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Thermally Driven Acoustic Oscillations, 
Part III: Second-Order Heat Flux 
By Nikolaus Rott, Swiss Federal Institute of Technology, Zurich 

1. Introduction 

In a recent paper, Merkli and Thomann [1] have given a theory of the distribution 
of the second-order heat-flux out of a closed gas-filled tube in which a piston-driven 
standing acoustic wave is maintained. Their theory is based on the first-order solution 
given by Iberall [2] and by Bergh and Tijdeman [3], in which no restrictions are 
imposed on the extent of the dissipative layer. For the case that this region is thin 
compared to the tube radius, the special results of [1] were derived by Rott [4], based 
on boundary-layer theory; the connexion between the results of the two papers were 
also briefly discussed. Actually, the final heat-flux formula of [1] is formally simpler 
than the more restricted result of [4]. 

The purpose of this paper is to calculate the second-order heat flux for thermally 
driven acoustic oscillations, which were treated by the author in two previous papers 
[5], [6]. The acoustic streaming in this case has been already calculated by the author 
[7], albeit only for thin boundary layers; an effort to do the same type of calculation 
for 'thermoacoustic streaming', i.e., for the second-order heat flux, has led to a prac- 
tically unmanageable number of terms, due to the additional effect of a wall-temperature 
gradient. On the other hand, a generalization of the theory of [1] to the case of variable 
wall temperature was successful and is presented here. The situation found for thermo- 
acoustic streaming in this respect is opposed to that for mass acoustic streaming, 
where no closed-form results could be obtained unless thin boundary layers were 
assumed. The following discussion will shed some light on the reasons for the simpli- 
city of the second-order energy equation obtained without the restriction to thin 
boundary layers. 

2. The Energy Equation 

A derivation of the second order energy equation was given by Merkli and 
Thomann [1]. Therefore, only an outline of a slightly different approach is given here, 
which is based on the full energy equation for the gas motion in a tube, for which, 
however, the 'dynamic'  boundary-layer simplifications are applied. Neglected are the 
radial pressure gradient and all dissipative terms involving a differentiation in axial 
direction. On the other hand, no restriction is applied to the extent of the dissipative 
region relative to the tube cross-section. (These are the assumptions made for the 
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linear theories in [1], [2], [3], [5] and [6].) Not surprisingly, the non-linear energy 
equation under these assumptions turns out to be almost identical to the well-known 
boundary-layer energy equation (see, e.g., Howarth [8], p. 397), with the only dif- 
ferences due to the fact that now the flow in the tube is described by cylindrical co- 
ordinates, x and r (say). A further modification through the continuity equation leads 
to the following form: 

O(pH) +--O(puH) + O(rpvH) Op_ 1 0 [krOT] 1 0 [ 0 ( ~ ) ]  (1) 
~------i-- Ox r~r ~t r er k -~-] + r "~r t~r -Sr 

where 

H = c~T + �89 (2) 

Integration of the equation from 0 to r~ after multiplication with rdr, and time- 
averaging gives (with u = v = 0 at r = r~): 

, = ~XJo puHrdr. (3) 

For the purposes of the present paper, an expansion is made in the amplitude of the 
motion, and the equation is written down that is obtained in second order. For this 
equation it suffices to replace H by cpT, and to expand T = Tm + 7"1 + T2 + "'" as 
well as all other quantities, as has been described in detail elsewhere ([1], [4] and [7]). 
The result can be simplified by the use of the second-order continuity equation 

f orw f ~w __ plu~rdr + p,~uzrdr = 0 (4) 

to give the following final result: 

[k b-~2~ /" ~TI\ 1 ~Q---2 
-~t2 = ~ m--~-r ] w +  ~ kl-~-r ) w 27rrw ax 

(5) 

~0 TM O.z = 2~r pmc~Tlulrdr. (6) 

Here, q---~ is the mean second-order heat flux to the tube wall, per unit area. Q2, the 
total axial second-order heat flux in the gas (over the whole tube cross-section) is the 
quantity of main interest for the applications here. Thus, the differentiation in (5) does 
not have to be carried out. This is particularly advantageous in the case of variable 
wall temperature, when many quantities do depend on x. 

The quantity Q'--~ does in general not vanish anywhere except at a closed fixed end. 
(Any possible axial heat flow through conduction at a closed end is neglected, con- 
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sistently with simplifications stated above). The determination of the second order 

mean temperature distribution T2 would require one more integration, just as many as 

the calculation of u2. By restricting our attention to Q2, the problem is strongly 

simplified, in particular as u2 is not needed for the evaluation of (6). 
The relation expressed by (5) and (6) was given by Merkli and Thomann [1]. To 

obtain the special results in the case of thin viscous and thermal layers, it is not 
permissible to restrict the evaluation of (6) to the boundary layer. The 'core '  has an 
important contribution to the integral. Indeed, the only function of state whose 
second-order flux is negligible in the core is the entropy. Based on this fact, it is 

possible to derive the equivalent of (5) for thin dissipative layers directly, as was 
shown in [4]. The effect of the core-contribution to (6) has given rise to an additional 
term in the equation equivalent to (5), which was interpreted as the exchange of 
mechanical energy between the core and the boundary layer. This term does not 

appear in a form which is readily integrable with respect to x, and therefore its use in 
the case of a variable wall temperature is impractical, as was noted above. The sub- 
sequent calculations are restricted to the evaluation of (6), based on the results of [5]. 

Naturally, it is possible to find the special results for thin dissipative layers aposteriori. 

and 

q 

3. The Evaluation of Q2 

It remains to insert into (6) the quantities ul and 7"1 calculated in [5]. The follow- 
ing results are needed: 

i dp~ f Jo(i~?) \e~O~t u~ - 1 - -  
OJpm dx ~ Jo(iv~)J (7) 

pmc~,T1 = pl  - (~ -- 1)(1 - ~) ~ 2 1 Jo(i~wv/~) j e ~'~ 
(8) a 2 f 

+ (r 1)(1 dx L1 - - J o ( i ~ w ) J  

where 

[ io~12 r {ico~lJ~ 
= , = ( 9 )  

and 0 -- d log Tm/dx. It is noted that the second term of (8) has exactly the same 
radial distribution as (7), and furthermore is out of phase with ul by 7r/2. Thus, the 
corresponding contribution to the integral (6) is zero. The time-average in (6) can be 

computed in complex form [7], and the result of the integration is given without 
further details: 

Q2 = ~rr~ Re ulo~ 2~ (~, - 1)(1 - ~) u~fi~o g (10) 
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where 

U l e  - -  _ _  

and 

i @i  
O~pm dx 

(11) 

~r 1 crf.(~7,o)" (12) g =  1 1T~f(~w) 1+  

Complex conjugates are indicated by a tilde. The quantity f was introduced in [5] as 
follows: 

2Jl( i~)  
f(~w) - i~ jo ( i -CJ  f*(~w) = f ( ~ ) .  03) 

The first term of the inner bracket of (10) corresponds to the result given by Merkli 

and Thomann [1 ]; differentiating this term with respect to x, their result for q2 (given in 
the notation of [3]) is obtained explicitly. Not to be included in this differentiation is 
the factor g, which is a constant in [1]. 

Here q'~is of secondary interest; it would be important, however, to find the point 

where q2 = 0 and therefore f2~ has a maximum. In the case of thermally driven 
acoustic oscillations, as found for instance in a half-open tube stuck into a dewar 
containing helium gas Over liquid helium, where the transition from hot to cold occurs 

essentially in a short "bottleneck', the maximum of Q---~ represents the heat carried by 
the oscillations, to second order in amplitude, into the dewar. The full problem is 
rather complicated: both the amplitude distribution and ~7~ depend on the wall 
temperature distribution with x, and numerical methods are needed for the solution. 
Here, the discussion of (10) is restricted to an order-of-magnitude estimate of the 

maximum of Q2 for a very steep wall temperature gradient. 
In this case, the form of (10) suggests that the second term of the inner bracket 

dominates over the first. A detailed investigation (not reproduced here) confirms this 
view. Furthermore, the retained term is purely imaginary, so that only the imaginary 
part of g is needed for the final result, which can be simplified by the relation 

Im g = Im ~ (14) 

to give for the remaining part of the heat flux (superscript 2) 

Q ~  = ~ 1 _ I f *  - ~ f  ~ dT~  
~rr,o ~ ul~ulo Im ~ l _-f--Z--fi-]p,,c, dx " (15) 

It is convenient to introduce an 'effective' coefficient of heat conduction by the 

relation 

Q.~25 2" dTm (16) 
= -~rr~lce~f dx 
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so that 

_ k~ff ulo~1o Im 
k 2o~v 

(17) 

For the discussion, the last term in (17) is expanded under the assumption that the 
boundary layer is thin. By use of the first approximation for fg iven in [5], the following 
result 1) is obtained: 

__keff _- s~#~ J ~  (1 - 1 ) 
k r~, (1 + ~)(1 + ~/o) (18) 

where sl = ulc/oJ is the amplitude of the particle displacement in the core. The value 
of  the last bracket in (18) for helium, with a Prandtl number a = 2/3, is about 0.67. 

The value of  s1 to be introduced in (18) is the one found in the region of  the steep 
temperature gradient. There exists a variation of  s~ in such a region even for a sharp 

temperature jump, but this is negligible for the purposes of this estimate. If  the length 
L -- l of  the hot part at the closed end (in the notation of [5]) is not more than about a 
half of the length L of the half-open tube, the approximations made in [5] lead to the 
following estimate of sl expressed by the (real) pressure amplitude Pl at the closed end: 

sl = (L - l) fix . (19) 
yPm 

Thus, sl/r~ can easily be of order one or much more. 

Next, it is noted that the Stokes layer thickness appears in the denominator in 
(18); its variation along the tube with the temperature is definitely not negligible. For 
/~ ,-, k ~ T B, we have 

kof~/k ~ T m  (I+B)t~', ke~ ~ Tg (1-B)12. 

The variation of k,ff is comparatively small (/3 = 0.647 for He), but its ratio to k can 
vary strongly for a high temperature ratio between the hot and cold end. According to 
the theoretical results of [6], for which experimental support was given by yon Hoff- 
mann et aL [9], thermally driven helium-oscillations can be observed, for a ratio of 
absolute temperatures up to 70, for values of 

Ye = rw~v ~ 

between 10 and 10 a, where vc is the kinematic viscosity at the cold end. The corre- 
sponding Y-values at the hot end are reduced, for a temperature ratio of 70, by a 
factor of about 30. Nevertheless, it is possible to obtain, by proper combination of the 

1) This result was presented by the author at the XIIIth International Congress of Theoretical 
and Applied Mechanics, Moscow 1972. 
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parameters and for observed values of/~1 of the order of 0.1 bar, ratios of several 
orders of magnitude predicted by the formula (18). 

Observations of Bannister [10] for the heat flux into a dewar were successfully 
correlated with the product of the amplitude and the frequency. Unfortunately it is 
not known how the temperature gradient behaved as the parameters were varied. 
According to (18), the effective coefficient of heat conduction should correlate with the 
product of the square of the amplitude and the square root of the frequency. 

4. Limitations of the Present Theory 

The calculation of  the thermo-acoustic streaming appears, from the point of 
view of the amplitude expansion, fully satisfactory if conducted up to second order, 
considering the range of intensities for which the theory is to be applied. Unfortu- 
nately, it is doubtful whether the expansion converges in the limit of very sharp 

temperature gradients, as a fourth-order thermoacoustic streaming term would con- 
tain, in its steady part, the temperature gradient up to the third power. To extend the 
theory to fourth order appears as a hopeless undertaking, and would also be of 

doubtful value. 
For  further progress, it is inevitable to proceed to the investigation of actual 

temperature distributions with finite gradients. This has to be carried out numerically; 
some calculations of this kind were reported in [6]. The numerical evaluation of the 
heat flux for such cases could give, on the theoretical side, an indication of the in- 

fluence of the temperature gradient, and provide quantitative results for the heat 

flux which could be compared with experiments. 
The author acknowledges with thanks the helpful discussions with Prof. H. 

Thomann. 
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Summary 
The second-order heat flux in thermally driven oscillations of gas columns is calculated and 

given in a form suitable for numerical evaluation. Order-of-magnitude estimates are made in the 
case of steep temperature gradients. 

Zusammenfassung 
Der W~.rmestrom zweiter Ordnung, der in thermisch getriebenen akustischen Schwingungen 

einer Gass~ule entsteht, wurde berechnet und ist in einer ft~r numerische Rechnungen geeigneten 
Form angegeben worden. Die Gr6ssenordnung des Effektes wurde ffir steile Temperaturgradienten 
abgeschiitzt. 
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