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On the Indeterminancy of the Problem of Stratified 
Fluid Flow Over a Barrier and Related Problems 

By Lei f  Engevik,  Dept .  o f  App l i ed  Mathemat ics ,  Univers i ty  o f  Bergen, N o r w a y  

I. Introduction 

It has long been recognized that the stationary problem associated with the flow of  a 
stratified fluid over a barrier, is indeterminate when the Froude  number is less than some 
critical value. The same is true for the problem associated with the formation of standing 
waves on the surface of  water running over a corrugated bed when U 2 < gh, and for other 
related problems, see Lamb [1 ]. Here U and h are the velocity and the depth respectively 
of the water, and g is the gravitational acceleration. This difficulty has in the past been 
tackled in two ways: 1) by introducing a small friction force (a small fictitious viscosity) 
which is due to Rayleigh [2], and is adopted by Long [3] and Crapper [4] in the stratified 
fluid problem; 2) by solving the problem from an initial state and letting the time tend to 
infinity, (Stoker [5], Palm [6], and Engevik [7]). These two approaches seem quite different. 
However, it is the purpose of this note to show the connection between them, and that they 
in fact are quite equivalent. This has not yet been done as far as we know. It follows easily 
by using the theorem from the theory of the Laplace transform which reads: lim F( t )  = 

t--* o0 

l i m p f f ( p ) ,  where F ( p )  = 50 F ( t )  e - ~ d t  is the Laplace transform of F(t ) .  The fictitious 

viscosity is shown to be proport ional  to p. We demonstrate the equivalence of the two 
approaches for the stratified fluid flow problem only; that the result holds for the other 
related problems, follows easily. 

II. Formulation of the Problem 

For  simplicity let us assume that  the problem is two-dimensional and is considered in 
an x-z-plane. The fluid, which is stratified and incompressible, is confined between two rigid 
boundaries;  the bot tom with the shape z = ~7(x), and the horizontal plane at z = h. The 
fluid is of infinite extension in the x-direction. The basic motion of the fluid is given by: 
v_b = Ui_, pb = po(z), where g is the unit-vector in the x-direction, U is a constant, po(z) is 
a function of z only, and p~ < 0. If  we start from the stationary inviscid equations, linearize 
about the basic state, introduce a stream-function ~b(x, z), we find that the stream-function, 
when applying the Boussinesq approximation,  must satisfy the equation: 

0 
a-x [V2~b + F-2~b] = 0, (2.1) 

where F = ( - P o  U2/p'og) v2 is the Froude  number. The stream function is defined by:  

_vl = - V x ~b(x, z)j, (2.2) 

where vl is the perturbat ion in the velocity field and j is the unit-vector in the y-direction. 
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It is assumed that F # h / m r  where n is an integer. (The stationary solution tends to infinity 
when F---~ hirer.  We will return to this point at the end of the paper.) 

The problem is indeterminate when F < h/'rr, but this difficulty can be avoided either 
by introducing a fictitious viscosity or by solving the problem from an initial state as 
mentioned above. In sections I ! I  and IV we give the equations to be solved in these two 
cases, and show that these two approaches which seem quite different, are in fact equivalent. 

III. The 'Small Friction Force' Approach 

Rayleigh's idea [2] (which is adopted by Crapper [4]) is to introduce a small friction 
force -p/~v (/z > 0) into the momentum equation. Then the stationary equations which 
govern the above-mentioned problem are: 

pv_. Vv_. = - V p  - pgk_ - pl~v_~ 

v.v_ 0 l (3.1) 
v .Vp = o, 

where k is the unit-vector in the z-direction. 
Crapper [4] pointed out that/z can also be considered as the operator O/Ot, and that 

/~ --~ 0 corresponds to t --~ co. The boundary conditions to be satisfied are that the normal 
velocity at the boundaries must be equal to zero. 

Applying the Boussinesq approximation and linearizing as above, we find the equation 
for the stream-function to be: 

e [V2~ b + F_~b] = t~ ~x - U V2~" (3.2) 

The linearized boundary conditions become: 

e---x = ~xx at z = 0, 
(3.3) 

O~b 0 at z h. 
Ox 

Eq. (3.2) is solved together with the boundary conditions (3.3), and by letting/z ~ 0 in 
the solution, the stationary solution is obtained. 

Long [31 proposes to solve another equation, namely: 

[V2~b + F-2~b] /z~b (3.4) 
~x 

together with the boundary conditions (3.3). (Long gives the equation for 3 which represents 
the variation in height of the streamline about its equilibrium height, but 3 is proportional 
to ~b, so we have here given the equation with ~b). Eq. (3.2) and eq. (3.4) differ by the term 
on the right hand side. 

IV. The ' Initial-value Problem' Approach 

By this approach the non-stationary i n v i s c i d  equations are used. The linearized 
equation for the stream-function is found to be: 

+ ~x V2~b + F -2-~x 2 = 0. (4.1) 
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The boundary conditions are given by (3.3), and the initial values are (see [7]): 

( 1 0  8 )  a t t =  0. (4.2) v- ~3+~x v2~ 

We are interested in the stationary solution, i.e. lira ~b(x, z, t), and to show that this is 
t --~ oo 

equivalent to the solution of eq. (3.2) and eq. (3.4) when/z  ~ 0 in these solutions. Let 

•x, z,p) = So r z, t)e-P'dt be the Laplace transform of r z, t). We know that 

lim ~b(x, z, t) = lira p~(x, z, p), showing that the stationary solution of ~(x, z, t) can be 
t ~ o o  p~O 

found when its Laplace transform is known. Let us define 9(x, z, p )  = p~(x, z, p). Applying 
the Laplace transformation in eq. (4.1) and eq. (3.3) and introducing 9, we find that 9 must 
satisfy the following equation and boundary conditions: 

+ -~x V29 + F-2 0x 202--'-~ = 0, (4.3) 

ax - U Tx at z = 
(4.4) 

0_~_~ = 0 a t  z 
0x 

We observe that the boundary conditions (4.4) are the same as (3.3). 
We are interested in the equation for 9 for small values of p, since lira 9 gives the 

stat ionary solution. Neglecting higher order terms in p in eq. (4.3), and integrating once 
with respect to x, yields: 

0 [V2~ ' + F_29 ] = 2p ,9x - - 'U  V29" (4.5) 

The boundary conditions (4.4) are unchanged. Eq. (3.2) is equal to eq. (4.5) if/z is replaced 
by 2p, and the boundary conditions (3.3) and (4.4) are also the same. This clearly shows that 
the two approaches are equivalent. 

Let us also show that we can arrive at Long's  equation, eq. (3.4). Applying the Fourier  
transformation in eq. (4.3), dividing the transformed equation by (ik)(1 + p/ikU) 2 and 
neglecting higher order terms in p, yields: 

~ - ~ 9 ,  where (D=f29e 'k=dx.  

This is the Fourier  transformation of the equation:  

a 2p (4.6) 

which is equal to eq. (3.4) if we put /z  = 2p/F2U. 
Let us in conclusion consider the case when F = hirer. The stationary solution 

(l im 9) tends to infinity when F---~ h/mr, (see for instance [3] or [7]). When F = h/mr the 
P " + 0  

solution of eq. (4.5) and eq. (4.6) does not  exist when p --~ 0, because lim 9 = oo. But since 
p " * 0  

lim ~o = lim ~b this means that our initial-value problem does not have any stationary 

solution. This agrees with what Stoker [5] finds in his problem. F = h/mr in our problem 
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corresponds to U2/gh = 1 in Stoker's problem, and he finds that the time dependent 
solution tends to infinity when t--+ co in this case. It is also known that the stationary 
solution (corresponding to lim 9 above) tends to infinity when U2/gh --~ 1. This means that 

p~O 

when the stationary solution becomes infinite for some values of the parameter, the solution 
of the initial-value problem will tend to infinity when t--~ co for these values of the 
parameter. 

Conclusion 

The indeterminancy of the stationary problem associated with the stratified fluid flow 
over a barrier and related problems, has long been recognized, and has been solved either 
by introducing a small fictitious viscosity or by solving the problem from an initial state 
and letting t --> oe. In this note the two approaches are shown to be equivalent by using a 
theorem from the theory of the Laplace transform. It is our opinion that this theorem 
could be useful in other fluid flow problems where a stationary solution is required. 
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Abstract 

The indeterminancy of the problem of stratified fluid flow over a barrier and related problems 
has in the past been solved either by introducing small friction forces or by solving the problem 
from an initial state and letting the time tend to infinity. Here the connection between these two 
approaches are considered, and they are shown to be equivalent. 

Zusammenfassung 

Das Problem der Unbestimmtheit der Str6mung eines geschichteten Fluids tiber ein Hindernis 
und verwandte Fragen sind bisher entweder durch die Einftihrung von kleinen Reibungskr~tften 
ge16st worden, oder durch L6sung des zeitabh~ingigen Problems yon einem Anfangszustand bis 
zum station/iren Endzustand. Hier wird der Zusammenhang zwischen den beiden Methoden 
betrachtet, und es wird gezeigt, dass sie/iquivalent sind. 
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