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L Iatroduetioa 

It is reported earlier [1], that patterns of the secondary flows induced :by an 
oscillating cylinder have been drastically altered when a small amount of  polymers 
was added to the Newtonian liquid. We speculate that the Change in secondary flow 
patterns probably results from the elasticity of  the dilute polymer solution. In this 
analysis, an attempt is made to  explain the novel phenomenon qualitatively by using 
a boundary layer approach. For  a more complete and quantitative analysis, the 
treatise is given elsewhere [2], and will be presented later [15]. 

Boundary layer analysis has been successfully applied to various two-dimensional 
flows for viscoelastic fluids: for example, wedge flows [3, 4], stagnation flow [3, 5, 6, 7], 
converging channel and flat plate flows [3, 11], etc. Most of  these works are under 
steady state flow condition. For this particular oscillating cylinder flow problem, 
Frater [8] apparently was the first and only one who made an analysis theoretically 
by using the Oldroyd convected model. Employing a boundary layer analysis, he 
showed how viscoelastic effect can change the flow pattern of  the secondary streaming. 
However, some of the arguments used in that paper have been questioned [9]. 

In order to compare the theoretical prediction with the experimental results in [1], 
Waiters' Liquid B' [10] will be used. It can be expressed as 

p ~  = -pg~k + P~  (1) 

t| Ox~ ~x~ e~l)'~(x ', t ' )  d t '  (2) p'~U(x, t) = 2 O(t - t ') ~x, m 0x, r 

where 

~ ( t - -  t ' )  = f |  e -  t t  - t , ) l~  dl. (3) 
J 0  'r 

andp~k being the stress tensor, g~ the metric tensor of  a coordinate system x ~, N(~-) the 
distribution function of  relaxation times, and x '~ being the position at time t '  of  the 
fluid element which is instantaneously at the point x ~ at time t- e~t, ~ is the rate of strain 
tensor, which in terms of the velocity vector Vm is given by 

e~: = ~(vm., + v, .~).  (4) 
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The Oldroyd three-parameter conveeted model is a special case of Eqns (1) and (2). 
By assuming N(r) = VoS(~, where 3(r) is a Dirac delta function, the Newtonian 
fluid model with constant viscosity T0 is recovered. 

In the experiment of [1 ], the polymer solution used is very dilute. It is a reasonable 
assumption then that the liquid has a short memory, i.e., it has short relaxation times. 
Under this assumption, the equations of state (1) and (2) can be expanded in terms of 
relaxation time. By retaining only the first few terms, P~k can be expressed as [5] 

8emtU 
p'~ = 2~o e mt~ - 2k* 3t (5) 

where 

no = j.~ N(r)  dr; 

8b~ ~b~k Ob~k 
8t  = 8 t  + vm - -  Ox m 

p *o 

k* = .1.  rN(~) dr 

Ov ~ Ov t 
_ _  b ~  _ bm~. 
Ox" Ox" 

To is the zero shear rate viscosity, and k* characterizes the elasticity effect. Terms 

involving fo  r"N(r) dr(n >__ 2) are neglected. 

Equation (5) is essentially a type of second order fluid, representing a second order 
analysis [10]. This approximation is valid for not highly elastic liquid, which is the 
case for the particular experiment reported in [1]. For the relationship between 
different equations of state including Eqn. (5), one can refer to Waiters [13], and 
Schowalter [14]. 

II. Boundary Layer Equations and Solutions 

The boundary layer equations can be obtained by substituting Eqns (1) and (5) 
into the equations of motion with order of magnitude comparison, utilizing boundary 
layer approximation [12]. (For example, u and x are one order of magnitude higher 
than v and y respectively.) The resulting approximate equation becomes 

~u 8u au 1 8p + % ~2u k* [ O~u Oau 

0u 82u 8u 82u ] 
Jr Ox Oy 2 -~ Ox OyJ" (6) 

Equation (6) with the absence of the first term, 8u/Ot, is exactly the same viscoelastic 
boundary layer equation as obtained by previous workers [5, 6]. 

We utilized the method of successive approximation for non-steady boundary 
layer analysis [12] with the assumption that the velocity component was in the form of 

u(x, y, t) = Uo(X, y, t) + ux(x, y, t). (7) 

Let 

v = % ;  ko  k *  
P P 
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then from Eqns (6) and (7), we have 

~uo ~2Uo aU 
a~- - ~-~y~ = a-? (8) 

~ul ~2u~ = U 0U ~Uo 8uo [ ~aUo 
at v"~-y 2 -Tx - v o - @  - Uo--~ - k0 [Uo ~--~--~y2 + 

(9) 
~aUo aUo ~2Uo OUo 8~Uo ] 

~~ T 7  + ~x ~y~ ~y ~ y ~  

where U = U(x) e '~ is the potential flow just outside the boundary layer, o~ is the 
frequency of  oscillation. The boundary conditions are 

U o = U x = 0 ,  a t y = 0  (10) 
ul = 0 ,  uo = Uo(x) e ~ot a t y = o o .  

In the above approximation, the curvature effects are neglected and we assume that 

[aU/Ot I >> ]U OU/Ox I, i.e., the amplitude of  oscillation is much smaller than the dia- 
meter of  the oscillating cylinder. 

Assume that the stream function can be expressed as 

~o(X, y, t) = ~ Uo(x)~o(~) e ~~ 

where ~ = y~/to/v, then velocities uo and Vo are 

. (11) 

Uo = U o ( x ) ~  e '~ 

dUo ~V/~/o ~o(~) e ~t  
l.) 0 --~ - -  - ~  (12) 

Combine Eqns (7) and (11), we have the first approximate equation, 

~ - i ~  = - i 

in which the prime denotes a differentiation with respects to 7- The boundary condi- 

tions become Co - ~ = 0 at ~ = 0 and ~ = 1 at V = oo. The solution for ~ is 

~ = 1 - e -<1+~162 (13) 

Therefore, the velocities of  the first approximation are 

Uo = Uo(x)[1 - e -cl+~ e *ot (14) 

Vo = - - - - ~  ~ e t~ ~ - 1 +----'-i + e-(l+~ (15) 

For the second approximation, the stream function r has the form 

Uo(X) duo 
r  = e v / , o  g l a ( v ) e  ~ ' ~  + ~lb(v)]  o~ dx  (16) 
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where ~l, is the unsteady part and ~lois the steady part ofthe second approximation, 
respectively. The velocity component ul becomes 

duo 1 e2,,~t 
ul = Uo(x) ~ - 5  g~o(7) + ~(7)1 (17) 

Substituting Eqrrs (14), (15) and (17) into Eqn. (9), we obtain the differential 
equations for ~ ,  and ~ :  

2 ~  t M i t 

-~:,~ = ~ 1  ~'~' " - o o + �89 + ~o~)  
- g g ~ , ~ ;  + ~7oo - ~ K ~ g "  + ,~o':F) - r g ~ ] }  ( 19 )  

where ~ is a complex conjugate of a, and 

K = koto (20) 
V 

The boundary conditions are that the normal and tangential velocities vanish at wall, 
whereas at a large distance from the wall, only the tangcmtial part vanishes. The 
solution for ~[, is 

K - i e - , / 2 ( l + ' , , ;  [ ~ - ~  (1 + K) 2 i(1 - K)7'  ] ~ ,  = ~ + + e -<l+~ (21) 

where 7' = ~/~2. 
For the steady part of the stream function, the solution for ~[0 was obtained 

under the condition that one of the boundary conditions has to be relaxed, i.e., the 
tangential velocity is not zero, but a finite value at a large distance from the wall. 
The solution is 

~b = C~ + [ 1 -  K +  ( K +  1) i ]  e-'l+~ + [ 1 -  K - ( K +  1) i ]  e -'~-~ 

+le-~"" - (1 + K) + (1 - K ) i ,  e_C,_o~. (22) 
4 

- 0  + K) + (1 �9 4 - K)~ ~' e-(~+~ 

Where Cx is to be determined from the boundary condition ~ = 0 at 7' = 0. Since 
only the real part of  ~ has physical meaning, we have 

~ = - �88  + 2 K +  [ ( � 8 9  2K)cos ~/' + ( K +  2)s inT' ]  e-"" 
(23) 

+�88 -~"' + �89 + K) cos 7' - (I - K)sin 7']~' e-"' 

or by rearranging, 

, [  ] ~ = - � 88  + �88 e -~'" + (2 sin ~7' + �89 cos ~/') e-"" - ~ (cos ~/' - sin ~') e-"" 

+ K 2 + (�89 sin 7' - 2 cos ~') e-  "" - ~ (cos ~' + sin 7') e-  "" (24) 
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As we notice that in Eqn. (24), terms in the first bracket are exactly the same as that of 
Newtonian fluids [12], and the terms in the second bracket are due to the elasticity 
effects characterized by the parameter K. The asymptotic value for ~b at 7' approaches 
infinity is 

~b(ov) = - � 88  + 2K (25) 

as compared to the Newtonian case, in which ~[b has a value of - �88 

HI. Discussion and Conclusion 

The solution thus obtained is not a uniformly valid solution except for certain 
value of elasticity parameter K, i.e., K = 3/8, because the solution does not satisfy 
the boundary conditions at infinity due to the boundary layer approximation. Asymp- 
totic expansion techniques have to be applied if a complete solution is required. This 
attempt is not intended here, since an exact solution without using boundary layer 
approximation can be obtained [15]. However, it is very instructive at least qualitatively 
to see what is the elasticity effects on the inner solution of the boundary layer equations. 
It is believed that the region near the solid boundary has the greatest effect on the 
whole flow patterns of the steady secondary flow induced by an oscillating cylinder in 
a viscoelastic liquid. 
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Figure 1 
Effect of elasticity parameter K on the steady streaming velocity patterns. 
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The effect o f  the inherent elasticity o f  the liquid is presented in Figure 1, as [~b vs 

r/' with different values o f  K. The figure clearly shows that the effect of  elasticity o f  

polymer solution is to increase the thickness o f  the inner vortex system, and to increase 

the intensity o f  the secondary flows near the solid boundary.  The increase in the thick- 

ness o f  the inner vortex system indicates the right trend of  the elasticity effect by 

compar ing the observed experimental results [1], in which the inner vortex is expanded 

to occupy the whole flow field, thus the flow direction o f  the steady streaming is 

completely reversed. As mentioned before, however, the unsatisfied boundary  condi- 

t ion at the infinity leads one to regard the boundary  layer analysis as only qualitatively 

correct, and the solution is valid only at those regions near the solid boundary.  

The predicted increase in the intensity o f  the secondary flows near the solid 

boundary  has certain practical applications. These stronger secondary flows may  

enhance the heat and mass transfer rates between the solid boundary  and the surround- 

ing fluids in the industrial processes. 
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Abstract 
A boundary layer analysis is applied to the oscillating cylinder system in a viscoelastic liquid. 

The effect of the inherent elasticity of the liquid is to increase the thickness of the inner vortex system 
of the steady streaming secondary flows, which is consistent with the experimental observation 
reported earlier. 

R6sum6 
L'analyse d'un syst6me compos6 d'un cylindre oscillant dam un liquide visco-61astique est 

approch~ tel un probl6me de couche limite. L'effet de l'61asticit6 inh6rente du liquide est d'augmenter 
l'6paisseur du vortex interne des 6couiements secondaires en r6gime permanent, effet en accord avec 
l'observation exp6rimentale d6zrite dans une publication ant6rieure. 
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