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Large Plane Deformations of Thin Elastic Sheets of
Neo-Hookean Material

By FeLix S. WonG?!) and Ricaarp T. SHIELD, California Institute of Technology,
Pasadena, California, USA

1. Introduction

A general theory of plane stress for large elastic deformations of isotropic materials
has been developed by ApKINs, GREEN and Ni1cHOLAS 1] (see also [2, 3]). The theory
applies to a thin plane sheet which is stretched by forces in its plane so that it remains
plane after deformation, the major surfaces of the sheet being free from traction.
Tt is assumed that the deformation and stress resultants are determined to sufficient
accuracy by the deformation of the middle surface of the sheet, and the theory is
reduced to two-dimensional form. The one-dimensional case of circular symmetry
was treated earlier by RiviiN and Trowmas [4] and recently YANG [5] has considered
approximate and exact solutions for several axisymmetric problems.

The two-dimensional equations of the general theory are difficult to solve exactly
and a method of successive approximations for static problems, with solutions
expressed as power series in a real parameter ¢, has been used to obtain first and
second order solutions for unsymmetric problems [1, 2, 3]. Quantities in the first
order or infinitesimal solution are O(e) as e - 0 and they provide the asymptotic form
of the solution for vanishingly small strains. Thus the application of the first and
second order solutions is limited to a range of deformations near the undeformed state
and is inadequate at large strains. In this work we assume that the elastic material
of the plane membrane is incompressible and has the neo-Hookean form for the strain
energy function and we develop a method of successive substitutions for the solution
of problems involving large strains. The first approximation of the present theory is
the asymptotic form of the solution for infinitely large strains in contrast to the
method of [1, 2, 3], although the two methods are similar in character.

A summary of the basic formulae and equations of the equilibrium theory of
plane elastic membranes is given in Section 2. A method of successive substitutions is
outlined in Section 3 for the particular case of a neo-Hookean material, and a brief
comment is made on the extension of the method to dynamic problems. Section 4 deals
with several (static) problems involving infinite membranes with circular or elliptic
inclusions, and the first approximations are obtained. For circularly symmetric
problems the second approximation can be obtained without difficulty and exact
solutions are available through numerical integration. Good agreement was found

1) Present address: Agbabian-Jacobsen Associates, Los Angeles, California.
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even for moderate deformations between the approximate analytical solutions and
the exact numerical solutions in the problem of a rigid circular inclusion with
uniform stretching at infinity.

When the membrane has an edge which is traction free, the method of successive
substitutions developed in Section 3 breaks down after the first approximation
because the transverse extension ratio or thickness ratio A calculated from the first
approximation becomes infinite as the traction-free edge is approached. Section 5
provides an alternative way to calculate a better first approximation to the thickness
ratio which remains finite at the traction-free edges.

Several simple examples involving membranes with traction-free edges are
considered in Section 6. In the case of the radially symmetric stretching of an infinite
membrane with a circular hole, comparison between approximate and exact numerical
solutions is made. Agreement between the solutions is again good for moderate
deformations but the agreement is not as good as in the problem of the rigid circular
inclusion. Other examples treat a finite membrane under a deformation which is close
to a homogeneous state of pure shear, the deformation near a boundary with a corner
which is traction-free, and the action of a concentrated load at a boundary point.

The method of successive substitutions used here for neo-Hookean materials may
be used with obvious modification for materials which have strain energy functions
close to the neo-Hookean form over the range of deformation involved, the modifica-
tion occurring in the second and higher approximations. The comparisons with exact
solutions for symmetric problems indicate that the first approximations can give
results accurate in the range of moderate deformations where the neo-Hookean form
provides a fair approximation for rubber-like materials. For larger deformations,
where, for example, the Mooney form may be more appropriate, the results based on
the first approximation for the neo-Hookean material can still be of value in indicating
the main features and characteristics to be expected in the actual deformation of real
materials.

2. Basic Equations for Finite Plane Stress

We suppose that in its initial state the body is a plane sheet of homogeneous
elastic material bounded by the surfaces x; = - %y/2, where (xy, %,, %3) are the
coordinates of a particle of the sheet referred to a rectangular cartesian reference
frame. The thickness %, may depend on x;, x,. The sheet undergoes a finite deforma-
tion symmetric about the middle plane x; =0 and we denote by (v, v,, vs) the
coordinates after deformation of a particle which was at the point (%4, %,, %) in the
unstrained state. The middle plane in the deformed state is 9, = 0 and the major
surfaces of the sheet after deformation are given by y, = -+ %/2, where /4 is, in general,
a function of y,, y,. We shall use indicial notation and the summation convention,
with Latin indices taking the values 1, 2, 3 and Greek indices the values 1, 2.

We assume that the displacement gradients y, , throughout the thickness are
determined with sufficient accuracy for our purposes by their middle plane values.
Because of the symmetry of the deformation we assume in particular that

03}3 _ Oyoc o
ox, 0 O0xy 0
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and we shall write

oy
Ox: =4
where A(x;, x,) is the extension ratio in the direction normal to the sheet.

The condition that the major surfaces of the sheet be free from traction is satisfied
approximately by requiring the transverse normal stress #;; to be zero, and this
condition serves to determine 4 in terms of y,, , through the stress-strain relation for a
compressible material. For an incompressible material, however, 1 is determined by

1 (%, %,)
A== o L TR 21
7" 0y @1)
In either case the strain energy U per unit area of the undeformed middle surface is

expressible as
U=hyW(ysp5 A = Ulgp ),

where W is the strain energy per unit volume of the undeformed material. The strain
energy U depends on y,,, through y, .y, , only. For an isotropic sheet, U is a
symmetric function of the principal extension ratios 4,, 4, in the plane of the sheet,
and we can write
U=U(K, J; %)
where
K:ya,ﬂya,ﬁ:‘l?"‘—}ér ]:‘ya,ﬂiz'lllz'

When the material of the sheet is incompressible and isotropic, U depends on K and |

only through the invariants

1 K

11=K+]2» 12:7T+]2-
The stress resultants T, 4 are defined by
nf2
T, g / tup Vs,

—h{2

where {;, are the stress components, and they are given by

o1 oU oy,
BT ] 0yg. Ox,
With the major surfaces of the sheet traction-free, the equations of equilibrium become
0T.; 0 0%, ) _
., O o, (] oy, 128) = °

in the absence of body forces.
For the most part we shall confine our discussion to an incompressible material
which has the neo-Hookean form for the strain energy function

U= hyCy (I, — 3) = Iy Cy (K + 2% — 3) (2.2)

where C, is a material constant. The stress resultants are then

0 0
1;/,=2hoclz( Z yﬂ-zzauﬂ) (2.3)

Ox, 0%,
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and the equations of equilibrium reduce to
0 0vg 0 o
T (ko T%) — T 5y 1) =0.
For constant initial thickness %, we have
02
2 — — =

V2y,—32 5, 0 (2.4)

where |2 is the two-dimensional Laplace operator. Equations (2.4) can also be

written in the form

3 3 3
VZylzﬁ,h_ﬁ__—_, [723/2:———-——;—-«*—. (25)

0%, Ox,y 0%y 0%

The load resultant 4L, on a normal section through a line element ds of a curve
drawn in the middle plane is given by

ALy = Typngds
where #, is the unit normal to the curve and by

AL, = ] 52 T, nas,

where ds®, n), refer to the undeformed state. Substituting for T, g from (2.3) we obtain
0y, 0%
AL, =2 h, Cy (070 - nS) ds? (2.6)

for a neo-Hookean material. Equations (2.6) can also be written in the form

ono

0 \
ALy =27 Cy ( 01 _ 20 %f—g-) a0, ALy=2hCy (2 + 20 %) 0 (2.7)
where the s0-, #0-directions are taken right-handedly.

3. Successive Substitution

As can be seen from (2.5) and (2.7), both the differential equations and the traction
boundary conditions are non-linear so that exact solutions will not always be easy to
determine. Since the non-linearity in (2.5) and (2.7) comes solely from terms involving
A, a natural first approximation when 1 < 1 is obtained by neglecting all such terms
in the equations. This is equivalent to using for the strain energy the form

U0 =1, C, (K — 2),

rather than the exact form (2.2). Superscribed quantities here stand for approximate
values, with (1) for the first, (2) for the second and so on. We remark that the first
approximation y{) to y, is exact for a sheet with strain energy U®. Such a sheet is
isotropic but is stressed in all-around tension in its reference state.

If the principal extension ratios 4,, 4, in the plane of the sheet are of the order of u
for large u thronghout the sheet, where u is a parameter which measures the amount
of deformation, then

U = 0fu)
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and
U=UD4+ 0(u.

If the first approximation provides derivatives y{); which are O(u) for large g,
correction terms of order O{u~%) added to these derivatives will change K and therefore
U® by terms of order O(u4). It is therefore to be expected that, on the average, the
first approximation determines y,, , to within terms which are O{u~?) for large u so
that we will have

Vap = Vs + O™ when 3 = O(u) . (3.1)

If 2, = O(1) and 2, = O(p), the approximation will be less good and a similar argument
leads to

Vop = Vog + Ou2) .

When 4; = O(u~1/?) and 4, = O(y), so that each element of the sheet is strained close
to a state of simple extension, we will have

Vo3 = Vol + O(u™2) .

In this case some of the derivatives y(al’)ﬁ can be of the same order, O(u="%), as the
correction terms.
Setting 4 = 0 in (2.5) and (2.7) we find that the first approximation satisfies

1723/(11) =0, sz5)1) =0
in A° with the boundary conditions

oyt 1 0y,
%10— ds® = TZ—M dL;k 5 2 ds® = dL* on Cg«, (3.2)
and
W=yk, =9 on C}.

Here A° is the middle plane of the unstrained sheet with boundary C?, C% is that part
of C° where traction components dL¥ are prescribed and CY is that part where
deformed locations y* are given. When 4° is infinite, conditions at infinity must also
be imposed. For example, if the sheet extends to infinity in all directions and if it is
under uniform biaxial extension at infinity with principal extension ratios yu; and u,
along the x,- and x,-axes, respectively, the appropriate conditions on y, are, for zero
rotation at infinity,

0y, L¥cost 0y, L¥sing (1

ox, M 4nh0‘_ ™ ( ) ox, = 4ah,Cir 0(7) 23
0y _ L§cosf 0(i) 0y, L3 sinf | o(i) (3.3
O0xy,  4mhyCyv v]’ 0my M2 T Tap Crv O\ )

as 7 -> oo, where L¥* are the components of the resultant of all external forces acting
on the interior boundaries of the membrane and (¥, 6) are polar coordinates. The first
approximation y{) must satisfy (3.3) at infinity.

Once the first approximation to the solution is known, higher approximations can
be obtained by a method of successive substitutions as follows. We use the first
approximation y{! to estimate the nonlinear terms in (2.5) and (2.7). With A®
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1
W o
A Jm

the second approximation solution y%@ satisfies

1 b

0%y, %)

(1) oyl
7292 — 9 (A3 403/2 _ 0 s V2 ) ]
1 0%y Oy 0%y ox, (3.5)
), h [
24(2) _ 1 wp_ 2t Y rians
V2, 0x, 0x, (A7) 0%y 0¥ (A9,
in A° with the boundary conditions
oy 1 oy
o — * 113 o
omt &' = g e A+ AP g dst, .
on Cp (3.6}
oy 1 oy
0 * 173 0
ono” O = ey AL - O 55 dst,

and
o' =yi on Cp.

The process of successive substitution can be repeated, the approximation y{#+%
being determined as the solution to a Poisson equation with inhomogeneous terms in
the equation and boundary condition determined by y and the boundary data. The
solution y®*1 if it exists, will be unique provided C% is non-zero. If y{) and its
derivatives are O(u) everywhere for u large and the Jacobian J@ is such that A =
O(u~%) everywhere, the difference y® — y{I) satisfies a Poisson boundary value
problem with inhomogeneous terms which are O(u—9), in agreement with the earlier
estimate (3.1) on the order of error involved in the first approximation. Assuming
that the solution 2 — 4% and its derivatives are O(u~%), the boundary value
problem for the difference y® — 4@ will involve inhomogeneous terms of O(u~11) for
large u, and so on. Thus a related approach would be to assume that, for large enough
4, the functions y,/u can be expanded in power series in x~%, with coefficients which
are twice differentiable functions of (x,, x,). '

When 4; = O(1) and A; = O(u) for large u, the corresponding estimates for
¥y — y¥ and y® — y@ are O(u2) and O(u~9%), respectively. For a smooth enough
first approximation ¥{) and a smooth enough region 49, it is to be expected, in this
case and in the previous case, that the process will converge when g is large enough.
However the convergence of the method is not so apparent when a large region of the
sheet is in a state close to simple extension so that the first approximation y{!) involves
principal extension ratios

A= 0w, A = o

for large u. In this case we will have A® = O(4~1/2) and the terms in (3.5), (3.6)
involving yiP are O(u~1/2). Since the difference ¥ — v will then be O(u~12), the
error in y{Y can be of the same order and therefore y{) may not determine the non-
linear terms in (3.5), (3.6) correct to O(u-2/2).

A difficulty arises with the method described in this section when a portion of the
boundary is traction-free. The first approximation then has a Jacobian J® which
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goes to zero as the unloaded boundary is approached. The terms involving ¥’ in the
equations (3.5), (3.6) for ¥ are then singular on the unloaded part of C° and in fact
the singularity is non-integrable in that the solution y{’ cannot remain finite. A modi-
fication of the method which avoids this difficulty is given later in Section 5.

We remark that the method of this section for equilibrium problems can also be
used for dynamic problems of plane motion with large extensions. For a neo-Hookean
material and constant initial thickness, the equations of motion are

04 0?
2 _— — Q0 Ve
2y, —3 4 Gy = 26, 0B (3.7)
where g, is the density, and a first approximation for A <€ 1 leads to the ordinary

wave equations
1)
g _ % Ve

Yo =50, o

When the functions y) are known, they can be used to estimate the nonlinear terms
in (3.7) and inhomogeneous wave equations then govern the second approximation y2.
However, since the inhomogeneous terms are derived from solutions to the same
wave equation resonance will occur, in general, and this approach will be of limited
value. The same difficulty arises in the corresponding approach for the determination
of second order effects in elastic wave propagation (see [9], for example); an alternative

approach avoids the difficuity (see [10], for example}.

4. Some Inclusion Problems

Several basic inclusion problems are considered in this section. For simplicity the
inclusion shape is taken to be a circle or an ellipse, but other geometries can be
treated in a similar manner when the appropriate conformal mapping is known.

As a first example, we consider an infinite membrane with a circular hole of
radius a. The edge of the hole is bonded to a rigid inclusion (or otherwise held fixed)
and at infinity the sheet is in a state of biaxial extension with principal extension
ratios u; and u, along the x,- and x,-axes, respectively, the origin being at the center
of the hole.

Applying the approach of Section 3, we find that the harmonic functions y{ of
the first approximation are determined by the conditions (3.3) with L} equal to zero
in the case when there is no resultant force on the inclusion, and at 7 = q,

Y =acosf, yM=asinb.
We have therefore
k2 k2 .
) =y (1= E) cosh, ) =y (1— ) sing, (4.1)
where
2 _ (1 LY 2
B, = (1 ﬂ“) az.

Because ¥ are harmonic functions, it follows that [7y$ | and hence K® and U®
are subharmonic. If we exclude the case of constant strain energy U®, the sum of the
squares of the principal extension ratios A, A, obtained from the first approximation
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must then attain its maximum and minimum at an internal boundary or at infinity.
We note also that at the edge of the hole # = 2 we have

Ay=2p -1, A,=1 at 6=0,m,
Ay=2p,—1, Ay=1 at 6=+

Thus, for large p;, u, principal extension ratios which are close to twice the values at
infinity occur near the inclusion.

The first approximation y) is meaningful only if the Jacobian J® = A, A, is
positive everywhere. It can be shown from (4.1) that this condition requires y, and u,
to be greater than one-half. However for a neo-Hookean material the principal force
resultants are tensile only if A, A% and A% A, are greater than unity. From the values
of A;, A, at the inclusion we see that the first approximation requires y, and u, to
be both greater than unity in order to avoid compressive stresses near the inclusion,
an indication that wrinkling or folding of the sheet would occur if either of uy, pg
were less than unity.

T the inclusion is acted upon by a force L* through the origin at an angle 8 to the
x;,-axis, the terms

_ L*cosé log 14 _ L*siné log v
4 7 hy Cy a’ 47 hyC,y a
must be added to the expressions for y{¥ and y{!, respectively. The value of L* is
restricted by the conditions that A; A% and A} A, be greater than unity everywhere
in the membrane.

It is apparent from the nature of the inhomogeneous terms in the differential
equations for y{ that the solution for y® will not be elementary. Considerable
simplification results when the deformation has axial symmetry, that is when
1 =ty =y and the sheet is subjected to an all-around tension at infinity. When we
substitute the expressions

yi=0() cosl, y,=op(r)sinb (4.2)

into the exact equilibrium equations, we find that p satisfies, for » > 4, the ordinary
differential equation

d?p 1 do o 3r 0 0 \2 d%
e T T e e~ (%) —re gt (+.3)
With the boundary conditions
de
o=aatr=a, Ty " Masr—>o0o, (4.4)

equation (4.3) can be integrated numerically to yield an exact solution. Setting
Uy = Uy = p in (4.1), the first approximation ¢® to g is given by

oV = pr (1 — ;:_) , R2=a? (1 — 71‘—) . (4.5)

The second approximation ¢® then satisfies the differential equation

a a (2) 12 Rt k2 kt\31-1
L (2 ey €T e _
ar (dr@ + 7) ut v [(1+ 1/{) (1 1'4)] ’
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and it is found that

¥0) = ayr + U 4 I (4.6)
where
L Rt v2— k2 30 (k/r)® — 24 (k)4 + 26 (Bjr)? + 16
) =575 [(5 - 7) log 237 3(kf)? (1 — R2r®) (1 + A2jre)? } ’

alzﬂ(l—z%s), by=al(l—a)a—Ia)].

For a case of moderate deformation, 4 = 1.24, it was found that both the first and
second approximate solutions given by (4.5) and (4.6) gave values for g/r which were
within 0.39%, of the values obtained from numerical integration of the exact equation
(4.3).

When the circular inclusion is rotated counterclockwise through an angle § about
its center, the sheet being uniformly strained at infinity as before, the first approxima-
tion y{ can easily be obtained. It is found that as f is increased the Jacobian J@®
remains positive only until the value 3, is reached, where

1 |N1_M2[
=cos*‘1< -+ )
P o e e+ Ho

For a neo-Hookean material the first approximation indicates that the stresses in the
sheet at points near the inclusion will cease to be tensile at a value of § somewhat
smaller than ;. For values of § greater than this critical value, folding of the sheet
will occur and as 8 increases the sheet will wrap around the inclusion (assuming it is
thicker than the sheet).

The case of an infinite membrane with an elliptic rigid inclusion, semi-axes &,
b (& > b), under homogeneous deformation at infinity as before can be treated in a
similar fashion. In the case when there is no resultant force on the inclusion, we find
that

c .
e L T U

where

[ N e S | R

and &, » are the elliptic coordinates associated with the elliptic inclusion,

% = ccoshé cosy, x,=csinhésiny,

the inclusion boundary being given by

1 a-+b
§=f=7lgg—

with
ccoshéy=a, csinhé=0.

At the ends of the major and minor axes of the ellipse the extension ratios for
directions normal to the inclusion have the values

tla+b)—a ppla+0)—5b
b ¥ a )
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respectively. As in the case of a circular inclusion, u, and u, must be greater than
unity if the force resultants of the first approximation are to be tensile (for a neo-
Hookean material).

In thelimit & - 0 (@ - ¢, & - 0), the inclusion degenerates into a line inclusion or
splinter of length 2 ¢ along the x,-axis. On the line x; > ¢, %, = 0, the principal
extension ratio in the x,-direction is u, while the principal extension ratio in the
x,-direction is

o

(p— 1) '(’ 2)1/2 +1,

and this tends to co as the end of the splinter is approached.

The case when the major axis of the ellipse is initially inclined at an angle « to the
positive x-axis (|a| << #/2) and is at an angle # in the deformed state can also be
treated and the first approximation is readily obtained. The details may be found
in [8]. If the inclusion is free to rotate, the requirement of zero moment on the inclusion
after deformation requires the inclination f to be given by

In the limiting case of a splinter (b - 0), we have, for zero torque on the splinter,

tanf = £2 tana. (4.7)
1
In the pure strain which the sheet suffers at infinity, a line element initially at an
angle o to the x;-axis becomes inclined at an angle § to the x,-axis with f given by
(4.7). Thus the splinter and the line elements at infinity which were initially parallel
remain parallel during the deformation, according to the first approximation.
Another example considered in {8] is a circular material inclusion in an infinite
membrane under biaxial extension at infinity. The portion # < a of an infinite sheet
is composed of a different neo-Hookean material with material constant (_:—1 and initial

constant thickness ;LO. We use a bar to indicate quantities associated with the inclusion.
The functions y, 99 of the first approximation are harmonic in the regions 7 < &,
7 > a respectively, and they must satisfy the conditions

- = o oy
PO =D e 2 g, (;Vno at r=a

in order to ensure continuity of traction and displacement at the interface r = a. At
infinity the functions y{) again satisfy (3.3) with L* zero. It is found that

m) a? 1 — m)a? .
W= [1 + El -+ m; ,,z] cosf, vy =ps7 [1 + El + m;%] sinfl,  (4.8)
o 2 ) _ 2ps
i = (1_|_m) xlr yz - (1+m) %2, (49)

where m = (hy C,)/(hg C Cy).
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We note that the inclusion material is in a state of homogeneous deformation with
principal extension ratios 2 u,/(1 + m), 2 u,/(1 + m) along the x;- and x,-axes,
respectively, and the form of the first approximation y{ is independent of the size of
the inclusion.

The limiting case m - 0 corresponds to a sheet with a circular hole under biaxial
tension at infinity. Setting m = 0 in (4.8) we obtain

2 2
Yyt =y 7 (1 + %) cosfl, =7 (1 + %) sin@ . (4.10)

The extension ratio in the direction normal to the sheet is given by

=t [1- i‘;]‘l
B g 4

and as the boundary » = a is approached, A® becomes infinite. This singular behavior
of the first approximation in the presence of traction-free boundaries was discussed in
Section 3. We return to this problem in Section 6 after developing an alternative
approach in the next section for the determination of A®,

In order for the solution (4.8), (4.9) to be a reasonable approximation for neo-
Hookean materials the transverse extension ratios A0 and A® in the inclusion and
the exterior material must be smail compared to unity. From (4.8), (4.9), this implies
Uy s large and

m<2l/ﬂ1/“2—1-

We note that the limiting case m — oo lies outside the range of validity of the first
approximation. As m - co expressions (4.8) do not approach the values (4.1) of the
solution given previously for a rigid circular inclusion.

The case of an elliptic material inclusion in an infinite membrane under biaxial
extension at infinity is treated in [8]. When the major axis of the ellipse lies along the
%,-axis it is shown in [8] that outside the ellipse

y{ = 2H 2L (¢ 4 sy 07 cosyy, ) = Ll 22 (6 + 5,678 sing, (4.11)
and in the inclusion
ygl) = My S3 %y, yél) = Mg Sq Xg
where
(1 — m bja) (1 —ma/b) (1 +bfa) _ (4 af)

ST A play B T @1 BT Axmoja 4T I+ mab)

As in Section 4, £ and v are elliptic coordinates and ¢* = a® — b2, where 4, b are the
semi-axes, with a > b. The deformation of the inclusion is again homogeneous to a
first approximation and this feature of the solution still applies when the principal
directions of strain at infinity are inclined to the axes of the ellipse [8]. An analog in
two-dimensional electrostatics exists in the problem of an elliptic dielectric placed in
an electric field of uniform strength at infinity. The field produced in the dielectric is
uniform.
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5. Successive Substitutions for Traction-free Boundaries

When the membrane has an edge which is traction-free, it was found in Section 3
that the proposed method of successive approximations breaks down. As the edge is
approached J/® -0 and the partial differential equations for ¥ have a non-
integrable singularity when A® is taken as the inverse of J®. We note that the
material at a traction-free boundary is under simple tension so that on the boundary

h=2= ()= ‘”1)2 n (WZ )2]_1/4, (5.1)

0s° 0s®

where A, and 1, denote the principal extension ratios in directions tangential and
normal to the edge respectively.

In this section we describe an alternative method for the determination of a first
approximation A® to A which remains valid in the neighborhood of a traction-iree
boundary. In order to develop the method we introduce two stress functions ¢ and ¢
and we show that the locations v, can be found straightforwardly when ¢ and ¢ are
known. Although the functions ¢ and y can be obtained, in principle, by successive
approximation, and problems solved in this manner, the main use of the stress functions
here is to provide intermediate steps leading to the alternative procedure for deter-
mining a first approximation A®. When A® is known it can be used with the first
approximation y{, as before, in the equations for 42 and the method of Section 3
can then proceed as described. If the second and higher approximations are not
required, the first approximation ! being considered sufficiently accurate to describe
the deformed geometry, the method here leads to values for A0 which accurately
describe the thinning of the sheet, including both the interior and regions near
traction-free edges.

The equilibrium equations (2.5) imply the existence of stress functions ¢ and y
such that

O _ 0 55 0% 09 _ _ 9% | 43 0%
0%, 0%, 0x’ 0z, 0%, Ox;’ (5.2)
Op _ 0y 5 0 O 0% s 0% '
0%, 0%, 0%y’ 0%, 0%y 02y °
We then have, assuming that 4 + 1,
0%:“14@;_ 3 W) _%_:,;ﬁ(lgﬁz OW)
0x,y (1 — 2% \ 0%, ox, ]’ 0%, (1 — 29) 0%, 0x, )’ (5.3)
&=_Lﬁ(_ls 01/)_090) f’yz:_l_(_ LT 01;0) ’
dr, (1= 49 o, om )] ox, T (1 A9 o, o, )’
where 1 is given in terms of ¢ and ¢ by
ME— g7 =278 -~ M ([FVel+ [Py —ji+1=0, (5.4)

with
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Furthermore, compatibility of equations (5.3) requires

oy 0A% Oy 043 6 A8

2 — o gy o oA
Vo = o o, ~ oxy 0w, T
oA /[ O 5 Oy 0k (.5 Op Op
[0x2 (0x2 — 4 0%1) 0x, (l 0xy T 0%, )] ! (5.5)
o)
pa,— 0% Op 0 Op 62
V= o, owy  O0xy O, 175
oA op oy 04 oy 5 Op
. 3. —— IEAASER G SR F- S
X [()xz (}L 0%, 0%2) + 0%y (()xl A O, )]

Equations (5.5) constitute the governing differential equations for the functions ¢
and ».

At a boundary C% where traction components dL* are prescribed, the tangential
derivatives of ¢, y are prescribed through

0P 4o ary 0y o 4L} 0
o0 480 = ThC, 550 B° = Th . On Cr. (5.6)

In particular, for a closed contour &% which is free from traction, we have
g=const. =qa;, yp=const. =06, on =n°,

where a;, b, may be set equal to zero without loss in generality if #° is the only
traction-free contour. When there are N traction-free contours ngj n=12...,N)
say, then p=a,, py==5b, on n), (m=12..,N),

where a,, b, are constants. Only one of the constant pairs (,, b,) can, in general, be
set equal to zero, the others being determined by the condition that the integrals v,
of equations (5.3) be single-valued. If the sheet extends to infinity in all directions and
if the sheet is in uniform biaxial tension at infinity with extension ratios y;, u, along
the axes, then we have, from (5.2) and (3.3), as# > ¢

5o = TEn e B0+ ] o (0),

e =1 Gt Ty e~ eost] £ () (5.7
B g e gy [E 00 - ] o (7).

oa% -~y |LEcost+ fﬂsun)q +o(,)

where L¥* are the components of the resultant of all external forces acting on the
internal boundaries of the sheet.

Although traction boundary conditions are simplified by the use of the stress
functions, boundary conditions of place are rendered more complex. From (5.3) we
see that

oy _ 1 09 . 45 Oy oy _ 1\(_ Oy 3 09
o950 T (1—1‘67(07;0 +4 050)’ 050 T (1 — %) o A 050)’ (5-8)

and 0y*/0s® will be known on a boundary C% where y¥ are prescribed.
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When 4 < 1 a procedure similar to that of Section 3 can be used to find successive
approximations to the stress functions ¢ and y. The first approximations ¢@®, @ are
taken to be solutions to (5.5) with A set equal to zero. Like ¥, they are harmonic
functions in the domain in question. At a boundary C% where v, are prescribed to be
the functions y*, we can approximate to the boundary conditions on ¢®, y9 by
taking A to be zero in (5.8) and requiring

opt _ oyt opn _ oyt

0
ond  0s 2 I P on (p.

In contrast to the functions y, the functions ¢®, »® satisfy the exact conditions
(5.6) on ¢ and 9 at a boundary where the traction is given. With these boundary
conditions on the harmonic functions ¢, ', they will be harmonic conjugates of
y, y®, respectively, when y{ satisfy (3.2) on C% and y¥) = y* on C9, and this is in
agreement with setting 4= 0 in (5.2). This is not true, however, when the sheet
extends to infinity and conditions (5.7) are imposed because in this case the boundary
conditions at infinity, (5.7) on ¢®, »® and (3.3) on y¥, do not allow (p®, ¥{V) and
(wW, vi¥) to be conjugate harmonic functions.

A first approximation A® to the transverse extension ratio 4 is determined by
using @®, p® for @, w in (5.4), that is by the appropriate root of the algebraic
equation

M2 — @27 - 208 — QA [V |24 [Pyp® (2] — W4 +1=0 (5.9)
where

jo = og) gyt Ol Pyt

0x; 0%, Oxy  Oxy ~

When 4 <1 and §® is not small, terms of A* and higher in equation (5.9) can be
neglected for our purposes. Near a traction-free edge of the membrane, however,
1@ becomes small and vanishes on the edge and the term in A4 must be retained in the
equation even though 4 is still much smaller than unity. Thus the equation

P2 + [Py ]2 + @4 —1 =0 (5.10)

will determine A® with sufficient accuracy both on the boundary and inside the sheet.
Equation (5.10) has only one positive root when 7@ is positive. We remark that the
approximation (5.10) to equation (5.9) will not apply near a point in the sheet which
is unstressed. At such a point 2 = 1 and the derivatives of @, y vanish, equation (5.9)
being satisfied. Such stress-free points occur at projecting corners in a traction-free
portion of the boundary.

When (p®, y{¥) and (p®, y{) are conjugate functions, we can write (5.10) as

BROPYR PR+ PP P+ TP a—-1=0 (5.11)
with
oy oy oyl oy

Jo = Oy OV 9

0%,  Ox, 0xy 0%y
When J® is not small, the term in 4% can be neglected and we have

1

D) —
A ](1)
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which is the value given for A® in (3.4). On the traction-free edge J® is zero and A®
is determined by
1(1) - ”Vy(ll) ‘2 + “73’;1) ‘2]—1/4

or, since the normal derivatives of y{ vanish at the edge, by
=] 03! V(e F
0s° A os®
in agreement with (5.1). It is because ¢p® and p® satisfy exact boundary conditions
where traction is prescribed that equation (5.11) for AW yields reliable results up to
and including a traction-free boundary.
It may be noted that the stress functions ¢, g introduced in this section are directly

related to the Airy stress function used for two-dimensional stress fields. It is easy to
show that, save for a multiplicative factor,

Op . op . Oy . oy .
oy, —Tis, By, | fuo 0y, — Ty, By, Ty = Ths,
and
_ 0x . 0x
4 0y’ ¥ 0yy

where g is the usual Airy stress function.

6. Some Problems with Traction-free Boundaries

Several simple examples involving membranes with traction-free edges are
considered in this section and the application of the modified method is illustrated.

The deformation of an infinite membrane with a circular hole of radius  subjected
to uniform biaxial extension at infinity was considered in Section 4 as a limiting case
of a circular material inclusion. The first approximation (4.10) shows that after
deformation the hole of radius @ becomes an ellipse with major and minor axes of
lengths 2 u, @ and 2 y, a, respectively, u, being the larger of the two extension ratios.

The harmonic stress functions ¢®, w® which satisfy exact boundary conditions
at the hole 7 = a and at infinity are found to be

2
gW= 1y, 7 sin (1 — %) , W= —y,7cosh (1 - %2) (6.1)
where
— . M2 —_ . B
n=h (ty pa)®’ V2T e (1 12)®°

At the edge of the hole ¥ = a, we find that
A =20y} + 75— (i — 73) cos2 0]}

A special case of interest is the axi-symmetric deformation of an infinite sheet
containing a circular hole. In this case u; = yy = p and equations (4.10) assume the
simple forms

Y = o) cosh, ¥ =V (r) sinh; oM(r) =pur (1 + 7?:*) . (6.2)
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Because of the symmetry of the deformation, the exact formulation itself can be
greatly simplified. As in Section 4, if we assume y, to be given by (4.2), then n(#)
satisfies the ordinary differential equation (4.3). The condition (4.4) on do/dr at
infinity remains unchanged but at » = a, the traction-free condition requires

since

in this case.

Equations equivalent to (4.3) were obtained by RivLIN and THoMAS [4] and, by
successive application of Taylor series expansions starting from the edge of the hole,
they were able to find numerical solutions for given values of the circumferential
extension ratio p/r at the edge of the hole » = a. A more direct method is to integrate
equation (4.3) numerically, as in the rigid inclusion problem of Section 4. Figure 1

T T T T T

L —Exact B
o Approx

~|

7 1 1 L ] !
] 3 4
4
Figure 1

Variation of gfr with #/a for sheet with a circular hole under extension ratio u = 1.62 at infinity; exact and
first approximation values.

compares the exact numerical solution g/r and the approximate solution calculated
from (6.2) for all-around extension of moderate amount x4 = 1.62 at infinity, the
corresponding circumferential extension ratio at the hole being 3.0. A discrepancy of
109, occurs at the edge of the hole but the difference diminishes rapidly as # increases
and at a distance four times the radius of the hole, the difference is slight. The
transverse extension ratio 4 is plotted in Figure 2 against the radius, the approximate
values determined from ¢®, p® with y, = py = u through (5.10) being shown as
circled points near the curve for the exact values. It can be seen that (5.10) provides
good estimates for 4 over the whole range of 7. In contrast, values for 4 determined
from y{) through (5.11) are much less accurate and they are shown as crosses in the
figure.
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T T
— £xa0r )
o Approx, Fqustion (510) T
i * Approx, Equerion (511}

Figure 2
Variation of thickness ratio A for 4 = 1.62; exact and first approximation values.

Comparisons between the exact (numerical) solution and the first approximation
were also made for the case g = 3.03. Since the figures for g = 3.03 corresponding to
Figures 1 and 2 for g = 1.62 would show no difference between the exact and approxi-
mate solutions for either g/# or Z, the results are not shown here (the variation of p/r
with # for u = 3.03 is given in [4]).

The deformation of an infinite membrane with a traction-free elliptic hole of
semi-axes @ and b subjected to biaxial extension at infinity parallel to the axes of the
ellipse can likewise be obtained by setting m equal to zero in (4.11) which then becomes
Yy = % (a cosh& — b sinh§) cosy, Yy = %i%— (a coshé — bsinhé) sing . (6.3)
According to (6.3), the hole is again an ellipse in the deformed state with semi-axes
of lengths (2 + &) yy and {a + D) y,. When g, = u, = u, the hole is always deformed
into a circle of radius (a -+ b) p.

Stress functions ¢®, p® which satisfy exact boundary conditions at infinity and
on the ellipse are readily determined. It can be shown that the first approximation A®
to the transverse extension ratio / attains its extreme values

a 1/2 b 1/2
[(a+ bm] ’ [(u+ b)_y;'] ’
at the ends of the major and minor axes of the ellipse. When a u, = b g, the hole is
deformed into an ellipse of similar shape and since a y, and b y, are nearly equal the
edge of the deformed hole has nearly constant thickness.
In the limit as b goes to zero, the hole degenerates into a crack or slit of length 2 ¢
along the x,~axis. Setting b = 0 in (6.3) we have

Yy = 4, c coshé cosn = uy %, , V¥ = py ¢ coshé sing, (6.4)
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and we see that the crack & = 0 becomes an ellipse with semi-axes y, ¢ and g, ¢ in the
deformed state. It may be noted also that the transverse extension ratio A® has the
unique limit zero as the tip of the crack is approached. Equations (6.4) can be written as

[¢9]

YW =, Y =2 R b (P — A 4GP (6.5)

=i
Figure 3 indicates the deformation (6.5) for the sheet with a crack when y; = u, = 2.0.
Because of symmetry, only the first quadrant of the plane is shown. The solid lines

4 L. ] —
3+ \\\\ o
—\\
—
\\\\\'\—‘
IS n
Nanul
] \/mitia] grid spacing \\ B
) ]
crack
’ ; Tpasmm
J I Z 3 4

Figure 3

Deformation of a square grid near a crack; u; = u, = 2 at infinity.

initially formed a square grid of lines one-third of a unit apart. Initially the crack
extended from — 1 to 1 on the x;-axis, and it is deformed into a circle of radius 2
units. Vertical grid lines remain vertical and the deformation is most severe at the tip
of the crack, as expected. In a simple experiment, a square grid of lines approximately
0.1 cm apart was ruled on a piece of rubber sheet (cut from a cylindrical toy balloon),
the ruled area being approximately 5.0 cm by 3.5 cm. A slit 0.6 cm long was made
with a razor blade and the rubber was stretched so that the edges of the ruled area
were close to a state of all-around extension with extension ratio 2. The deformation

1
1
-4
---’---: :
o -
et w2 ot A
Lot S A B i o
g
Figure 4

Deformation of a square grid near a slit in a rubber sheet under all-around stretching with extension ratio 2.

ZAMP 20/13
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of the grid near the slit is shown in the photograph of Figure 4. The agreement between
Tigure 4 and the theoretical results indicated in Figure 3 is quite good, even though
the neo-Hookean form of the strain-energy function is inadequate for rubber-like
materials at large strains. A detailed experimental examination of the deformation
near a crack tip in a rubber sheet under moderate overall extensions has been made by
Kw~auss [117.

When the principal axes of strain at infinity are inclined to the x;-, x,-axes, we
require

y“=caﬁxﬁ+0(%> as r— oo, {6.6)
where c, 4 are known constants. If we define the harmonic functions z, through
Z; = rcb {@ coshé — bsinhé) cosy, z,= rcb {a cosh& — b sinh&) sing,

we see that z, = x, at infinity and the normal derivatives of z, vanish on the elliptic
boundary. The first approximation ¥ to y, for the sheet with an elliptic hole and the
deformation (6.6) at infinity is then y{) = ¢, ; z;. Under the deformation in which a
particle at the point x, goes to z,, the elliptic hole with semi-axes a, b becomes a circle
of radius (a + b). The transformation in which z, goes to y{!) subjects the whole plane
to the deformation at infinity. Thus according to the first approximation, under all
orientations the elliptic hole becomes an ellipse with semi-axes of lengths (@ + &) yy,
(a + b) u, parallel to the principal directions of strain at infinity, where u, and u, are
the principal extension ratios at infinity.

For a sheet with N holes bounded by contours %, # = 1, 2,..., N, we introduce
harmonic functions z, which have zero normal derivatives on zf, and which are such
that z, = x, at infinity. The first approximation to the deformation when (6.6) holds
at infinity will then be y = ¢, ;2,. If the contours @, obtained from =j, by the
transformation in which x, goes to z, are drawn on the undeformed sheet at infinity,
the holes in the stretched sheet will assume the same shape, orientation and relative
position as the contours s, drawn on the sheet at infinity.

The next example is related to the experimental determination of the stress-strain
relation in pure shear [6, 7]. A short wide strip of rubber is stretched between clamps
applied to the long edges of the sheet. The extension ratio in the direction of the width
of the sheet is then almost unity and the sheet is in a state of pure shear if the volume
remains unchanged. If the strip has width 4 and height b and the origin is taken at the
center of the sheet with the x;-axis along the width of the sheet, the harmonic
functions y¥ must satisfy the boundary conditions

oyg)
Oxy

=0 on % = i%,
and

b
1 1
W=, W=pxn on x=-=4,,

where ub is the height of the deformed strip. We obtain

o
w_ 4a (— L)» cosh(Zn+ V)aayfa . 2m+1
V1T n;: (2n+ 1)2 cosh(2n+ 1) xb/2a 1 a N (6.7)

=%~ Flx, %) , y(zl) = WU Xy
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where

45 o (=) sinh (2% 4+ 1) mayfb Zn+1
F(xl’”z)z”n?n;: GZn+1)% cosh (Zn Dmaj2b 7 b

T %y -

According to (6.7), lines of the sheet initially horizontal remain so after deformation
and the location y{! is independent of u. The shortening S of the line midway between
the clamped edges is given by

S = 0.742 2 x 100%,, (6.8)

which decreases with b/a but is independent of u. For b/a small, the extension ratio 4;
in the direction parallel to the clamped edges of the sheet is substantially unity, and
in the limit

h=1, dh=p, A=,

i
a state of pure shear.

Since the material at the free edges is in simple extension with extension ratio u
approximately, a better first approximation for y, is the harmonic function which
satisfies the boundary conditions

b oytn 1 a
R I T
Hence we have
1
W =, — (1 - T> Flxy, %) , (6.9)
7y
and the shortening S of the middle line is now given by
b 1
S=0742 (1 - T) x 1009% . (6.10)

If we write the second approximation y{¥ to y, as
w=n+o,
in which y{ is given by (6.9), then w satisfies the Poisson equation

Vi = —2myg,
with
3u oy ayH
= 2 T4 L W=, 21
0= g U 5 JP=n—5,—
The boundary conditions on o are

b ow a

w=0 on xZ:j:7, _5;7:0 on x1=j:—2—,
1

and we see that w will be zero on %, = 0.

Now as x; goes from 0 to @/2, J® decreases from u to Vpu so that 0J®/0x, is
negative for x; > 0. Because J@® is even in x;, we see then that ¢ is odd in %, and
negative for x; > 0. In the terminology of electrostatics, for x; > 0 the function w
is the potential of a distribution of (negative) charge with density p in a rectangular
sheet which has zero potential at three sides and zero charge line-density at the fourth.
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The total ‘charge’ in the right half of the strip is
b2 af2

b b
4 :/ _/Q iy dy = =5 [{JV)=" = T (1 —p3?).

—b/2 0

For b/a small, the change in /® from g at x; = O to l/,u at x; = a/2 occurs mostly in a
narrow band near the traction-free edge x; = /2. For a good estimate w* of w,
therefore, we can assume that all of the charge is concentrated along the line x; = a/2
with charge density

per unit length. Thus o* is the harmonic function which satisfies the boundary
conditions

w¥=0 on x =0, x,= i%, _‘)(;;’_j = _ﬁ(l_ﬂ—m) on x1=%-
It follows that
w0F =~ (1= @) Fla, %),
Vu
and with this value for @ we have
B = — (1 - ﬁlg) F(ry, %) - (6.11)

The same result can be obtained by means of the stress functions ¢ and ¢ [8]. We note
that the second approximation y to y, differs from y® by terms which are O(u~2),
in agreement with the estimate in Section 3.

According to (6.11), the shortening S of the middle line is given by

b 1
§=0742(1- ﬁ) % 100, . (6.12)

When afb = 15, S is 4.8%, when u is 6.2. In an experiment with a strip of rubber
having dimensions such that a/b = 15, TRELOAR [6] observed for u = 6.2 a shortening
of the middle line of 129, which is more than twice the theoretical value S = 4.8,
for a neo-Hookean material. RIVLIN and SAUNDERS [7] conducted a similar experiment
and they report a shortening of 39, for the extension ratio g = 2.2. The ratio afb for
the specimen employed in their experiment is not given in [7] but a figure suggests
that the ratio a/b = 20 was used. With a/b = 20 and x = 2.2, formula (6.12) predicts
a shortening of 2.99,.

The discrepancy between theory and experiment for the large extension ratio
w = 6.2 is due to the fact that the neo-Hookean form is not a good representation for
the strain energy function of the rubber for extension ratios greater than 2 or 3.
A better strain energy function for rubber is the Mooney form

F 1 1 1 o ac
U= oGy 2+ B+ gy + 7 5 + 5y + 4 E)]

where I = C,/C; and C,, C, are material constants. For a state of pure shear with
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Ay =1, Ay = p the stress resultant across the width of the strip is

[(1—/%) +F(ﬂ2—1)].

20,6

h= “

Even a small value for I" increases 7; significantly at large values of u. A greater
curvature is then required at the traction-free edges in order to provide the resultant -
T, in the middle of the strip, and the shortening of the strip is increased. With the
expression (6.11) for v, for a neo-Hookean material, numerical results for the case
a/b =15 and y = 6.2 show that straight lines initially vertical on the sheet remain
quite straight excépt in regions very close to the traction-free edges, within a distance
of the order of #/25. This is in contrast to the experiment of TRELOAR [6] in which
appreciable curvature was observed of vertical lines initially distant /5 from the
traction-free edges.

In order to superpose pure shear on simple extension, the strip is stretched in
simple extension in the x,-direction with extension ratio 1/A2 before the clamps are
applied [7]. The clamps are then moved apart so that the extension ratio in the x,-
direction becomes y while that in the x;-direction is substantially 4, throughout the
sheet. The first approximation for v, is

(

(1)
}2)—/’”52’

while a second approximation for y, is found to be
1
Y& — 2, [xl - (1 — W) Flxg, xz)] .
The shortening S of the middle line is then
b 1
S=0.742 > (1 - W) % 1009, .

As a last example, we consider a sheet which has, in the undeformed state, a sharp
corner with straight edges on one of its boundaries. The origin of the coordinate
system is taken at the vertex of the corner and the x;-axis is taken along the bisector
of the corner angle. For » <{ a, say, the boundaries at the corner will be the lines
0 = 4 «, where 2 « is the angle of the corner.

If the sides of the corner are traction-free, the harmonic functions ya(}) of the first
approximation have zero normal derivatives on § = 4 «. When y; = u; %;, V5 = s %»
on # = a, we have for r < a,

W _ A sino — 1)t (l)nnla n 7
Y1 *"‘4‘261/11511’10(2 “_[ =17 cos—= 0,

(6.13)

(1)_ (— 1)» y\@n+l)m2a | 244 1
Za/,azcosocz (Zn T a2 T (~) sin=———x 6.

For o > 7/2 the corner is re-entrant and the derivatives Oy )/0x4 in (6.13) become
infinite at the vertex. The corner is deformed into a smooth arc with a continuously
turning tangent at the boundary point which was initially at the vertex. The radius
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of curvature of the deformed boundary at this point is

a p3 costa  [(mfa)? — 1]
pisine  [L — (/2 )22

An example involving re-entrant corners (with o = 7) has been met earlier in this
section where an infinite sheet with a slit was treated. Under deformation the
boundary of the crack became a smooth curve.

For a < 7/2 the corner projects and the derivatives 0y{V/0x, vanish at the vertex.
For the material with strain energy U® this implies that the stress resultants vanish
at the corner. A neo-Hookean material would have small strains in the neighborhood
of the corner so that the first approximation y{! is not a good approximation near the
corner.

If a concentrated load L* acts at the vertex of the corner in the negative x;-
direction, the derivatives 0y.,/0x; will be O(r~*) as » -~ 0, and we require

o _ 0y2
lim o 7 d0 th rh_rf})/ rdf=0.

—a

For 7 < a the first approximation will be

+24 Sinocnél’ (=1)m+t (%)nnla COS% 6/[(%[)2 . 1] , (6.14)

m—ZczcosocZ( 1)» ( )(2n+1)”/2asin221'iaz 9/[(%;;)2~1],

when the edge 7 = a of the membrane is held fixed. This solution is valid for all values
of o less than s other than /2. For 7 small, we have

L*
) _
T 3 Cr

log +01), Yy =0F"%, as r—0.

Hence we see that the principal extension ratio in the x,-direction on the line § =0
has the limit zero as » approaches zero if o < 72, but for « > 7/2, the limit is infinite.

When « = 7/2, we have the case of a concentrated load acting normal to the
straight edge of a semi-circular membrane of radius « whose curved boundary is held
fixed. Expression (6.14) can then be written as

y(ll):Alog%Jru(r, 6, v =x,, (6.15)
where
_ 2L _ 2a N n+1(1“ 2
A—}TOC—I;, "= +2a‘£( 1) a) 0052%0/(4% 1),

so that % = O(1) as # > 0. According to {6:15), for small  straight lines § = constant
of the undeformed sheet become logarithmic curves while the circular lines = constant
become straight vertical lines in the deformed membrane.
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We note that since the outer edges § = +- 77/2 of the membrane are free of traction,
the material there is in a state of simple extension and for » small the extension ratio
is found to be

h=(1+ Az)mrwi.

S ¥2 ¥

Hence on the boundary near the load, 4 ~ (#/4)Y2, On the line § = 0 and for 7 small,
J ~Afr and 2 ~7[A. Since the principal extension ratio in the x,-direction is unity
in this case, we see that the central line § = 0 is in pure shear in a plane perpendicular
to the (r, 8) plane. Thus, for a neo-Hookean material, the curvature of the boundary is
sufficient to build up enough tensile transverse stress so that the material in the center
of the band is in pure shear even though the membrane in the neighborhood of the
load is stretched out into a narrow band.
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Zusammenfassung

Es werden grosse ebene Verformungen diinner elastischer Scheiben aus Neo-Hooke-
schem Material betrachtet und eine Methode der sukzessiven Substitutionen entwickelt,
um Probleme im Rahmen der zweidimensionalen Theorie endlicher ebener Spannungs-
zustdnde zu 16sen. Die erste Ndherung wird durch lineare Randwertprobleme fiir zwei
harmonische Funktionen bestimmt, und sie wird asymptotisch angendhert fiir sehr grosse
Dehnungen in der Ebene der Scheiben. Die zweite und die hoheren Anniherungen werden
durch Losung Poissonscher Gleichungen gewonnen. Es werden verschiedene Beispiele
behandelt, und fiir rotationssymmetrische Verformungen wird gute Ubereinstimmung
zwischen den Niherungen und den exakten Ldsungen gefunden.
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