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A family of polytopes, correlation polytopes, which arise naturally in the theory of probability and 
propositional logic, is defined. These polytopes are tightly connected to combinatorial problems in the 
foundations of quantum mechanics, and to the Ising spin model. Correlation polytopes exhibit a great 
deal of symmetry. Exponential size symmetry groups, which leave the polytope invariant and act 
transitively on its vertices, are defined. Using the symmetries, a large family of facets is determined. A 
conjecture concerning the full facet structure of correlation polytopes is formulated (the conjecture, 
however, implies that NP-co-NP).  

Various complexity results are proved. It is shown that deciding membership in a correlation polytope 
is an NP-complete problem, and deciding facets is probably not even in NP. The relations between the 
polytope symmetries and its complexity are indicated. 
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I. Correlation polytopes 

1.1. Definitions and notations 

Let n~>2 be  a n a t u r a l  n u m b e r  a n d  let Sc_Kn={{i , j } ;  l<~i<j<~n}. We shal l  

d e n o t e  by  (n,  S)  the  ( s imple )  g r aph  whose  ver t ices  are 1, 2 , . . . ,  n a n d  edges  {i,j} ~ S. 
Let ~ ( n ,  S) d e n o t e  the  real  l i nea r  space  o f  all f u n c t i o n s  f :  {1, 2 , . . . ,  n} u S-~ ~ ,  

c lear ly  d i m ~ ( n ,  S ) = n + ] S ] ~ ½ n ( n + l ) .  We shal l  d e n o t e  vectors  in  ~ ( n ,  S) by  

f = ( f l ,  f2,  - • •, f~, • • •, f j , . . - )  where  the  n u m b e r s  f j,{ i, j} c S, a p p e a r  in  l ex i cog raph ic  

o rde r  o n  the  i , j ' s .  

F o r  e - - ( e l ,  e 2 , . . . ,  e , ) c  {0, 1}', let u ~ d e n o t e  the  fo l l owing  vec to r  o f  ~ ( n ,  S):  

u~=ei, l<~ i~n ,  u~.=ei% { i , j }cS .  (1.1) 

Def in i t ion  1.1. The  c o r r e l a t i o n  p o l y t o p e  c(n, S) is the  (c losed)  c o n v e x  hul l ,  in  

~ ( n ,  S),  o f  the  vec tors  u ~, e c { 0 ,  1}'. I n  case S=K, ,  is the  set o f  all  pa i rs ,  we p u t  

c(n, K , )  = c(n). c(n) is the  " fu l l  co r r e l a t i on  p o l y t o p e " .  

The  c o o r d i n a t e s  o f  each  vec to r  p ~ c(n, S) are b o u n d e d  b e t w e e n  zero  a n d  one.  

H e n c e ,  it is o b v i o u s  that  each  vec to r  u ~ is a ver tex  o f  c(n, S). The  n a m e  " c o r r e l a t i o n  

p o l y t o p e "  is jus t i f i ed  by  the  fo l l owing  theo rem.  
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Theorem 1.1. Let p c ~(n ,  S) then p • c(n, S) if and only if there exists a probability 
space (X, ~, IZ ) and (not necessarily distinct) events A1, A2, . • . ,  A ,  • 2 such that 

p , = ~ ( a , ) ,  l<~i~n,  p~j=l~(Aic~Aj), { i , j } •S .  

Proof. Suppose there exists a probability space (X, 2,/~),  events A ~ , . . . ,  A, • Xs.t. 
tz( Ai) = p,, i = 1, 2 . . .  n, ~ ( Ag c~ Aj ) = Pij, { i, j} ~ S. For an arbitrary B c ~ put B ~ = B, 
B ° = B = X \ B ,  and for e = ( e l , . . . ,  e , ) • {0 ,  1}" put A(e)=A~'c~A~2c~ ' ' '  c~A~°. 
Then clearly, A(e)c~A(e ' )=O for e # e ' ,  and U~o, lv ,  A ( e ) = X .  Also, A~= 
U~0,1)" {a (e ) ;  e~ = 1}. Put h ( e ) = t z ( a ( e ) ) ,  then h(e)~>0 and ~ 0 , 1 ~ .  h ( e ) =  1, 
p~=~(A~)=Y~(o,~" h(e)e~, pu=l~(Ai~Aj)=Z~c(o.ay, h(e)eiej, for i = 1 , 2 . . ,  n 
and { i, j} ~ S, hence p = Y, 3, ( e ) u" ~ c ( n, S). Conversely, suppose that p c c ( n, S), then 

we can represent p = Y ~ ( o , ~ ; , h ( e ) u  ~ where 3`(e)>~0, ~ ( o , ~ , , 3 ` ( e ) = l .  Let X =  
{0, 1}', let Z be the power set of X, define ~ ( B ) = ~  3`(e) for all B___ X. Put 

A i = { e [ e i =  1}; then 

~(a~)--  ~ h(e)e~=pg and /~(Agc~A~)= Z h(e)e~ej-=p~j. [] 
s¢{0 ,1}  n e~{0 ,1}"  

From the "subjectivist" point of view of probability the polytope c(c, S) can be 

interpreted as follows: let Xl, x 2 , . . . ,  x, be distinct Boolean variable, or "atomic 
propositions", and consider the conjunctions "x~ and xj", { i , j } •  S. Each e • {0, 1)" 
represents a truth value assignment to the propositions xb .  • •, x,,  and thus also for 
the pairs "x~ and xj". Hence, the vertices of e(n, S) are all the possible truth 
assignments, and every p • c(n, S) is nothing but a weighted average of these truth 
assignments. This intuition will enable us to associate membership in c(n, S) with 
a satisfiability problem, since a (complex) proposition is satisfiable if and only if it 

can be assigned positive probability in some probability space. 
The polytope c(n, S) has non-empty interior. To see that, consider the vectors u ~ 

for 

e = ( 0 , . . . , 0 ,  1 , 0 . . . 0 ) ,  l ~ i ~ n ,  

and 

i J 
e = ( 0 . . . ,  1 , 0 . . . ,  1 , 0 . . . 0 )  for{ i , j }cS .  

There are n + [S I such vectors, and it is clear that they are linearly independent in 

~(n, s). 

1.2. Examples 

(a) For n = 2, S = {{1, 2}}, c(2, S) is the simplex in ~(2 ,  S) with vertices (0, 0, 0), 
(1, 0, 0), (0, 1, 0) and (1, 1, 1). The inequalities for c(2, S) are 

O<~Pl2~min(pbp2), pl+p2-p12<~ 1. 

(b) Let n =3 and S = {{1, 2}, {1, 3}, {2, 3}}. The inequalities for c(3, S) = e(3) are 

O<~p~j~min(pi, pj), 1 ~< i<j~<3,  

pi+pi-p~j<~l, 1 ~< i<j~<3,  
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Pl +P2 +P3 --P12 --P13 --P23 ~< 1, 

Pl --P12 --P13 +P23 ~ 0, 
(1.2) 

P2-P12-P23 +P13 ~ O, 

P3 --P13 --P23 +P12 ~ 0. 

Necessity follows directly from the fact that all u ", e = (el, e2, e3)e {0, 1} 3 satisfy 
these inequalities. As for sufficiency, let p satisfy all these inequalities, and let ~7 be 
a real number (which will subsequently play the role of /x(A1 c~A2c~ A3) in the 
notations of  Theorem 1.1), 

~< min{p~2, P13, P23, 1 - (Pl +P2 +P3 -P12  -P13  -P23)},  

/> max{0, -p~ +p12+P13, -p2+Pl2+P23,  -p3+P13+P23}. 

Such a choice is possible because of the above inequalities. Now define A(e )=  

A(E1, e2, E3) by 

A(O,O,O)=l- - (p~+P2+P3--p~z- -P13- -P23)- -n ,  A(1, 1, 1)= n, 

h (100) = n + (Pl - P ~ 2  - P 1 3 ) ,  

h (010) = r /+ (P2-P12-P23), 

A (001) = "q + (P3 --Pl3 --P23), 

It is easy to see that 

A ( ~ ) ~ o ,  ~,1~3 x(~)  = 1, 

h ( l l 0 )  =P12-  ~, 

h(101) =P13 - B, 

A(011) =P23 - ~- 

Y h(~)u ~ =p. 
ec{O,l} 3 

I shall call this polytope the Bell-Wigner polytope. Inequalities (1.2), and some 
of  their generafizations, play an important role in the controversy concerning the 
interpretation of quantum theory [ 1-8]. 

(c) Clauser et al. [3], and following them Clauser and Horne [4], extended (1.2) 
to the following case: let n = 4 and S - {{1, 3}, {1, 4}, {2, 3), {2, 4}). The following 
inequalities are necessary and sufficient for p c Y~(4, S) to be an element of c(4, S): 

O<~pij<-min(p~,pj), i = 1 , 2 ,  j = 3 , 4 ,  

p i + p j - p ~ j < ~ l ,  i - -1 ,2 ,  j = 3 , 4 ,  

- 1 ~p13+P14q-P24-P23 - P l  - P 4  ~ O, 

-- 1 ~ P23 q- P24-~- P 1 4 - -  P l  3 - P 2 -  P4 <~ O, 

- 1 ~ P14 -~-P13 +P23 -P24  - P l  - P 3  ~ 0, 

- 1 ~ P24 q-P23 q-P13 - P l 4  - P 2  - P 3  ~ 0. 

The inequalities (1.3) are called the Clauser-Horne inequalities. 

(1.3) 
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Sufficiency was proved by Fine [5]. Mermin and his students attempted to 
generalize these inequalities to higher dimensional cases. In particular, one should 

mention [6] where the first connection between Bell-type inequalities and linear 

programming is made. Correlation polytopes were introduced in [7]. There, the 

relation between these polytopes, classical logic, and quantum logic is indicated. 

(See also [8].) 

1.3. Ising spin 

Another, less apparent  source of correlation polytopes, has to do with the ising spin 

model. This model is used in a variety of  applications: in statistical mechanics to 

model spin glasses [9], in the theory of computation to model "connectionist" 

computers,  or even the collective action of neural networks [10]. The amount  of 

published work on these issues is vast. 
An ising spin system is a set of  n cites, at each cite i there is a component  capable 

of  taking two ising spin values e~ = 0 or e~ = 1 (often the values +1 are taken, but 
the transformation is clear). Between the ith and j th  cites there is an "action 

potential" J~j (a real number) ,  and sometimes the ith cite is subjected to an "external 

field" J~. If, at a given moment  the values of the ising spins are given by e = 

(el . . . .  , en) ~ {0, 1} ~, the energy of the system at that moment  is 

n 
W ( E ) :  ~ J i e , +  Z J i j e i E j  • 

i--I i~ i<j~n  

A typical combinatorial problem associated with the model is to determine the 

minimum energy of a given ising spin system (minimum, that is, over all possible 

configurations e ~ {0, 1 }"). To see the connection with correlation polytopes, consider 

the vector (J l , .  - - ,  J , ,  . . . ,  J(~,. . .)  ~ ~ (n ,  K, ) ,  where K,, is the set of all pairs. Rather 

than taking the discrete optimization problem of the minimum energy, consider the 

linear program 

minimize 
n 

Y~ J,p, + 2 Ljp,j 
i=l l ~ i < j ~ n  

subject to the constraint that p = (Pl, • • •, P,7,. - . ,  P~j . . . .  ) ~ e(n). 

The linear program and the discrete problem are clearly equivalent. I f  we attempt 
to use linear programming in order to establish the minimum energy of the ising 

spin system, we have to compute first the facet inequalities for e(n). The minimum 
energy problem was proved to be NP-hard by Barahona [11]. I shall provide a very 

short proof  of this fact in the third section. This seems to indicate that deriving all 

inequalities for c(n) is a very difficult task. 

1.4. Boole' s problem 

The search for the facet inequalities of  c(n) has a long history, though the problem 
had been phrased in a probablistic rather than geometric terminology. Let (X, -Y, tz) 
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be a probabili ty space, and let A1, • . . ,  A ,  c ~. A typical question asked by George 

Boole [12] is the following: suppose that we are given the values of  pi=/z(A~) 

1 ~< i ~< n, but have no further information. What then is the best possible estimation 

o f / z ( A  1 w "  " " W A, )?  The answer is 

m a x [ p ~ , . . . , p , ] < ~ t x ( A ~ w .  • . u  A , ) < ~ m i n [ 1 ,  pl + • • • +p , ] .  

Boole considered other similar problems, attempting to derive the best possible 
bounds for the probabili ty of  certain Boolean functions of  events, given the values 
of  others. He often applied methods which can be identified today as primitive 

forms of linear programming.  (Further details on this can be found in [13, 14].) 

Consider the following generalization of Boole's problem: given the values of  

p~ =/x(Ai) ,  1 <~ i ~< n, and p~j = tz(A~ c~ Aj ) ,  1 <~ i < j  <~ n, but no further information, 

what then is the best lower bound for t z ( A ~ w A 2 w  . . .  u A , ) ?  Following the 

notations of  Theorem 1.1 we know that t z (A I  w A 2 w  . "  w A , ) = ~ . ~ o  A(e), where 
for each 0 # e c {0, 1 }" : Z ( e ) I> 0 and Y, ~ A (e) e~ = p~, ~ ~ A (e) e~ej = pij. Hence, the best 
bound is given by the linear program 

min Z A(e). 
e ¢ 0  

Constraints: 

a(~)~>0, E ,x(~)~, =p,, 
eC{0,1} n 

The dual program is 

max xipi + ~ xijpij • 
i 1 l<~i<j<~n 

2 A (e) e~ej = p~j. 
e~{O,l}" 

Constraints: 

--00 < Xi ' Xij, < (30 ~ x~e~ + ~ x~je~ej ~ 1 for all e ~ {0, 1} n. 
i--I  l~ i< j<~n  

By assumption, p = ( P l , . - - ,  P , , . . . ,  P ~ j , . . . ) ~  c (n ) ,  hence the primal and the dual 
are both solvable, and have identical optimal value ~<1. Note that the constraints 
of  the dual program define the polar c*(n)  of c(n): 

i = 1  I ~ - i < j ~ n  

c* (n )  is obviously unbounded.  Since 0 is an element of  c ( n )  - -  albeit not an internal 

p o i n t - - w e  have (c* (n ) )~=  c(n) .  Therefore, the extreme points of  c*(n)  define 
facets of  c (n ) ,  indeed, all the facets of  c ( n )  of  which 0 is not an element. We shall 
see that unless N P = c o - N P  the determination of  these facets is an intractable 
problem, and therefore the above form of Boole's problem is probably intractable 
as well. 
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Some lower bounds for/x(A1 w . ' '  u An), given the values of pi, Pij have been 
known for years. Bonferroni [15] proved 

Pi-  • pij~l~(A~w " . .  w A,,). (1.4) 
i=1 l<-i<j~n 

Chung [16] generalized this formula: 

2 
2 ~ p~j<~tz(Aa~ ' ' '  u A~) (1.5) 

Pi k (k+ 1) l~i<j~n k+l i=i 

whenever 1 ~< k <~ n - 1. We shall see that these inequalities give rise to exponentially 

many independent inequalities when we apply the symmetries of  c(n). Some of 

these facts were summarized in an influential monograph by Fr6chet [17]. Research 

on this problem continues to the present day [18-21]. 

1.5. Statement of results 

It is easy to see that every face of c(n, S), So_ K, induces a face of  c(n), so that 

c(n) reflects in its face structure all the polytopes c(n, S). c(n) has a large symmetry 

group, of  cardinality n !2", which operates transitively on its vertices. I shall identify 

these symmetries in Section 2.1. Using the symmetries we can prove that the edge 

graph of e(n) is the complete graph on 2 ~ vertices. 
If  we manage to guess one inequality for c(n),  we automatically establish exponen- 

tially many facets by application of the symmetries. In Section 2.2 a large family 

of  facets of  c(n) is determined, a conjecture regarding the total facet structure of  

e(n) is formulated. As we shall see, this conjecture entails that N P =  co-NP, so it 
is probably false. In Section 2.4 some generalizations are proved. Chapter  3 is 

devoted to a complexity study, where the following decision problems are considered 

CORRELATION 

Instance: a (rational) vector p • R(n, Kn) (Kn-is the set of  all pairs). 
Question: is 'p • c(n)? 

I shall prove that CORRELATION is NP-complete.  This means that unless N P =  
co-NP, deriving all the inequalities for c(n) is an impossible task. The situation is 
even worse in a sense; consider the following decision problem: 

CORRELATION FACET 

Instance: an inequality (a, x ) ~  < b, where a • R(n, Kn) and b are integral. 
Question: is it a facet of  c(n)? 

It follows from Barahona 's  result [11], in conjunction with the theorem of Karp 
and Papadimitriou [22], that if CORRELATION FACET • NP, then NP- -  co-NP. 

A short proof  of  Barahona 's  theorem and this consequence is given in Section 3.4. 
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2. Geometry 

2.1. The groups I(n, S) and A(n, S) 

Let p6c (n ,S ) ,  by Theorem 1.1 there is a probabili ty space ( X , ~ , ~ ) ,  events 

A b . . . , A , ~ , ~ , ,  such that ~(Ai)=p~, tx(A~nAj)=pu,  for l ~ i ~ n  and {i, j}6S. 
Consider the t ransformation Ai ~.4~ = X\A~ for some fixed i. We have Iz(A~) = 
1-~(Ai) and /~(.4i ~ A j ) =  t z (Aj ) - t z (A~nAj) ,  hence the affine transformation o-i 

defined on ~ ( n ,  S) by 

(o'ip)i = 1 -Pi, 

(o-~p)i=pj, j ~  i, 

(cr~p)~j =pj-pi j  for all j such that {i,j}~ S, (2.1) 

(o',p)jk=pjk, {j, k}e S, ~h k ¢ i, 

leaves the polytope c(n, S) invariant. Obviously, o-~ is the identity, and o-~, i =  

1, 2 , . . . ,  n, generate a commutat ive group of  involutions isomorphic to Z(2 "~. We 
n e ,  

denote this group by I(n, S). For e = ( e b  e 2 , . . . ,  e~)¢{0, 1} ~ put tr(e) =[Ii=1 cri', 
and the ~(e) ,  e ~ {0, 1} ~, are all the distinct elements of  I(n, S). Obviously, the 

elements of  I(n, S) t ransform a vertex of c(n, S) to another vertex. Moreover,  the 

group I(n, S) acts transitively on the vertices of  c(n, S): if u ° = 0 then tr(e)u ° = u ~. 
Consider next the automorphism group of  the graph (n, S), that is, the group of 

permutat ions 7r:{1,2 . . . .  , n } ~ { 1 , 2 , . . . , n }  such that { i , j }~S if and only if 
{rr(i), ~r(j)} ~ S. Each such automorphism ~r induces a linear map on ~ ( n ,  S), which 

we also denote by 7r, by f ~ f=(o ,  1 ~< i<~ n, and fij-->fTr(i),Tr(j) for {i, j} ~ S. Clearly, 
the transformation 7r leaves the polytope e(n, S) invariant, since its effect is to 

permute the events A b .  • •, A..  Obviously, ~r maps a vertex of ¢(n, S) to another 

vertex. Denote by A(n, S) the group of all transformations induced by the 

automorphisms of the graph (n, S), and let G(n, S) be the group generated by both 
A(n, S) and I(n, S). The mixed action of  the groups I(n, S) and A(n, S) is easy to 

identify, if 7r e a(n, S) and o-(e) = I~7=1 °'7i E I(n, S), then 7rtr~ "-~ = I-IT=l ° '~(i)  so  
that I(n, S) is normal in G(n, S). 

In case S = K.  is the set of  all pairs, we denote I(n, K.)  = I(n), A(n, K . )=  A(n) 
is the full permutat ion group A(n)~-S. ,  and G(n, K . )=  G(n) has cardinality n I2". 

Using the symmetries we can easily prove: 

Lemma 2.1. Let e 1, e26 {0, 1} n, e I ¢ e2; then the interval joining u ~' and u ~ is a face 
of  c(n), so that c(n) is a 1-neighbourly polytope. 

Proof. The lemma is valid if and only if the interval joining ~?u ~' and ~Tu ~2 is a face 

of  e(n), whenever ~7 e G(n). Take ~ = ~r(el), then o'(el)u ~' =0,  apply a suitable 
permutat ion ~ so that ~ t r (e l )u  ~2= u a, for ~ of  the form 6 = ( 1 , . . . ,  1, 0 , . . . ,  0), that 
is 6 i=1  for l ~ < i ~ k  and 6 i = 0  for k < i ~ < n ,  k /> l .  Since zr0--0, it is sufficient to 
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prove that  the interval joining the origin with u a is a face o f  c(n), where 6 has the 
above form. Put 

1 6 - - 1 t ~  
p = s u  1-~u. (2.2) 

We shall show that (2.2) is the unique representat ion o f  p as a convex combinat ion  

o f  the vertices of  c(n), and conclude.  

We have p~=½, 1<~ i<~k, p , = 0 ,  k<i<~n,  p~j=½, l<~i<j<~k,  and p,j=O for i >  k 

or j >  k. Suppose  that  p = ~ e c { o , 1 }  n t ~ ( E ) u  e, where h ( e ) > 0  and Y~,<o.~}" h ( e ) =  1. 

Then h(e)=0 whenever  there is k<i<~ n for  which ei = 1. I f  k =  1, then h(e)=0 
for all e # 0, 6, and a ( 0 ) =  A(3)=½, so the representat ion is unique. I f  k~>2, then 

P~ = Pu = Pi = ½ for all 1 <~ i < j  ~< k. Let 1 <~ i < j  <~ k; then a (e)e~ ¢ 0 entails h (e)e,ej ¢ 
0, therefore a (e) > 0 and e, = 1 entails ej = 1 for 1 ~< i < j  <~ k, hence A (e) ¢ 0 if and 

only if e = 0 or e = 3, in which case a ( e ) =  ½. 

2.2. Some facets of  c(n) 

The poly tope  c(n, S) is obta ined from c(n) by a project ion;  simply by dropping  the 

coordinates  p,j{ i , j}~ S. It follows that every face of  c(n, S) induces a face of  c(n). 
Hence,  the face structure o f  c(n) reflects the face structure of  c(n, S) for S c_ Kn. 

Let 1 ~< k<~ n and let A1, A 2 ,  • • . ,  Ak be events in a probabil i ty space (X, ~, /x) ,  then 

we have by Bonferroni  inequalities (1.4), 

k 

E t z (A~) -  ~ Ix(A;c~Aj)<~l~(A, w A 2 u  "" "wAk)<~l .  
i--1 l ~ i < j ~ k  

Hence if p ~ c (n), we must  have Y~ ~_ 1 Pi - Y~ 1 <_,<j<- k Pij <~ 1 for all 0 ~< k <~ n. I f  this is 

valid for p this must  also be valid for ~rp and rrp for cr c I (n )  and rr e A(n) .  Summing 

up these facts we conclude:  

E (o'p), - E (~rP)u ~< 1 (2.3) 
,~ce i<j 

i j~ 

for all-non empty subsets a c {1, 2 , . . . ,  n} and all involutions ~ c I (n) .  To see how 

these inequalities work take ~ ={i} then (2.3) reads p i ~  1, take a ={ i , j}  then 

p,+pj-p , j<~ 1; applying 0 5 to this inequali ty we get ( 1 - p , ) + p j - ( p j - p i j ) < ~ l ,  or 

p,j ~< p,, similarity PtJ <~ P~ ; applying ~r~o'j we get (1 - p, ) + ( 1 - pj ) - ( 1 - p, - pj + Po ) <~ 
1, or Pu >~0. Take a = {i,j, k}, then P~+Pj+Pk-Pii--P,k--Pjk <~ 1, which is the first 
of  the Bell inequalities (1.2); apply or, to obtain p , - P u - P , k - P j k  ~> 0, which is the 
type of  the other three Bell inequalities (1.2). 

Let c*(n) denote the polar  of  c(n). We have already noted that  since 0 c  c(n),  
we have (c*(n))* = c(n). Using this fact we shall prove: 

Theorem 2.2. I f  {a I ~ 2, inequality (2.3) represents a facet of  c(n). 

Proof. We assume n >13 (for n = 2  the characterizat ion of  c(2) is trivial). Let 
f ~ ~ ( n ,  Sn) be the vector  which is 1 in the coordinate  i and zero elsewhere, and 
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f j  • ~ ( n ,  S , )  the vector which is 1 in the coordinate  {i , j )  and zero elsewhere, let 

2 ~  < k ~  < n, put  F ( k ) = ~ i k l f - - ~ l ~ i < j ~ k f J "  We shall prove F (k) is an extreme point  

o f  the po lyhedron  c*(n).  Suppose  F (k~ =½a +½b for  a, b • c*(n),  that  is (a, u~)<~ 1 

and (b, u ~ ) ~  < 1 for  e e{0,  1} ~, we shall show a = b = F (k~. Let 1 <~ i f  k, and take 

e • {0, 1} ", which is 1 in the ith coordinate  and zero elsewhere, we get (a, u ~) = a~ ~< 1, 
= and similarly, b i l l  but  + b ~ ) = l ,  so that a~=bi 1, l<~i<~k. Also, suppose 

k'< n, and let 1 ~< i~< k, k < l ~  < n. Let e be 1 on i and l and zero elsewhere, then 

ai + a~ + a~t ~< 1, or al + a ,  <~ 0; similarly, bt + b. ~< 0, but  a~ + bl = 0, a ,  + b~l = 0, hence 

a t + a , = 0 f o r l ~ < i < ~ k a n d k < l < ~ n .  W e k n o w k > l .  Let l ~ < i < j ~ < k ,  t h e n a ~ + a j +  

a u <~ 1, a~ = aj -- 1, hence a~j <- - 1 ;  also, b u ~< - 1 ,  but  ½(a u + bu) = - 1 ,  hence a u = b u = 

- 1 ;  therefore,  the case is p roved  for k = n. Take 1 <~ i < j  ~< k, k < l<~ n, then ai + aj + 

at + au + a .  + aj~ <~ 1, but  a~ = aj = 1, a u = - 1 ,  therefore al + a~l + aj~ <~ O; also, bl + b~l + 

bjl <~ 0 and al + bl = O, air + bil = hit + bjl = 0, hence at + a.  + ajl = 0; but we proved 
a~ + a , - - 0 ,  hence aJ~ = 0, and thus a~ = 0; and the case is proved for k = n -  1. For  

k < n - 1 take k < l < r <~ n and 1 <~ i <~ k, then a~ + a~ + a~ + a~ + a~ + alr ~ 1 ; substitut- 

ing the values already obta ined  we get a~ ~< 0, since a~ + b~ = 0 we obtain by s tandard 

reasoning ar~ = 0, and thus F (k) is an extreme point  o f  c*(n).  Since (c*(n)))* = c(n)  

we have 

k 

P i -  f. pij<~l, 2<~k<~n, 
i--I l ~ i < j ~ k  

represents a facet of  c(n) .  Since the operat ions  o f  the group G ( n )  (involutions and 

permutat ions)  take a facet to a facet the claim follows. [] 

Note  that  the inequali ty Pl ~< 1 is not  a facet, since it is a consequence o f  other 

inequalities: f rom Pl + P 2 - P l 2  ~< 1 we conclude (by applying o-1) that P12 ~< P~ and 

(by applying ~rlo-2 ) that  P12/> 0, hence p~/> 0; applying cr~ we get 1 - p l / >  0 or Pl ~ 1. 

We have proved (examples a, b) that inequalities (2.3) are sufficient for n = 2, 3. 

I believe that they are sufficient for  n = 4 as well. In any case, inequalities (2.3) do 

not  represent all the facets o f  c(n)  in the general case. Consider  Chung  inequali ty 

(1.5) for k =  2: 

n 

2 • p , -  E Pij ~< 3. (2.4) 
i ~ l  l ~ i < j ~ n  

It is satisfied by all vertices o f  c(n) ,  and therefore by all vectors p • c(n).  I f  u ~ is 
a vertex o f  c(n),  then equality holds in (2.4) if and only if 2 ~_1 ei = 2, or ~ 7_~ ei = 3. 

Hence,  the convex hull o f  {u~I2~Y. ei~<3} is a face o f  c(n).  It is easy to see that, 

for  n i> 5, this face is not  a subset o f  any of  the facets o f  the form (2.3). 

2.3. The correlation conjecture 

We can generalize inequalities (2.3), and (2.4) in the fol lowing way. Call a quadruple  

(k, a, b, c) an n-adequate  quadruple  if the fol lowing condit ions hold:  
(a) 2 ~ k < ~ n ,  a, b, c e Z .  
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(b) For  all 1 ~<j<~ k: a+b(~)<~ c. 

(c) For  at least one index 1 ~<j ~ k there is equality in (b). 

I f  (k, a, b, e) is an n-adequate  quadruple  and p ~ e(n) we have 

a Z ( (rp) ,+b ~ (o'p),j<~c 
iEo~ ijEo~ 

i<j 

for all a c { 1 , 2 , . . . ,  n} such that k, and all o - e l ( n ) .  Thus I propose:  

(2.5) 

Conjecture. Let p e ~ ( n, K ,  ). Then p ~ c( n ) if  and only if  inequality (2.5) holds for 

all n-adequate quadruples ( k, a, b, c ), all a ~ {1, 2 , . . . ,  n}, 14 k, and all (r ~ I ( n ). 

We shall see in the next  chapter  that  the conjecture entails that  N P  = co-NP,  so 

it is quite probably  false. In  any case, let l (n)  denote  the poly tope  generated by 

inequalities (2.5). (It is a poly tope  since it is a bounde d  polyhedron.)  

Clearly, c(n)  c_ l(n) ,  and the group G(n)  (involutions and permutat ions)  acts as 

a symmetry  group of  l (n) .  Moreover ,  for all e c{0,  1} ~, u ~ is a vertex o f l ( n ) .  This 

is easy to see: first the origin is a vertex o f  l (n) ,  since all elements o f  l (n)  are 

non-negative.  But u ~= o-(e)0 and the operat ions  of  I ( n )  t ransform a vertex to a 

vertex. F rom (2.5) it follows, in particular, that  each p c  l(n)  satisfies O<-pgj<~ 
min(pg, pj) and pi +pj - p i j  ~ 1 for  all 1 ~< i < j  ~< n .  

Lemma 2.3. The following statements are equivalent: 
(1) l (n)  = c(n) for n = 2 ,  3 , . . . ,  

(2) l (n)  is an integral polytope, 

(3) i f  p ~  l(n) is a vertex, then the restriction of  p to ~ ( n - 1 ,  K,-1)  is a vertex o f  

l(n - 1) (for n >13), 
where by "restriction to ~ ( n -  1, K , -1 )" ,  I mean the vector fi obtained from p by 

dropping the coordinates p , ,  pi,,  1 <<- i <~ n - 1. 

Proof.  (1)¢:> (2), c(n) is an integral polytope.  I f  l (n)  is an integral poly tope  then 

the coordinates  o f  its vertices should be in {0, 1}, since O<~pij <~ min{pi, pj} ~< 1 for 

all p c l( n ). But, i f p  c l( n ) is a vertex, then p~j = plpj, for otherwise p~ = pj = 1, Pij = 0 
entails pg +pj -p~j = 2 >  1. 

(1)<=>(3) I f  l ( n ) =  c(n) then (3) is valid, since the vertices o f  c(n) have that 

proper ty  ~ = u 5 for 6 = (el, e 2 , . . . ,  e,-1) c {0, 1} "-1. Conversely,  suppose that (3) 

is valid, then since l(2) = e(2) we can proceed  by induction.  Take a vertex p 6 l(n),  
n I> 3, then p 6 l(n - 1) is a vertex, by the induct ion hypothesis,  that  is , / ]  = u ~ for 

6 = (61, t52,. • . ,  6n-~) c {0, 1} n-l. Thus we should  have Pin = 6ipn. To see that  assume 

8i = 0, then 0~<p~n ~< 8~ = 0 =pn6~. I f  6~ = 1 we have Pn + 1 -p~n <~ 1, or p~ ~p~n. Since 
the reversed inequali ty holds in l (n)  we have pi, =Pn =p,6~. Now,  if 0 < p ,  < 1 we 
can represent p as a convex combina t ion  p = p , u ~ + ( 1 - p , ) u  ~', w h e r e  e =  

( 6 b - . - ,  8n_1, 1) and e ' =  ( 6 1 , . . . ,  8,-~, 0). But since p is a vertex o f  l (n) ,  we obtain 

a contradict ion.  Hence,  pn = 0 or 1, and the claim follows by induction.  []  
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Statement (2) of Lemma 2.3 may assist in proving (or disproving) the conjecture 
by using well known characterizations of integral polytopes. 

2.4. Generalizations, the simplex C(n) 

Correlation polytopes can easily be generalized. Let S denote in this section (and 
only in this section) an arbitrary family of non-empty subsets of {1, 2 , . . .  n}, let 
Y~(S) denote the real linear space of all functions f :  S ~  Y~ so that dim ~ ( S )  = [S[. 
For e = ( e~ , . . . ,  e,)  e {0, 1}" let U ~ denote the following vector in ~ ( S ) :  

U~( a)= I-[ e~, a~S,  (2.6) 
iEot  

and let C(S) stand for the closed convex hull of { U ' ;  e ~ {0, 1}'}. By repeating the 
argument of Theorem 1.1 we can prove that p ~ C(S) if and only if there exists a 
probability space (X, ~ , /z) ,  events A ~ , . . . ,  A, c Z, such that p(a) = t x ( O ~  A~) for 
a c S .  

In the following I will be concerned with the simple case where S is the family 
of  all non-empty subsets of {1, 2 , . . . ,  n}. Denote for this case C(S) = C(n) ;  it is a 
(2 ~ - 1)-dimensional polytope with 2" vertices, in other words a simplex. 

In order to derive the 2" facet inequalities for C(n), first consider its symmetries. 
For a fixed 1 ~ i ~  < n let (~ denote the affine transformation, defined for x c  ~(2,,-~), 
in the following way: (~x)({i})=l-x({i}),  (~x)({j})=x({j}) for j #  i, and for 
a _ c { 1 , 2 , . . . ,  n}[a]>2 ,  put (~ix)(oe)=x(oe\{i})-x(oe) in case i6a, and (~'ix)(a) = 
x(a) in case i~ a. 

The transformation ~i leaves C(n) invariant, since its effect is to transform the 
event A~ to its complement: Ai =X\A~. Let J(n) be the group generated by (~, 
i = 1 , 2 , . . . ,  n; then J(n)~-Z(~ "). 

Theorem 2.4. Let p e ~(2,' 1). Then the following conditions are equivalent: 
(i) p~ C(n). 

(ii) (~ 'p)({1,2, . . . ,  n})>~O for all ~cJ(n). 
(iii) Y-k=~ (--1) k+l Z[,~[=k (~p)(ce)<~ 1 for all ~ J(n). 

Proof. ( i )~ ( i i ) :  Suppose p c C(n) ,  then there exists a probability space (X, Z, /z) ,  
events A ~ , . . . ,  A, c Z such that p ( a )  = / z ( O i ~  Ai) for all 0 ~ a _c {1, 2 , . . . ,  n}. For 
B e 2  let BI=B, B ° = B = X \ B .  I f~  = ( ~ l , - . . ,  e,)  ~ {0, 1}', denote ~(e) = [[~=~ ~ ' ~  
J(n), and let ~'c {0, 1}" stand for the vector gi = 1-e~. Then 

(((~')p)({1,  2 , . . . ,  n}) =/z(A~' c~ A~ 2 c~. • • c~ A•-) ~ 0. 

( i i )~ ( i ) :  For e c {0, 1}" put h ( e ) =  (~'(~')p)({1, 2 , . . . ,  n})/> 0. We shall prove by 
induction on k ,O~k<n,  that if a c { 1 , 2 , . . . , n } ,  la]=n-k ,  then (~'p)(a)= 
Y,~(o,~o h(e)((U~)(a) for all ~cJ(n). 
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Indeed,  for k = 0 we have 

(~(~)p)({1, Z,. . . ,n})=A(e)= • A(6)(~(2)Ua)({1,2,...,n}), 
6 ~ { 0 , 1 }  n 

since (~'(g) U a ) ( { 1 , 2 , . . . ,  n}) = 0  if 8 ~ e and 1 for 6 = e. 

Suppose  the claim is valid for 1 ~< k <  n -  1, let oe _c {1, 2 , . . . ,  n} be such that 

[~] = n - k - 1. Let 1 <~j ~< n be an integer such t ha t j  ~ ~, then by induct ion hypothesis  

(~p)(oeva{j})= E a(e)(~U~)(oew{j}) for a l l ~ c J ( n ) .  
e~{o,1}" 

Take g = g ,  then p(c~ w {j}) + (~'jp) (c~ w {j}) = p(c~) by definition, also U * (c~ w {j}) + 

( g U ~ ) ( ~  vo {j}) = U ~ (c~), hence p(cQ = E~{o,l}° A (e) U~(a) .  I f  ~ ~ J(n) is arbitrary 

we can repeat the a rgument  for gp instead o f  p, and hence the claim follows. 

Finally, ~ < 0 , , / '  a(e)= 1. To see that note that  by the above p r o o f  we have for 
={1}: 

Hence,  

p({1})= ~ A(e)e~ and ( ~ ' ~ p ) ( { 1 } ) = l - p ( { 1 } ) =  ~2 A ( e ) ( 1 - e 0 .  
e ~ { 0 , 1 } "  e~{O,1}" 

2 
s~{o,l}" 

A (e) = p({1}) + (~lp)({1}) = 1. 

(ii)<=>(iii): We have 

1 -  ~ (-1) k+~ 2 
k = l  ] o e ] = k  

(~'(~g)p)(a) =- (~(~()p)({1, 2 , . . . ,  n}) 

e I e = ~ ( A  1 5~A22~ ' '  • c~A~") 

1 ~1 I e • ' ' u A , ,  "). = 1 /x(Al u [] 

3. Complexity 

3.1. Introduction 

Correlat ion polytopes  exhibit a great deal o f  symmetry,  a fact which may facilitate 

facet determination.  Thus,  if we manage  to derive one inequality for c(n), we 

automat ical ly  obtain exponential ly many by the applicat ion of  the g roup  operations.  
Corre la t ion polytopes,  on the other  hand,  are very complex. This chapter  is devoted 

to the s tudy of  their complexity.  
In  Section 3.2 I shall prove that deciding membership  in c(n, S) is NP-comple te  

for some part icular  So_ K, .  This is established by a t ransformat ion from a 
part icular  SATISFIABILITY problem. By a further t ransformat ion f rom GRAPH THREE 

COLORABILITY, I shall demonst ra te  in Section 3.3 that  deciding membership  in c(n) 
is NP-complete .  
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In Section 3.4 I shall prove, using the same SATISI=IABILITY problem, that if 

CORRELATION FACETE NP then N P =  co-NP. All this indicates that, unless N P =  

co-NP, we shall not be able to derive all inequalities of  c(n). In the concluding 

Section 3.5 I shall comment  on this situation and on some further open problems. 

It is easy to see that deciding membership in c(n, S) is an NP-problem. Let p be 

a rationally valued vector in ~ ( n ,  S) for some set of pairs S. By Caratheodory 's  

theorem, p c c(n, S) if and only if it is a convex combination of dim ~ ( n ,  S) + 1 = 
n + [ S [ + l  vertices of  c(n, S). 

At the guessing stage our non-deterministic Turing machine (NDTM) produces 

r = n + ] S [ + l  vectors u ~', u ~ , . . . ,  u ~', where e ~ , . . . ,  e ~ { 0 ,  1}". Then the machine 

turns to solve the following instance of LINEAR PROGRAMMING; 

Are t h e r e h t ~ 0 ,  I = 1 , 2  . . . .  , r s u c h t h a t  

r 

Y~ a t = l ,  
l - - I  

i i ~< equations, l Atei=pg, 1~< n, n 
1 = 1  

r 

t t {i, AtE iej = Pij, j} ~ S, IS I equations. 
l = l  

Since LINEAR PROGRAMMING C P (see [23, 24]), the computation stage terminates 

after a number  of  steps which is less than fixed polynomial  in the number  of  code 
bits for r and po By Caratheodory 's  theorem, p c c(n, S) if and only if the machine 

stops on YES after some such guess, hence deciding membership in c(n, S) is an 

NP-problem. (In fact we do not have to use a polynomial  time machine for linear 

programming,  for our Turing machine can guess the hts as well.) 

3.2. Deciding membership in c(n, S) is NP-complete 

Let 1 <~ k <  n and let Sk, n be the set of all pairs {i,j}l ~ i<j<~ n except for {1, n}, 

{2, n } , . . . ,  {k, n}. I shall show in this section that deciding membership in c(n, Sk, n) 
is NP-complete.  For this I shall use a transformation from the problem ONE IN 

THREE 3-SATISFIAB1LITY (see [25, 26]). Let k I> 4 and m be integers, 3 <~ m <~ (3k). In 

the present discussion a proposition over k of length m, will mean a set of triples 

2 2 m r n  ' a l ,  a l} ,  {a~, a2, a3}, {a ,  , a~"}} = { { a , ,  . . . ,  a 2 ,  

i i i i is a natural number  1 ~< al < a2 < a3 ~ k, such that for i = 1, 2 , . . . ,  m a n d j  = 1, 2, 3, a i 
for i = 1, 2 , . . . ,  m, and such that for each 1 ~< b ~< k there exists 1 ~< i ~ m, for which 

i i i b ~ {a~,, a2, a3}. In such a case we shall say that b occurs in {ai~, aT, a~}. Let l(b) 
denote the number  of  distinct triples in which b occurs. A truth assignment for g~ 
is any function t :{ l ,  2 . . . .  , k}~  {0, 1}; a truth assignment is called a solution for qt 
if t(a~)+t(a~)+t(a~3)= 1 for all l<~i<~m. The decision problem from which a 
transformation will be defined is: 
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Instance: A proposi t ion  ~ over k. 

Question: Is there a solution for gt ? 

Let ~ be a fixed propos i t ion  over k o f  length re,put n = k + m + 1; let S = S<,,  

that  is S is the set o f  all pairs { { i , j } ; i ¢ j ,  l < ~ i < j ~ n }  except for {1, n}, 

{2, n} . . . .  , {k, n}. Let J 1> 0 be a natural  number ,  and consider  the fol lowing vector 
pJ c ~ ( n ,  &, . ) :  

Doma in  Value 

l <~ a <~ k p~=3-~(~) 

1 ~< i ~  < m p~+~ = 3  ~(~i)+3-~("9+3 -t(~) 

n pJ.=J.  3 - "  

• f0 there is 1 <~ i ~  m such that  
J C ' i i 1 <~a<b<~k  p~b=~ { a , b } _ { a l ,  a2, a3} 

[ 3-~(a)-r(b) otherwise 

In the fol lowing if a = b, Pab" =Pa'-1" 

J J + J .+ J 
l<~a<~k,l<<-i<~m p..k+~=pa,< P. .~  Pa,.; 

J J .  . J .  . J .  
1 <- i < j  < - m Pk+i.k+j =P~I,.4+P4.~,+P~;.#I 

J J J 

P . . . . .  P .. . .  2 P . . . .  2 
J J J 

x 1 , ~ 3  ~ 2 , u 3  / -  u 3 , u 3  

J 3-m 1 ~ i <~ m ,  n Pk+~,. = J" 

Note  that  for J #  J ' , pJ  and pJ'  are identical except for the coordinates  n and 

{ k + i ,  n} for  l<~i<~m. 

Lemma 3.1. (i) I f  there exists J > 0  such that p J ~ c(n, S ~ ) ,  then ~ has a solution 

(ii) Let  J be the number o f  distinct solutions o f  ~ (J  = 0 in case qt has no solution); 

then pJ E c(n, &, , ) .  

Proof.  (i) Suppose  that p i e  c(n, Sk,~) for J >  0; then by Theorem 1.1 there exists a 

probabil i ty space (X, X, ix), and events A1,.  • •, Ak,  B ~ , . . . ,  Bin, C E ~,~ such that 

pJ ,= ix(Aa) ,  l ~ a < ~ k ,  p~+l=/z(B~),  l<~i<~m, 

P ~ = I X ( C )  = J ' 3 - m > O ,  Pa.bJ = ix(Aa c~ Ab), 1 <~ a <b<~k,  

J Pa, k+i = t x (A .  n Bi), J a Pk+i,k+j = Ix(B, c~ Bj) and Pk+i.n = Ix(B i ~ C ) .  

In the fol lowing equali ty (inclusion) relation between sets will refer to equality 

(inclusion) up to sets o f  ix-measure zero• 
Claim: B i = A a ~ w A ~ w A a ~  Indeed,  by definition, J J - J - J • Pa,k+i=Pa,a~tPa, a~-t-pa,a~. I f  

J . .  J . J .  J . .  J a = al ,  then, since Pala; =Pai-~ = 0, we have: pal.k+ i =PoIo~ =P~I (by the convent ion 
in t roduced  in the above table), hence Ao i _c Bi. Similarly, Aa~ ~ Bi,  A.~ c_ Bi, hence 
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A a l w A o ~ w A a ~ B , . A l s o ,  IX(Bi)=yk+,= ~ + J + Pa~ Pa~ p ~ ,  and A,~,A,~,Aa~ a repa i r -  
wise disjoint, hence the claim follows. N o w  J J Pk+i,n = Pn, that  is Ix(B, ~ C) = Ix(C), 
therefore C c__ B / f o r  all i and hence 

m 

C ~  ~1 Bi = ~ ( A a ~ u A ~ u A ~ ) .  
/ = 1  i = 1  

But I X ( C ) > 0 ,  therefore C ~ 3 ;  let x c C  and define a truth assignment 

t : { 1 , 2 , . . . ,  k}--> {0, 1}by 

t ( a ) = l  iff x ~ A ~ ,  l<~a<~k. 

For every 1 ~< i ~< m we have x ~ A 4 u Aa_~ u A ~ ,  hence t(a~) + t(ai2) + t(ai3)/> 1, but  

A 4 ,  A ~ ,  A ~  are pairwise disjoint (up to a set o f  Ix-measure zero, which makes no 

difference here since we can eliminate it anyway) ,  therefore we must  have t (al)+ 
t(a~)+ t(3) = 1. 

(ii) Let J be the number  o f  distinct solutions for ~.  Let X = {1, 2, 3} m, and let 

be the power  set o f  X. Let /z be the uni form probabil i ty measure on X so that 
Ix ({x})=3  m for a l l x c X .  Fo r l~ <a~ <k ,  l e t A ~ = D ( a ,  1 ) x D ( a ,  2 )×  . . . × D ( a , m )  

where D(a, i) c_ {1, 2, 3} is defined as follows: 

f {1}, a = a , ,  
i - -~{2}'  a = a2, 
i D(a, i) 1{3}, a = a 3 ,  

[ {1 ,2 ,3} ,  otherwise. 

Then IX(Aa) = 3 - ~ ( ~ = p ~ .  Let l<~a<h<~k, then Ix(A,C~Ab)=O in case there is i, 
i i such that  a, b c {a~, a2, a3}, otherwise Ix(A, c~ Ab) = Ix(A~)Ix(Ab); put  B~ = A 4 u 

A 4 u Aa~ and C = [ ' - ' )~  (A a, u A,~ u A,~), then clearly Ix (B,) = p~+~, Ix (B, c~ Ao) = 

P~,k+,, pJk+~,k+j = Ix(B, ~ Bj), Ix(B, c~ C ) =  Ix(C).  To complete  the p r o o f  we have to 
demonst ra te  that  I x ( C ) =  J3  -m (where J is the number  o f  solutions o f  ~ ) .  Let t be 

a solution for  aF; define an element x(t)  = (x~( t ) , . . . ,  x,,(t)) c X as follows: xi(t) = 1 
if t (al)= 1, x ,( t )= 2 if t(a~)= 1 and x,( t)= 3 in case t(a~3)= 1. Since t(a'~)+ t(ai2)+ 
t(a3) = 1 for  all i = 1, 2 , . . . ,  m the point  x(t)  is well defined. Also, if t ~ t '  then 

x(t)  ~ x(t ') ( remember  we assumed that for all 1 ~ b <~ k there is 1 ~< i <~ rn such that  

b ~ {a~, a~, a~}). Let 1 <~ a ~ k, then x(t)  c A ,  if and only if t(a) = 1. To see that put  
A~=D(a ,  1 ) x . . . x D ( a , m )  as above, and let a = a ! ~ =  ~ -  i~ Jl aj2- . . . .  a~,, r = l(a) be 
all the distinct occurrences o f  a in ~ ,  then t (a)= 1 if and only if x~,(t)=j~ for  

I = 1, 2 , . . . ,  r if and only if D(a, i~) = {Jr} for 1 = 1, 2 , . . . ,  r if and only if x(t)  ~ A~. 
But if t is a solution t (al)+t(a~)+t(a~3)=l,  hence x ( t ) ~ A , i u A ~ A , ~  for all 
i = 1, 2 , . . . ,  m, hence x(t)  ~ C and therefore [C[ i> J. Also, if x ~ C we can define a 

truth assignment  t :{1,  2 , . . . ,  k}-~{0, 1} by t (a)= 1 if and only if x~  A, ,  and as 

before,  it is easy to see that  t is a solution. Hence,  ]C] = J  and I x ( C ) = J 3  m. []  

Let pO, p~ denote  p~ for  J = 0 ,  J =  1; then we can now easily prove:  

Theorem 3.2. (i) We always have pO ~ c(n, Sk,~). 
(ii) gt has a solution if and only if p ~ ~ c(n, Sk.,). 
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Proof. (i) Choose (X, X, Ix) as in Lemma 3.1 part (ii), except take C = 0  (instead 
m 

of  C =(~i=1 B~), and the claim follows. 
(ii) Suppose that p i e  e(n, Sk,,); then qt has a solution by Lemma 3.1 part (i). 

Conversely, suppose gr has a solution, let J be the number of  solutions of qt 

then pJce(n,  Sk, n) by Lemma 3.1 part  (ii). But p°cc(n, Sk.,), and p~= 

(1/J)p j + ( 1 -  1/J)p ° hence, since c(n, Sk.,) is convex, the claim follows. [] 

From Theorem 3.2 it is clear that deciding membership in c(n, S), S_c K, ,  is 
NP-complete.  For it we had a polynomial time, deterministic Turing machine 

to decide membership in c(n, S) we would be able to decide ONE IN THREE 

3-SATlSFIAB~LITY in polynomial  time as well. (It is easy to see that constructing pl, 

given a proposit ion qr, can actually be performed in O(m(m + k) 2) = O(k 9) steps.) 

It should be noted that by a similar, though somewhat more cumbersome technique, 

a transformation from 3-SATISFIAB1LITY can be defined. 

3.3. Correlation is NP-complete 

In this section I shall show that deciding membership in c(n) is NP-complete.  To 
establish that, I shall use the same transformation as in the case of  the previous 

section, only this time the proposition qt will be such that pla,, can be uniquely 

defined also for 1 ~< a ~< k. 
Let G = (V, E)  be a simple graph, where V is the set of  vertices, and E the set 

of  edges. As is well known (see [23]), deciding whether G is 3-colourable is an 

NP-complete  problem. Given a simple graph G we shall construct a proposition 
qt. The number  of variables is k =  3[VI+3[EI, and the number  of triples is rn= 

I VI + 3]E I. For each vertex v ~ V we shall have three variables Vl, v2, v3, where vi is 

interpreted as: "the colour of the edge v is i" (i = 1, 2, 3). For each edge e c  E we 
shall have three variables el, e2, e3 where ei stands for: "the colour i is missing from 
the edge e" ( i =  1,2, 3). The proposition gt consists of  the triples of  the form 

{v~, v2, v3} for all v c  V, and triples of the form {vi, vl, ei} for i =  1,2,3 and all 

e = {v, v'} ~ E. It is easy to see that G is 3-colourable if and only if gP has a solution, 
that is, if and only if there is a truth function which satisfies one, and only one 

variable in each triple of  gt. 
Now let n=k+rn+l=4lVl+6lEl+l .  Define pJ as in the previous section. In 

this way the value of pJ is given for all pairs in Sk.n. Note that if G is 3-colourable, 
then any permutat ion of the colours i = 1, 2, 3 is a 3-colouring of G as well. Hence, 
the proport ion of the solutions of  gt (i.e., 3-colourings of  G), in which a variable 

1 (ei or v~) is true, is ~. Thus we can put pJ~n=Spn = J ' 3  -(m+~) for l<~a<~k. By this 
pJ is defined for all pairs, pJ ~ Y~(n, Kn), and we can proceed as before and prove 
that G is three colourable (or equivalently, qt has a solution) if and only i fp  ~ ~ e(n). 
Consequently, deciding membership in e(n) is NP-complete.  
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Having established that, it is easy to see that the conjecture of  Section 2.3 entails 

that NP = co-NP. For let p c Y~(n, K, )  then, if the conjecture is true, we can have 

a polynomial  time, non-deterministic Turing machine, which decides whether 

pC_c(n). At the guessing stage the machine produces a quadruple (k,a,b,c), 
a set a _ _ { 1 , 2 , . . . , n } ,  ]al<~k, and an involution o-~I(n). Then the machine 

checks whether (k,a,b,c) is n-adequate, and if so, whether a~,~(crp)~+ 
b ~ . v < j  (o-p)0> c. All this clearly takes only polynomial time. The only subtle 
point here is the size of  the coefficients a, b, c, which should not be of  exponential 

complexity. Since, however, c(n) is a zero-one polytope, this is guaranteed by Karp 
and Papadimitriou [22, Lemma 1], which asserts that the complexity of  the 

coefficients of  the facet inequalities of polytopes such as c(n) is bounded by a fixed 
polynomial  in the dimension. Hence, if the conjecture is valid, then deciding 
membership in the complement of c(n) is in NP. Since deciding membership in 

c(n) is NP-complete,  we conclude that the conjecture of  Section 2.3 entails that 

NP = co-NP. 

3.4. Optimization and CORRELATION FACET 

Consider the following discrete optimization problem: 

S P I N  G L A S S  

Instance: An integral vector J ~  ~ ( k ,  Kk) and an integer M. 

Question: Is 

max [ ~  Jiei -t- ~ Jijeiejl>~M? 
~ { 0 , 1 }  k i ~ l  l ~ i < j ~ k  

This decision problem is equivalent to the question: Is 

max I ~  Jipi+ ~ Ji:Pu] >~M? 
p~c(k)  i = 1  l ~ i < j ~ k  

Thus if we were able to derive the facet inequalities for c(k) we could have used 
techniques of linear programming to decide SPIN GLASS. As expected, however, this 

problem is NP-complete  as well. 

Lemma 3.3. SPIN GLASS is NP-complete. 

Proof. We shall use ONE IN THREE 3-SATISFIABILITY, as in Section 3.2. Let qs be a 

proposit ion with k variables and m triples. For 1 <~ a <~ k, l(a) denotes the number  
i of  triples {ail, a2, a;} of  which a is an element. For 1 ~< a < b ~< k let l(a, b) = 1 in 

case there exist 1 <~ i<~ m such that a, b c {ail, a~, a~}, and l(a, b) = 0 otherwise. We 
shall prove that qt has a solution if and only if there exists e = ( e , . . . ,  ek)c {0, l f f  

such that 

k 

l(a)ea-3m ~ l(a,b)eaeb>~m. (3.1) 
a--1 l ~ a < b ~ k  
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Suppose that  qz has a solution t : ( 1 , 2 , . . . ,  k}~{0 ,  1}. Put e, = t(a) for l<~a<-n. 
Since t(ail)+t(a~)+t(a~3)= 1 for  1 ~< i~< m, we have l(a, b)eaeb=Oforall  l<~a<b<~ 
k. Also, 

k 

Y l(a)ea= ~ [t(aix)+t(ai2)+t(ai3)]=m. 
a = l  i = 1  

Therefore,  equality holds in (3.1). 

Conversely,  suppose that  e = ( e l , . . . ,  ek)~ (0, 1} k satisfies inequali ty (3.1). Put 
t(a)ea, 1 <~ a <~ k. Then 

k 

l(a)ea ~ [t(a,1)+t(ai2)+ i < = t(a3)]~3m. 
a = l  i ~ l  

Suppose  there exists 1 ~< a < b ~< k such that l(a, b)eaeb = 1. Then 

k 

E l ( a ) e a - 3 m  E l(a,b)e~eb <~O<m. 
a = l  l~a<b~k 

Since the reverse inequali ty holds, by assumption,  we conclude that Ge~, = 0  
i i whenever  there exist 1 <~ i <~ m such that a, b, c {ail, a2, a3}. Therefore,  t(a~l) + t(a~) + 

t(ae3) ~< 1 for all 1 ~< i<~ m. But since e satisfies (3.1) we have t(a~l)+ t(a~)+ t(a~) = 1 
for  all 1 ~< i <~ m, so that  t is a solution. Since ONE IN THREE 3-SATISFIABILITY is an 

NP-comple te  problem it follows that SPIN GLASS is NP-comple te  as well. [] 

A variant  of  this l emma has been previously proved by Barahona  [11]. His paper  

deals with a spin glass system with +1 values rather than 0, 1. The components  o f  

the system are located on a cubic lattice. The min imum energy problem is shown 

to be NP-comple te  even if J~ = 0, 1 <~ i ~< n, and for each i: J~j = 0 for all j, except 

the lattice neighbours.  Other  variants o f  the problem are also demonst ra ted  to be 

NP-complete .  

Cons ider  now the problem CORRELATION FACET: given an integral vector J c 

(n, K , ) ,  and an integer M, does the inequali ty Y 7= 1 J~Pg + ~ e ~ < j ~ ,  J~JPiJ <~ M rep- 
resent a facet o f  c (n)?  

Theorem 1 in Karp  and Papadimit i r iou [22] provides the connect ion between 

NP-comple te  discrete opt imizat ion problems and facet determinat ion in the corre- 

sponding  linear programs.  Since SPIN GLASS is NP-comple te  by Lemma 3.3, a direct 

appl icat ion o f  this theorem gives: 

Corol lary 3.4. I f  CORRELATION FACETG NP, then N P  = co-NP.  

From this conclusion we can see once again that the Conjecture  o f  Section 2.3 
entails N P  = co-NP.  In fact, Corol lary  3.4 entails that  if NP  ~ co-NP,  then CORRELA- 

TION FACET is not  even in NP. Papadimit i r iou and Yannakakis  [27] in t roduced the 
class Dp of  all languages ~Cf which have the form ~ = 5f I c~ ~2 ,  where ~Lt~ c N P  and 

5fae co-NP.  Clearly, CORRELATION F A C E T C  Dp. One can probably  prove also that  
it is Dp-complete,  though  I was not  able to establish that. 
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3.5. Conclusion 

Many NP-complete problems have the structure of massive linear programming: 

optimization on the travelling salesperson polytope, the clique polytope, and a host 
of others (see [27] for details). CORRELATION has some advantages. Firstly, the 
interior points of  c(n), not just the vertices, have direct interpretation in terms of 
probability assignments. In fact, all facet inequalities for c(n) should follow from 
"Venn diagrams", that is, the possible relations among n events in a probability space. 

Secondly, the symmetries, which enable us to simplify facet determination. Let 
a °), . . . ,  a (r) be vectors in ~ (n ,  Sn), and let bl, .  • •, br be integers. We shall say that 
a ( l ) , . . . ,  a ("), b l , . . .  , b r is a generating set of  facets for c(n), if all facet inequalities 

of  c(n) have the form ~'~:1 alt)(~TP),+~l<~i<j<~, a}~)(~TP)iJ <~ bl, for some group ele- 
ment ~TcG(n) and some a~),bt in the generating set. Since IG(n)[=n!2 ", it is 
possible that a polynomial size generating set can be found (that is, a set such that 
r is bounded by a fixed polynomial in n). Moreover, if a non-deterministic, poly- 
nomial time program can be found, which identifies the elements of the generating 
set, then N P = c o - N P .  This follows from Corollary 3.4 in conjunction with the 
Theorem of  [22]. All in all, I believe that, apart from their intrinsic interest, 
correlation polytopes may assist us in clarifying the relations between NP and co-NP. 
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