra of G. To obtain this result, we first prove the above isomorphism for 
compact nilmanifolds endowed with a rational invariant complex structure. This is done using 
a descending series associated to the complex structure and the Borel spectral sequences for 
the corresponding set of holomorphic fibrations. Then we apply the theory of Kodair~Spencer 
for deformations of complex structures. 

I n t r o d u c t i o n  

Let M be a compact  nilmanifold of real dimension 2n, i.e., the quotient of a connected 
simply connected (s + 1)-step nilpotent real Lie group G by a uniform discrete subgroup 
F. It  follows from a result of Mal'~ev [Ma] that ,  for any simply connected real nilpotent 
Lie group G, for which the coefficients in the structure equations are rational numbers, 
there is a lattice F in G of maximal  rank (i.e., a discrete uniform subgroup, ef. [Ra]). 
We will let F act on G on the left. It  is well known tha t  such a lattice F exists in G if 
and only if the Lie algebra 9 of G has a rational structure, i.e., if there exists a rational 
Lie subalgebra g• such that  g ~ 9Q | R. 

The de Rham cohomology of a compact  nilmanifold can be computed by means of 
the eohomology of the Lie algebra of the corresponding nilpotent Lie group (Nomizu's 
Theorem [No]). 

We assume tha t  M has an invariant complex structure J ,  that  is that  J comes from a 
(left invariant) complex structure J on 9. Our aim is to relate the Dolbeault cohomology 
of M with the cohomology ring H~'* (g c) of the differential bigraded algebra A*,* (9c) * , 

associated to g c with respect to the operator  0 in the canonical decomposition d = c9+0 
on A*'* (Sc) *. 

The study of the Dolbeault  cohomology of nilmanifolds with an invariant complex 
structure is motivated by the fact tha t  the latter provided the first known examples of 
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compact symplectic manifolds which do not admit any Ks structure [Ab, CFG, Th]. 
Since there exists a natural map i :  H~-'* (go) _+ H~'* (M) that  is always injective (cf. 

Lemma 9), the problem we will study is to see for which complex structure J on M the 
above map gives an isomorphism 

HP'q(M) -~ H~'q(gc). (1) 

Note that  H~-'* (~c) can be identified with the cohomology of the Dolbeault complex of 
the forms on G that  are invariant by the left action of G (we shall call them briefly 
G-invariant forms) and H~'*(M) with the cohomology of the Dolbeault complex of 
F-invariant forms on G. We shall use these identifications throughout. 

Our main result is the following theorem. 

T h e o r e m  1. The isomorphism (1) holds on an open set of any connected component 
of the moduli space C(g) of invariant complex structures on M. 

To obtain Theorem 1 we first consider the case of complex structures J that  are 
rational, i.e., they are compatible with the rational structure of G (J(gQ) C 9Q). 

T h e o r e m  2. For any rational complex structure J, the isomorphism (1) holds. 

It is an open problem as to whether the isomorphism (1) holds for any compact 
nilmanifold endowed with an arbitrary invariant complex structure. We do not know 
examples for which (1) does not hold. 

Theorem 1 will follow from Theorem 2 using the f~heory of deformations of complex 
structures [KS, Su]. Indeed by [So] the set C(~) of complex structures on g is at least in- 
finitesimally a complex variety. Using the theory of deformations of complex structures, 
we are able to prove that  for any small deformation of a rational complex structure J, 
the isomorphism (1) holds (Lemma 10). 

If M is a compact complex parallelizable nilmanifold, i.e., G is a nilpotent complex 
Lie group and J is also right invariant, we have that  g5 = ~i and Theorem 2 follows 
from [Sak, Theorem 1]. 

An important class of complex structures is given by the abelian ones (i.e., those sat- 
isfying the condition [JX, orY] = [X, Y], for any X, Y C g [BD, DF]). The nilmanifolds 
with an abelian complex structure are to some extent dual to complex parallelizable 
nilmanifolds: indeed, in the complex parallelizable case dA 1'~ c A 2'0, and in the abelian 
case d)~ ~,~ C ~,,1, where ~P,q denotes the space of (p, q)-forms on g. In this last case 
we will compute the minimal model of the Dolbeault cohomology of M and prove that  
the isomorphism (1) holds for any abelian complex structure. In [CFGU] a similar re- 
sult was proved for the Dolbeault cohomology of M endowed with a nilpotent complex 
structure; this is a slight generalization of the abelian one. 

Note that,  if M is a complex solvmanifold G/F (with G a solvable not nilpotent Lie 
group), the isomorphism (1) does not hold in general, as shown in [Le]; a discussion 
of the behavior of the Dolbeault cohomology of homogeneous manifolds under group 
actions can be found in [Ak]. If G is a compact even dimensional (semisimple) Lie group 
endowed with a left invariant complex structure, the Dolbeault cohomology of G does 
not arise from just invariant classes, as the example in [Pi] shows. 

This paper is organized as follows: In Section 1, following [Sa], we define a descending 
_s4-1 series of subalgebras {gS} (with g} = 9 and uj  = {0}) for the Lie algebra g associated 
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to the complex structure J. In general, the subalgebra D~ is not a rational subalgebra 
i--1 of Dj . If J is rational, any D~ is rational in i-1 g j  . 

The importance of this series is twofold. First (Section 2), in case the subalgebra g~ is 
rational " i-1 m D j  (in particular if J is rational), it allows us to define a set of holomorphic 
fibrations of nilmanifolds: 

/50: M = G/F --+ G~ with standard fibre G 1 /F  1 
J /  , 

Ps-l : G~-I /F s-1 ~ Gsj-I'S/P~-~(F ~-1) with standard fibre G~j/F ~. 

For the above fibrations we will consider the associated Borel spectral sequence 
(Er, dr) ([Hi, Appendix II by A. Borel, Theorem 2.1], [FW, LeP]), which relates the 
Dolbeault cohomology of each total space with the Dolbeault cohomology of each base 
and fibre�9 

Second (Section 3), following [Sa], we will prove that  one can choose a basis of 
(1, 0)-forms (and also (0, 1)-forms) on g which is compatible with the above descend- 
ing series�9 This basis will give a basis of Gj-l ' i-invariant (1, 0)-forms on the nilman- 

Gi- t  i ,  ifolds j ' /p i_l(F i-1) and of G~-invariant (],0)-forms on the nilmanifolds G i / F i  J !  , 

i = O, ..., s. 
i - - 1  Next~ in Section 4, we consider a spectral sequence (Er, dr) concerning the G j  - 

invariant Dolbeault cohomology of each total space G { f l / F  i-1, the G~-l#-invariant 
Dolbeault cohomology of each base Gj-l ' i /pi_l(F{-1) and the G~-invariant Dolbeault 
cohomology of each fibre Gj/Fi i. In this way (Er,dr) is relative to the Dolbeault co- 
homologies of the Lie algebras ~ ,  g~-i and ~{j 1/_i/~g. Note that  the latter are the 
underlying Lie algebras of the fibr% the total space and the base, respectively, of the 
above holomorphic fibrations. 

In Section 5 we compare the spectral sequence (Er, dr) with the Borel spectral se- 
quence (E~, dr). Inductively (starting with i = s) these two spectral sequences allow us 
to give isomorphisms between the Dolbeault cohomologies of the total spaces and the 
cohomology of the corresponding Lie algebras. The last step gives Theorem 2. 

Note that  our construction of this set of holomorphic fibrations is in the same vein as 
principal holomorphic torus towers, introduced by Barth and Otte [BO]. In some cases, 
like the case of abelian complex structures, G/F is really a principal holomorphic torus 
tower. 

In Section 6 we will give a proof of Theorem 1. In Section 7 we give examples of 
compact nilmanifolds with non-rational complex structures. 

We wish to thank Simon Salamon for the many suggestions he gave us and his 
constant encouragement. We are also grateful to Isabel Dotti for useful conversations 
and the hospitality at the FaMAF of Chrdoba (Argentina) and to the referee for useful 
comments. 

1. A d e s c e n d i n g  series a s soc i a t ed  t o  t h e  c o m p l e x  s t r u c t u r e  

We recall that,  since G is (s + 1)-step nilpotent, one has the descending central series 
{~i}i_>0, where 
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We define the following subspaces of O 

9~ : = 9  i q- JO i" 

Note that  O~ is J -invariant. 

L e m m a  3. (1) O~ is an ideal of gij--1. 
(2) OJ /OJ i8 an abelian algebra. 
(3) 0} is an abelian ideal of g}-l .  

Proof. (1) For any X = X1 + JX~ E g~ 1 and Y = Y1 + JY2 E g~ (with Xl E O i-1 
and Yk r Oi), we have that  [X, Y] = [XI, I/1] + [Xz, JY2] + [JX2,Y~] + [JX2, JY2]. 
We can easily see that  [X1,Y1], IX1, JY2] and [JX2, Y~] belong to 9i by definition of 
the descending central series. Moreover [JX2, JY2] belongs to g~ because J satisfies 
an integrability condition, namely, the Nijenhuis tensor N of J,  given by N(Z,  W) = 
[Z, W] + J[JZ, W] + J[Z, JW] - [JZ, JW], Z, W e O, must be zero INN]. 

(2) For any X =XI+JX2,  Y = Yz+JY2 elements of 0~-1, we have that  [X+o~, Y+9~] = 
[X1, Y1] + [X1, JY2] + [JX2, Y1] + [JX2, JY2] + O~- Then using the same argument as in 
(1) it follows that  [X + 0~, Y + 0~r] = O~r. 

(3) Using the fact that  9 ~ is central (i.e., I0 ~, 9] = 0) and that  N = 0 it is possible to 
prove that  IX, Y] vanishes for any X, Y E 9~g. [] 

Observe moreover that  any O/j is nilpotent. Hence we have the descending series 

_ s + l  ={o}. (D J) 

Remark 1. The first inclusion 01 C 0 is always strict [Sa, Corollary 1.4]. 

Observe that  in case of complex parallelizable nilmanifolds [Sak], the filtration {9}} 
coincides with the descending central series {gi} and then the {9~} are rational. In 
general, given a rational structure 9Q for 0, we say that  a N-subspace ~ of 9 is rational 
if ~ is the N-span of bQ = b N 0Q- In general 01 is not a rational subalgebra of g. When 
J is rational, it is possible to prove that  9~ is rational in i-z 0 j  �9 Indeed, we have that  0 i 
is rational in 0 i-1. Then 9 i = IR-span{0 i A 90-1}. Since Jo~ - i  C_ 0Qi-1, it follows that  

g} = ]R-span{o} NO~-I}. Moreover when d is abelian, g} is an ideal of O, for any i and 
the center 

m = { X ~ o l [  X ,9 ] = O}  

is a rational J-invariant ideal of g. 

2. Holomorphic  fibrations and Borel  spectral  sequences 

In this section we assume that  the complex structure J is rational and we associate 
a set of holomorphic fibrations to the above descending series. We recall that  a holo- 
morphic fibre bundle 7c : T --+ B is a a holomorphic map between the complex manifolds 
T and B, which is locally trivial, and whose typical fibre F is a complex manifold such 
that  the transition functions are holomorphic. By definition the structure group (i.e., 
the group of holomorphic automorphisms of the typical fibre) is a complex Lie group. 
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To define the above fibrations, we first consider the surjective homomorphism 

i - - l~ i 
P i - 1  : 11ij--1 __+ 11j  /11j, 

for each i = 1 , . . . ,  s. If G~ -1 and G j  -1'i denote the simply connected nilpotent Lie group 
corresponding to 11~-t a n d  1111-1/115 respectively, we have the surjective homomorphism 

( 2 i - -  l , i  P i - - 1  : Gij -1  --+ ~ j  �9 

We define inductively G} to be the fibre of p i - l  Remark that  the Lie algebra of G~ 
is tlh- 

Given the uniform discrete subgroup F of G = G ~ we consider the continuous sur- 
jective map 

250: a / r  -+ @l/p0(r).  

Since J is rational, 11~ is a rational subalgebra of 11, and then F 1 := F n G~ is a 
uniform discrete subgroup of G~ [CG, Theorem 5.1.11]. Then, by [CG, Lemma 5.1.4 
(a)], p0(F) is a a uniform discrete subgroup of G~ '1 (i.e., 0,1 G j  /p0(F) is compact, cf. 
[Ra]). Note moreover that  G} is simply connected. This follows from the homotopy 
exact sequence of the fibering P0- Indeed we have . . .  -+ 7r2(G ~ = (e) --+ Irl(G~) --+ 
7rl (G) = (e) --+ . . . .  Finally it is not difficult to see that  G} is connected. Indeed, if 
C is the connected component of the identity in G~, id: G --+ G induces a covering 
homomorphism G / C  -+ G/G~ "~ G~ '1 which must be the identity, since G ~ ~ R N~ . 
Thus C = G}. 

Now one can repeat the same construction for any i, since 115 is a rational ideal of 
i--1 11j . So, for any i = 1 , . . . , s  we have a map 

i - -1  i - -1  G i j - l , i / p i _ l ( r i - 1 ) .  25i_1 : G j /F  --+ 

i - -1  i - -1  L e m m a  4. 25/-1 : G j  /F  --+ G~-I'i/pi_I(Fi-1) is a holomorphic fibre bundle. 

Proof. Observe first that  25i-1 is the induced map of Pi-1 taking quotients of discrete 
subgroups. The tangent map of 25i-1 

1171 _+ 111-1/115 

is J-invariant. Thus 25i--1 is a holomorphic submersion. In particular, it is a holomorphic 
family of compact complex manifolds in the terminology of [KS] (see also [Sun]). The 
fibres of 25i-1 are all holomorphically equivalent to Gij/F / (the typical fibre). Thus a 
theorem of Grauert  and Fisher [FG] applies, implying that  25/-i is a holomorphic fibre 
bundle. [] 

Note that  aji-1/Fi-1 , GijI/Fi, Gij-l ' i /pi_l (F/-1) are compact connected nilmanifolds. 
Given a holomorphic fibre bundle it is possible to construct the associated Borel 

spectral sequence that  relates the Dolbeault cohomology of the total space T with that  
of the basis B and the fibre F.  We will need the following Theorem (which follows from 
[Hi, Appendix II by A. Borel, Theorem 2.1] and [FW]). 
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T h e o r e m  5. Let p : T --+ B be a holomorphic fibre bundle with compact connected 
fibre F and T and B connected. Assume that either (I) F is Kiihler or (I') the scalar 
cohomology bundle H~'~(F)  = [-Jbem H o'~ (P- l (b ) ) is trivial. 

Then there exists a spectral sequence (E~, dr) (r _> 0) with the following properties: 
(i) E~ is 4-graded by the fibre degree, the base degree~ and the type. Let ~'qE~ '~ be 

the subspace of elements of Er of type (p, q), fibre degree u, and base degree v. We have 
P'~E~ '~ = 0 if p + q 7s u + v or if any p, q, u, v is negative. The differential dr maps 
~'~E~ '~ into ~'q+lE~+r '~-~+l.  

(ii) If p + q = u + v, then P'qE~ '~ ~- E k  H~'~-k(B) | H~ -k'q ~+~(F). 

(iii) The spectral sequence converges to Hg(T).  

3. A n  a d a p t e d  bas i s  o f  (1, 0 ) - f o r m s  

In this section we prove tha t  one can choose a basis of (1,0)-forms on g tha t  is 
compatible  with the descending series (DJ ) .  We consider, as in [Sa], some subspaces V~ 
(i = 0 , . . . ,  s + 1) of V := (T~G)* ~ g*, tha t  de termine a series, which is related to the 
descending central  series (D). 

Indeed, we define 

Vo = {0},V1 = {~ �9 V ] d ~  = 0} , . . . ,V~ = {~ �9 V Id~ �9 Azv~_x}, . . . ,Vs+a = V. 

Note tha t  V/is  the annihi lator  (gi)o of the subspace ~i and tha t  {0} = Vo C_ V1 C_ . . .  C_ 
V8+1 = V [Sa, Lemma 1.1]. 

V1,  0 If we now let (95) ~ N A 1,~ =: i , by [Sa, Lemma  1.2], we have tha t  there  exists a 
�9 ~i,0 basis of (1,0)-forms {CZz,. wn} such tha t  if c~ �9 ~ , then  dwl belongs to the ideal (in 

(9c) *) genera ted  by v/l_ '~ [Sa, Theorem 1.3]. In part icular ,  there  exists at least a closed 
(1, 0)-form (this implies Remark  1). 

1 0 1 0 i / -O , l / i /O , l  Moreover we have the following isomorphisms: (9~- i /95)  C --- V i ' / V ( '  1 �9 ~ / ~ i - i ,  

i -- 1 , . . . ,  s, where Vi ~ is the conjugate of ViI'~ Wi th  respect  to the subspaces V~ I'~ 
the above basis can be ordered as follows (we let ni := d imc95) :  Wl , . - - ,Wn-n l  are 
elements of V/ '~  (such tha t  dwl -- O) or 9 /95 is the real vector  space underlying v l ' ~  

1 2 Wn_nl+l, . . . ,~n_n2 are elements of V~'~ '~ or 9 j / g j  is the real vector  space un- 
V , I , ~  0 derlying the quotient  2 / 1 ; ." 02n_n~_~_]_l,.., Cdn_n~ are elements of V 1 ~ 

�9 " , " 8 ' \ 8 - - 1 ,  

1,0 i:0 c J ~ - ~ + l , . . . , c ~  are elements of Al ,~176  Here V/ \V/_ 1 denotes a complement  of 

v/l_ '~ in V/1'~ (which corresponds to the choice of a complement  of t~5 in /-1 go" )- Hence, by 
definition, the 1 o 1 o elements of V/ '  \V/E1 and, by identification, the elements of the quot ient  

Vi 1'~176 (1,0)-forms on g which vanish on ~t~- So they  may be identified with l~i--l' are 
forms on the quotient 9i-1/~ J / ~ J "  

In this way we can consider: 
- -  the elements of ~,l,~176176176176176 1,~ as (1, 0)-forms on ~5, 

the elements of Al,o/V~,O = vi,- 1 o,~/v~1,ol | AI'~ '~ as (1, 0)-forms on ~j8-1 and 
- -  the  elements of AI'~ '~ as (1,0)-forms on g~. 
Thus  we can prove a lemma on the existence of a basis of (1, 0) forms on g related 

to the series (D J). 
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L e m m a  6. It is possible to choose a basis of (1, O)-forms on 9 such that (with respect 
i - 1  to the previous order) {Wn-n~_l+l, . . . ,  w ~ _ ~ , . . . ,  w~} is a basis of (1, O)-forms on 9j  . 

Moreover we can consider (up to identifications) {Wn-n~+l,. . . ,  Wn} as forms on 9ij and 
i - -1~  i {C~n--,~_~+t,...,a~n-n~} as forms on gg Ig j .  

Pro@ By the above arguments, for any i = 1 , . . . ,  s + 1, it is possible to choose a basis 
of (1,0)-forms on 9~-~ as elements of ~1'~176 )O,o/vi~,o ~ .~1,o,,~1,o = ~o vi /v~_~. With respect 
to the above decomposition the forms on ~1,~176 can be identified with forms on 9~ 

1,0 1,0 i - - l ~  i extended by zero on 9~ -1 and the forms on V/ /1//_ 1 with forms on t~j /tlz, because 
these forms vanish on 95. [] 

Remark 2. dc~i, i = n - hi_ 1 + 1 , . . .  , n  - -  ni belongs to the ideal generated by {c~l, 1 = 
1 , . . . , n  - h i - l} .  

Remark 3. If J is abelian, it is possible to choose a basis of (1, 0)-forms { w l , . . . ,  w~} on 
g such that dcoi ~ A s (czl, . . .  , c ~ i - l , ~ , . . .  ,~i-1)  ~ ~1,1. 

4. A s p e c t r a l  s e q u e n c e  for  t h e  c o m p l e x  of  invar ian t  f o rms  

We construct a spectral sequence p,q/)~,v for the complexes of G~r-Linvariant forms 
on G~-l/r  s-1 whose Dolbeault cohomology identifies with Hy((9~-l)c) .  To do this, 
we give a filtration of the complex At = | p'q of differential forms of type (p, q) on 

i - -1  
t : g j  . 

We know from Lemma 6 that there exists a basis of (1, O)-forms ~ on t (and of 
b i - - l /  / (0, 1)-forms ~ )  such that part of them are (1, 0)-forms cJj on b = 9j  / g j  and part are 

forms w~ on ~ = g). We define 

Lk := {~t e A~ I~  t is a sum of monomials co/b A ~  Aw/~, A~j ,  in which III + IJI _> k}, 

where IAI denotes the number of elements of the finite set A. Note that L0 = At and 
that Lk = 0 for k > dimR b, /~k D /~k+l, O/~k C_ L~, k > 0. The above shows that {Lk} 
defines a bounded decreasing filtration of the differential module (At,O). Of course 
Lk = ~p,q P'qLk, P'qLk = Lk N APt 'q and the filtration is compatible with the bigrading 
provided by the type (and also with the total degree). 

Recall that,  by definition (see e.g., [GH]) P'q/)~'v --;'q ~,-~'~/rP'q~+l'~-11~ ~ - 1  + P'qn~'~-lJ, 
where 

P'qz~ 'v = P'qL~(A~ +~) N kerO(P'q+lL~+~(A~+~+l)), 
P'qUUr 'v = P'q/~(A~ +~) N 0(P'q-IL~+~(A~+V-1)). 

Moreover (cf. [GH]), P,qE~ =P,q L~/P'qL~+I, where we denote by P'qE,~'~ and P'qE~ the 
spaces of dements  of type (p, q) and total degree u + v and degree u, respectively, in 
the grading defined by the filtration. 

Note also that  an element of ~k is identified with an element of ~o+d>_k A~ 'b | A~ 'd- 

i e m m a  7. Given the holomorphic fibration (with standard fibre Gb/F i) Gb-1/F i-1 --+ 
G i  1 , i .  j / p i_ l ( r i -1 ) ,  the spectral sequence (E,~,&) (r > O) converges to Hs((tt~-1) c) and 

- k , u - - k  i--1 i C r_rp- -k ,q- -u- t -k[ f~ i  ~C'~ P'qE2'~ ~- E HO ((gd /ttd) ) | , , g  ~ , . j ,  ,. (/=i) 
k 
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Proof. The fact that  (E~, dT) converges to H~((~15-1) c) is a general property of spectral 
sequences associated to filtered complexes (cf. [GH]). 

Let [w] e P'q/~ = ~,~L~ -~ - ~,~s We compute the differential d0 : P'qEo "+ P'q+lEo defined 

by do [w] = JOwl. We can write (up to the above identifications) w = ~ w ~ / ~  Aw~, A~, 
where [I[ + ]J] = u (because we operate rood Lu+l), and II'1 + ]J'[ = p + q - u, since 
]I' I + [ J ' ] + ] I [ + ] J [  = p + q .  Moreover, using the fact that  0 sends forms in b on 
forms that  either are in b or vanish on b (cf. Remark 2) and that  b is abelian, we get 

Of(w~, A ~ j , )mod  Lu+~, where O~ and Of denote the differential on the complexes A~ 
and Af, respectively. Thus do [w] = [Ofw], which implies 

k 

Performing the same proof as in [Hi, Appendix II by Borel, Section 6] and using the 
fact that  b is abelian, it is possible to prove that  a~l identifies with 0 via the above 
isomorphism and that  we have 

= E Hb' ( b )  | HP-k'q-u+k(IC)( TM E A~ 'u-k | H~ -k'q-~+k(fc))" [] (k2) 
k k 

5. P r o o f  of  T h e o r e m  2 

First we note that Theorem 2 is trivially true if the nilmanifold comes from an abelian 
group, i.e., it is a complex torus. Namely, if A/F is a complex torus, we have 

H E ( A / r )  ~ Hs(,:, c) (a) 

We consider the holomorphic fibrations G*a/F ~ , . " ~ s - l t r ~ s - 1  ~ s - l , s .  ~ u j  /1 ~c~ j  /p~ l ( r~ -x ) , . . .  
G 1 /F  1 G/F --+ o,1 . . . ,  j /  ~ Gj  /p0(F). The aim is to obtain information about the Dol- 

beault cohomology of G/F inductively through the Dolbeault cohomologies of Gij/F ~ 
(the nilmanifolds Gij/F ~ play alternately the roles of fibres and total spaces of the above 
fibre bundles). Note that  since the bases are complex tori, Hg(G~i-1/pi_l(Fi-1)) ~- 

To this end we will associate to these fibrations two spectral sequences. The first 
is a version of the Borel spectral sequence (considered in Section 2) which relates the 
Dolbeault cohomologies of the total spaces with those of fibres and bases. The second 
is the spectral sequence (ET,d~) (constructed in the previous section) relative to the 
Dolbeault cohomologies of the Lie algebras g i  g i - 1  gi-1/gi. 

We will proceed inductively on the index i in the descending series (D J),  starting 
from i = s. 

s--1 s--1 First inductive step. Let us use the holomorphic fibre bundle fis-1 : G j  /F  -'+ 
a s - i  s t  d ' /ps_l(F ~-~) with typical fibre G~j/F 8. Recall (cf. Lemma 3) that  G~j/F s and 
G*a-l'~/ps_x(F ~-x) are complex tori. Thus by (a) 
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s - - l , s  s - -1  ~ s - - 1  s C Hs(Gj / p ~ - l ( r  )) = H~((~ z /~g) ). (s,~-]) 

Applying Theorem 5 (since the fibre G~j/F ~ is Kghler) and using (s) and (s, s - 1), we 
get 

E H ~  ~ k s - - 1  s C ~ ,  L l - p - k , q - u + k [ ( ~ s ~ C ,  P'qE~ '~-~ ' ( b j  /~J) ) ~ " - 5  ~ j j  j. ([s) 
k 

Next we use the spectral sequence (/)~,cl~). Note that  the inclusion between the 
s - - 1  s - - 1  Dolbeault complex of G}-l-invariant forms on Gj /F  and the forms on GjS-i/F~-] 

induces an inclusion of each term in the spectral sequences ; 'q/~ '~ C_P,q E~ ,~ (which is 
actually a morphism of spectral sequences). 

By Lemma 7, for i = s, we have that  (E~, d~) converges to HS((g~j-1) c) and 

k u - k  s - 1  s C "~/);~'~ ~ Z Ho' ( (~  /g~) ) o H~-~'~-~+~((~)~). 
k 

(is) 

Comparing (Is) with (/~s), we get that  E~ = t)2, hence the spectral sequences (E~, dr) 
and (E,., d~) converge to the same cohomologies. Thus 

Ha(G71/F ~-1) ~ H~((~71) c) (s - i) 

i - 1  i - 1  General inductive step. We use the holomorphie fibre bundle :Si-i : Gj / r  --+ 
G~-l,i/Pi-i (F i-1) with the typical fibre Gij/F i. We assume inductively that  

H~(Gb /P)  ~ g~((~5) c) (i) 

L e m m a  8. The scalar cohomology bundle 

H "'~ (a~ / r  i) = U H~ 'v (~-11 (b)) 

is trivial. 

Proof. By [KS, Section 5, Formula 5.3] there exists a locally finite covering {Uz} of 
Gb-l'i/p~_l(F i-1) such that  the action of the structure group of the holomorphic fiber 
bundle on U~ n (G~/F i) is the differential of the change of complex coordinates on the 
fibre, so one can restrict oneself to considering the left translation by elements of G5 -1 as 
change of coordinates. Then the scalar cohomology bundle H ~'v (Gb/F i) is trivial since 
any of its fibres is canonically isomorphic to H~((~5)c). More explicitly, a global frame 

u , v  ~--1 for HU'V(G~/Fi) is given as follows: for any cohomology class a G H o (pi_x(1)) = 
�9 " ~ i - - l , i l  Ho'V(G~j/F* ) ~- Ho'V((9!r)r (1: identity element of t~j /pi_l(Fi)) one can take the 

u , v  i C corresponding cohomology class a; E H i ( ( 9 j ) )  and regard it as a G}-l-invariant 
i - -1  i - - 1  differential form on G a /F  . Thus b ~-+ w[~221(b) gives a global holomorphic section 

of n~,v(Ob/P ). Taking a basis of H8((~5) c) one gets a global holomorphie frame of 
n~,~(Gb/r~ ). [] 
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Thus the assumption (I') in Theorem 5 is fulfilled. Observe moreover that,  since 
Gij-~'i/pi_~(P-1) is a complex torus, by (a), 

H z . ~ i - l , i t  i - t  i c ~uj /p~-i (F i-~)) = HS((~j ~go') ). (i, i - 1) 

Hence, by Theorem 5, we have 

p , q ~ ; , v  e..., ~ ~ k  u--k,'; i--1 ~lP--k,q--u+k({~i ~C~ 
= 2__, n~'  ~ j  / ~ , ) c )  |  ~ .J~  J. 

k 

(I0 

Then we proceed exactly as in the first inductive step. Namely, we consider the spec- 
~ i - 1  i - 1  tral sequence P'qEp ~ for the complexes of G~-l-invariant forms on G j  /F  whose 

Dolbeault cohomology identifies with Hs((g~-l)c).  By Lemma 7 we have that  (t)~, cl~) 
converges to Hg((g~-1) c) and 

k 

Using (Ii) and proceeding as in the first inductive step, we get the proof of Theorem 2. 

Remark 4. (On abelian complex structures) If the invariant structure J is abelian, the 
centre gl is a rational J-invariant ideal of ~t (of. Remark 1 in Section 1). 

We give an alternative (and simpler) proof of that  given in [CFGU] in the abelian 
case. In the same vein of [No] we consider the principal holomorphic fibre bundle 
a/r -~ G/(FG1), with typical fibre G1/(F n ax) ~ ral/a~ (where G1 is the simply 
connected Lie group corresponding to gl). 

First we can consider the Borel spectral sequence (E~,dr) associated to the Dol- 
beautt complex A*,*(G/F) (cf. Theorem 5) and a spectral sequence (/)~,Clr) associated 
to A*,* (~)c and constructed as in Section 4. As to the latter spectral sequence (E~, d~), 
observe that  it is possible to prove that  there exists a basis {wl, �9 �9 wn} of (1, 0)-forms on 

such that  {c~1,... ,Wn-k} is a basis on ~t/gl (with dimgl  = 2k) and {w,~-k+l,.. .  ,w~} 
is a basis on gl. So one can perform the same construction as in Section 4 (with 
t = ~, b = ~/~1 and [ = 1~1), using the fact that  f is abelian. Thus one gets p,qp, pv 
Ek  Ho 'U- -k ( (~ / t~ l )C)  @ H-~-k'q-u+k((t~l) C) and (t)~, d~) converges to H~((9)c). More- 

over, since G1/F n G1 a n d  G / ( F G 1 )  a r e  complex tori, H~(G1/F N G1) ~- Hs((gl)  c) and 

Hs(G/(FG1) ~- H8((~/9t)c),  by Theorem 5 we have ;,qEp ~ ~- Ek  Ho'~-k(G/(FG1)) | 
HP-k'q-~+k((91)c ). This implies that  Theorem 2 holds also for complex abelian struc- 
tures. 

Next we construct a minimal model for the Dolbeault cohomology of a nilmanifold 
endowed with an abelian complex structure. 

Recall that  a model for the Dolbeault cohomology of M is a differential bigraded 
algebra (3d*'*,0) for which there exists a homomorphism p : 34*'* --+ A*'*(M) of 
differential bigraded algebras inducing an isomorphism p* on the respective Dolbeault 
cohomologies [NT]. 

Suppose 34 is free on a vector space V. Then 0 is called decomposable if there is an 
ordered basis of V such that  the differential 0 of any generator v of V can be expressed 
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in terms of the elements of the basis preceding v. A model is called minimal if M is 
free and 0 is decomposable [Su]. 

By [Sa], in the abelian case, there exists a basis {wl , . . . ,  wn} of (1, 0)-forms on 9 such 
that  

dwi = E Aijk ~dj A'~k, i = 1 , . . . , n .  (m) 
j < k < i  

Thus, by Theorem 2 and (m), (A*'*(gc), ~) is a minimal model for the Dolbeault coho- 
mology of G/F. 

6. P r o o f  o f  T h e o r e m  1 

Let C(9) = {J  E End(9) I j2 = - id , [JX ,  JY] = [X,Y] + J[JX, Y] + J[X, JY]} 
denote the set of complex structures on 9. We will use the same notation as in [Sa]. If 
M = G/F is a nilmanifold associated to 9, then 

0 --+ Hom(A 1'~ ~0,1) ~ Hom(Al,O, A0,2) ~ . . .  ~ Hom(Al,O, A0,n) __+ 0 

is a subcomplex of the Dolbeault complex of M tensored with the holomorphic tangent 
bundle Tl '~  The kernel K of 0 acting on Hom(A 1'~ A 1'~ can be identified with 
the subspace of invariant classes in the sheaf cohomology space Hi(M,  O(T)). By [Sa, 
Proposition 4.1] if J is a smooth point of C(9), then the tangent space TjC(9) to C(9) 
is contained in the complex subspace of TjC (where C -~ GL(2n, ~) /GL(n,  C) is the set 
of all almost complex structures on 9) determined by K = ker~. 

By the above section we know that  if Jo is a rational complex structure, then 
H~'q(M) -~ H~'q(gc). Given J0 E C(g), we know by [KS] that  there exists a com- 
plete complex analytic family {Mr = (M, Jr) [ Jt E B}. 

Let 0t and At be respectively the R-operator and the Laplacian determined by the 
global inner product gt induced by an invariant Hermitian metric on M compatible with 

- - •  - -  - - $  

Jr. More precisely, At = 0 t Ot + 0t0~, where c~ t is the adjoint of 0t with respect to gt. 

L e m m a  9. (i) A t sends G-invariant forms of type (p, q) to G-invariants forms. More- 
over, the orthogonal complement with respect to 9t of the invariant .forms on the space 
A p'q of r-invariant forms of type (p, q) on (M, Jr) is preserved by A t. 

(ii) H~-'q(g c) is a subspace of H~-'q(M) for any invariant complex structure J on M. 

Proof. (i) follows given that  0t and c~ t preserve G-invariant forms. 
P,q ~ C \  (ii) We have to prove that  there exists an injective homomorphism ir : H~ ( u )  -~ 

H~ 'q (M). By the decomposition A p'q = 7t p,q | where NP,q denotes the space 
of F-invariant harmonic forms of type (p, q) on M, we have similarly, for the G-invariant 

P'q P'q Im-Olinv ImO*linv, where HP'q(gc ) P'q forms, the decomposition Ainv = ~inv | 0 ~ = ~inv" 

We can define ~(w) as the orthogonal projection of w on 7/p'q -- (Im-~G Im-6*) • for 
P:q C any [w] E H~ (9 ) -  To prove that  7r is injective~ suppose that  7c(w) -- 0 on H~-'q(M). 

Then 7~(w) -- 0~. We may assume that  7~ belongs to the orthogonal complement to the 
G-invariant forms. Since 0~ is G-invariant, we have also that  0"(0~) is invariant and 
then the inner product of ~ with 0"(0p) is zero and thus ~ must be G-invariant, i.e., 
[w] = 0 in H~'q(~e). [] 
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Lemma 10. For  any  smal l  de format ion  of the rat ional  complex  s tructure  J ,  the iso- 
m o r p h i s m  (1) holds. 

Proof. Using the same proof as in [KS, pp. 67-68] it is possible to show that  for any 
(p, q) and on any (M, Jr) there exists a complete orthonormal set of forms of type (p, q) 

P,q orthogonal to those that  are G-invariant l e  p 'q  "" f ~ l  , "  " P'q t tl , "  , " , g t l  , . . . } s u c h t h a t  
(i) * P'q = = dim 7/~ q, where ~ q  is the space of ~ t e t j  = 0, for any j 1 , . . . , dq ,  dq 

harmonic forms of type (p, q) orthogonal to those that  are G-invariant; 
= a P , q ( t ~  ep,q. (ii) At.fl~ 'q j , , J t j  , 

_p,q- -1 / .~ ._p ,q .  with aP'q(t) > O. (iii) A t g t ~ q  = ( t j  k~ )g t j  , 

Let c be a positive constant and denote by uP,q(t) the number of eigenvalues @ q ( t )  
of At such that  af 'q( t )  < c. Let AtP'q(c)• be the subspace spanned by the eigenforms 
of At (orthogonal to the G-invariant ones) such that  the corresponding eigenvalues are 
less than c. Thus we have dim A~'q(c)• = hp,q(t) • + uP'q(t) + uP'q-l(t),  where hp,q(t) • 
is the dimension of the orthogonal complement H ~ ' q ( M t )  • of the space of G-invariant 

forms Ho'q(ttc) in H o ' q ( M t  ). Given a point Jto E C(9), we can choose c such that  
0 < c < aP'q(to) for any p , q  = 0 , . . .  , n  and for any j .  Moreover let U be a sufficiently 
small neighbourhood of to in C(ft). Since any eigenvalue aP'q(t) is a continuous function 
of t [KS, Theorem 2, p.47] we have that  the dimension of A~t 'q (c)•  is independent of t E U 
and APoq (c)• P'q ~L = H ~  (Mto)  . Thus we have hp,q(t) • + ,P'q( t)  + , P ' q - l ( t )  = hp,q(to) •  

for any t E U. This means that  the function hp,q(t) • is upper semicontinuous. Since, 
for any rational complex structure J0, we have that  hp,q(to) • = 0, then hp,q(t) • = 0 in 
some neighbourhood of to. Consequently the set {t C C(g) I hp,q(t) • = 0} = {t E C(g) I 
H o ' * ( M t  ) ~- Ho'*(gc)} is an open set in any connected component of C(9) with respect 
to the induced topology of 9[(2n, R) on C(9). [] 

7. Examples  of  compact  nilmanifolds wi th  non-rational complex  structures 

Let M = F \ G be the Iwasawa manifold. Recall that  it can be constructed by taking 
as a nilpotent Lie group G the complex Heisenberg group 

I Zl z3 ] 
G = { 0 1 z2 

0 0 1 
: zi E C , i  = 1,2,3}, 

and, as a lattice F, the subgroup of G consisting of those matrices whose entries are 
Gaussian integers. It is known that  the l-forms ~1 = d z l , w e  = dzh,~z3 = dz3 + z ldz~,  
are left invariant on G. G has structure equations daJ1 = daJ2 = 0, dw3 = czl A w2. 
If one regards G as a real Lie group and sets 

0~ l= :e  l + i e  ~, ~ 2 = : e  3 + i e  4, ~ 3 = : e  '~+ ie  6, (2) 

then (e i) is a real basis of 9* such that  

d e i = O ,  1 < i < 4 ,  
de 5 = e 1 A e 3 -~- e 4 A e 2 , 
de 6 = e 1 A  e 4 + e 2 A e 3. 
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By [Na], the bi-invariant complex structure J0 defined by (2) on the complex Heisenberg 
group has a deformation space of positive dimension. Then the complex structure 
associated to the subspace <c~1,c~2,w3 + tc~l} of t~  belongs to the orbit of J0 in C(g) 
with respect to the group of automorphisms of ~ (see [Sa, Section 4]) and it is not 
rational for appropriate  t C C. 

In the same way one can see that  every compact  nilmanifold M = G / F  of real 
dimension 2n, with at least one (rational) complex structure J0 having a non-trivial 
deformation, has a non-rational complex structure. Indeed, by [Sa, Theorem 1.3], given 
the complex structure J0 it is possible to construct a basis of left invariant (1, 0)-forms 
{co1,...,cJ~} such that  dc~+l belongs to the ideal generated by the set {aJ1,... ,c~} 
(i = 0 , . . . ,  n ~ 1) in the complexified exterior algebra. Then the complex structure 
associated to the subspace <c~1,..., co~ + tc~l > is a not rational complex structure on M 
for appropriate  t C C. 
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