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Zusammenfassung

Der Aufsatz beweist die Existenz einer Drei-Parameter-Familie von inhomogenen
Deformationen mit konstanten Deformationsinvarianten. Diese Deformationen lassen
sich in jedem anfinglich homogenen, transversalisotropen, inkompressiblen elastischen
Material durch Oberflichenkrifte aufrechterhalten.
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Stress Functions for Plane Problems with Couple Stresses

By Donarp E. CarrsoN, Dept. of Theoretical and Applied Mechanics, University of
Illinois, Urbana, Illinois, USA

1. Introduction

For plane problems and in the absence of body forces and body couples, the stress
equations of equilibrium for a continuum which can support couple stresses may be
written as

Oty

Oty
0x +

oy

when referred to rectangular Cartesian coordinates. In (1.1) 4, %4, ty, and £, are the
components of the stress tensor, and m, . and m, ; are the components of the couple strvess
tensor. The domain of these functions is some bounded region R of the #,y-plane. A direct
and elementary derivation of (1.1) has been given by MinpLIN [1]%). They can also be
reached by specialization of the corresponding equations for the three-dimensional case [2].
It is the purpose of the present paper to give the general solution of (1.1) in terms of
arbitrary functions (stress functions). In the non-polar case (identically zero couple
stresses), the well-known general solution was given by Arry [3]. It is important to
emphasize that since we are dealing only with the stress equations of equilibrium, all of our
results (except those in Section 4) are independent of any constitutive equations which the
stresses may be required to satisfy.
In Section 2 the stress function solution is derived and shown to be complete. The
degree of arbitrariness of the stress functions for a given set of stresses is then examined.
In Section 3 the stress functions are interpreted in terms of the resultant force and
moment transmitted across an arc in the body. This leads to necessary and sufficient
conditions for the stresses to satisfy in order that the stress functions be single-valued.
Finally, in Section 4 the stress function solution given by MINDLIN [1] for the case of
linearized elasticity is obtained from our general solutjon.
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2. Stress Function Solution

Here and in what follows, we will not state explicitly the smoothness requirements.

They may be readily inferred from well-known theorems of calculus; see, for example,
CoURANT [4].

1) Numbers in brackets refer to References, page 792.
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The following theorem, which supplies the stress function solution of (1.1), may be
confirmed by direct substitution.
Theorem 2.1. Define stresses through

oF G oG OF oH oH
Foomys= =%

txeTy; tyy"—é;‘, txy=7)§, Zfyxw—w;, mxzzoiy“ -G,

(2.1)

wheve F, G, and H ave arbitrary functions. Then these stresses satisfy (1.1).

The proof of the next theorem, which shows that every solution of {1.1) can be repre-
sented in the form (2.1), is actually the motivation for representation (2.1).

Theorem 2.2. Let the stvesses satisfy (1.1). Then theve exist functions F, G, and H on R
such that the stvesses can be vepresented by (2.1). Furthevmove, if R is simply connected, then the
stress functions I, G, and H will be single-valued.

Proof. According to the theory of total differentials [4], (1.1), implies the existence of a
function F (single-valued if R is simply connected) such that

oF 0F

txx:w, yx——ﬁ-

Similarly, by (1.1), there exists a function G such that

oG 0G
by= 5y = =gy -
Then (1.1),; can be written as
0 0
ﬁ(mxz'i‘ F)‘{‘W(myz'FG):O,

and hence there is a function H such that

0H . _oH
oy 0 Mwrt G=

My z + F =
This completes the proof.
It is of some interest to know to what extent the stress functions are determined by the
stresses they represent. This information is contained in the following theorem.
Theorem 2.3. Let a given set of stresses which meet (1.1) be vepresented accovding to (2.1)
by the stress functions F, G, H and also by the stvess functions F’, G’, H'. Then

F—F=F, G-G =G,, H—H =-Gyx+ F,y+ H,,

wheve Fy, Gy, Hy, ave constants.
Proof. By (2.1)

0 N_ O , 0 N 0 ,

a FoF) =g (F-F)=0, 2 (G-G)= 5 (G-G)=0,
0 , , 0 , ,
oy H - H)==(G=G), 4 (H—H)=(F-F).

Hence
F — F’'=const. = F;, G -— G’ = const. =G,,

H—-—H = —Gyx+ Fyy+ const. = ~Gyx + Fyy + H, ;

and the proof is complete.

It is worth noting that (2.1) may be regarded as a special case of GOUNTHER’s [5, 6]
stress function solution of the three-dimensional equilibrium equations. Also, it is a trivial
matter to write (2.1) in invariant form.
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3. Resultant Force and Moment

Guided by TrRuesDELL's and TouPIN’s [2] treatment of MicHELL’s [7] work in the
non-polar case, we now give a physical interpretation of the stress functions in terms of the
resultant force and moment on an arc in the body.

Consider an element of arc i dx + §j dy, where 4 and j are the unit vectors along the
%- and y-axes, respecitvely. Since a unit normal to this element of arc is ¢ dy/ds — j dx/ds,
the components of the stress vector and the couple stress vector on the element of arc are
given by

dy ax dy dx
by = byy . tyx s by = tey s tyy gs (3.1)
and
d: dx
Wy = Myz Ziﬁ — My s’ (3’2)

respectively. Equations (3.1}, (3.2), and (2.1) vield

_dF _dG

d
= I = — = — . .3
a5 y s My — Vi, + xt (H—y F+xG) (3.3)

i
* ds

Next let (¥, ¥;) and (x,, ¥,) be any two points in R, and let I" be any simple arc
contained in R directed from (x, ¥,) to (#,, ¥,). Then the components of the resultant force
and the vesultant moment (about the origin) transmitted across I measured per unit
thickness of the body are

Ty = [ teds, T,HI')=][tds, (3.4)
I'/ ’ 1'"/ ’
and
M) = /(mz — Y+ xty)ds, (3.5)
r

respectively. The following two theorems are immediate consequences of (3.3), (3.4),
and (3.5).
Theorem 3.1. Let I' be a simple arc divected from (x1, y,) to (x5, v,) as above. Then

F‘(xmyz) - F‘j(xl, w = L), G‘,(xz, yo) Gi(xl,y.) =TI,

(H—~yF+xG) (H—y F+xG)| M) .

f(xz: vo) (%1, 1) -

Theorem 3.2. A necessary and sufficient condition that the stress functions I, G, and H
be single-valued is that the stresses be totally self-equilibrated in the sense that

T,(C) = T,(C) = M.(C) = 0

for every simple closed contour C in R.

Of course it follows immediately from (1.1), (3.1), (3.2), (3.4), (3.5), and the divergence
theorem, that if the boundary of R consists of a number of simple closed contours; then
the stresses will be totally self-equilibrated if and only if the resultant force and resultant
moment on each of the bounding contours vanishes.

4. Linear Elasticity and Mindlin’s Solution

In particular theories of materials, the stresses are required to satisfy certain conditions
of compatibility as well as the equilibrium Equations (1.1). In the linear theory of elasticity
[1], one of the compatibility equations is

omy , My
© = 4.1
ox oy (+1)
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Equation (4.1) implies the existence of a function K such that

0K oK
Maz= 5, Wy, = By (4.2)
By (4.2) and (2.1)
0H 0K 0H 0K
F=% o "~ "oy *3)

Thus from (4.2), (4.3), and (2.1) the complete solution of the equilibrium Equations (1.1)
and the compatibility Equation (4.1) is

L _OH K eH 0K

T 0yt T oxoy’ “~0x2+0x0y’
. _OH _ 0K  ®H | K 0K 0K
T T oxoy  oyr’ VYT T ox oy ox * THET Gy m”z—()y’

where the stress functions H and K are arbitrary. This is MINDLIN’s [1] solution. Of course
if the rest of the compatibility equations are taken into account, then H and K will have to
satisfy certain differential equations.

Note Added in Proof, November 4, 1966: After this paper had gone to the printer,
Professor ScHAEFER informed me that some of its results are contained in his Versuch
einer Elastizitdtstheorie des zweidimensionalen ebenen Cossevat-Kontinuums, Miszellaneen
der Angewandten Mechanik, 277-292, Akademie-Verlag, Berlin 1962. However, I have
not yet been able to obtain this work and thus do not know to what extent the two
papers overlap.
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Zusammenfassung

Die I.osung der zweidimensionalen Gleichgewichtsbedingungen fiir ein Kontinuum,
das Spannungsmomente aufnehmen kann, wird mit Hilfe von willkiirlichen Spannungs-
funktionen gegeben. Die Spannungsfunktionen werden mit Hilfe der resultierenden Einzel-
kraft und des resultierenden Momentes gedeutet, welche durch einen Bogen im Kérper
iibertragen werden.
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