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A family of polytopes, correlation polytopes, which arise naturally in the theory of probability and
propositional logic, is defined. These polytopes are tightly connected to combinatorial problems in the
foundations of quantum mechanics, and to the Ising spin model. Correlation polytopes exhibit a great
deal of symmetry. Exponential size symmetry groups, which leave the polytope invariant and act
transitively on its vertices, are defined. Using the symmetries, a large family of facets is determined. A
conjecture concerning the full facet structure of correlation polytopes is formulated (the conjecture,
however, implies that NP =co-NP).

Various complexity results are proved. It is shown that deciding membership in a correlation polytope
is an NP-complete problem, and deciding facets is probably not even in NP. The relations between the
polytope symmetries and its complexity are indicated.
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1. Correlation polytopes

1.1. Definitions and notations

Let n=2 be a natural number and let Sc K, ={{i,j}; 1si<j=n}. We shall
denote by (n, S) the (simple) graph whose verticesare 1,2, ..., n and edges{i, j} € S.
Let R(n, S) denote the real linear space of all functions f:{1,2,...,n}uS~>%,
clearly dim %(n, S§)=n+|S|=<3in(n+1). We shall denote vectors in R(n, S) by
=t s fus oo s fiys - ) where the numbers f;,{4, j} € S, appear in lexicographic
order on the i, j’s.

For ¢ = (&, €5, ..., &,)€{0, 1}", let u® denote the following vector of %(n, S):

ui=¢g, l=si=n, u;=ex;, {ijIes (1.1)
Definition 1.1. The correlation polytope c(n, S) is the (closed) convex hull, in
R(n, S), of the vectors u®, £ €{0, 1}". In case S =K, is the set of all pairs, we put
c(n, K,)=c(n). c(n) is the “full correlation polytope”.

The coordinates of each vector p<€c(n, S) are bounded between zero and one.
Hence, it is obvious that each vector u° is a vertex of ¢(n, S). The name “‘correlation
polytope™ is justified by the following theorem.
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Theorem 1.1. Let pe R(n, S) then p< c(n, S) if and only if there exists a probability
space (X, 3, u) and (not necessarily distinct) events Ay, A, ..., A, €2 such that

plzl_L(A'), 1$i$n, pU:fL(AlmAj)’ {iaj}es'

Proof. Suppose there exists a probability space (X, 2, ), events A, ..., A, € Xs.t.
w(A)=p,i=1,2...n u(A nA)=p;{ijeS Foran arbitrary Be X put B' = B,
B°=B=X\B, and for e =(g,,...,£,)€{0,1}" put A(e)=A3NAZA - NAS.
Then clearly, A(e)nA(e)=@ for e#¢', and U, 4, Ale)=X. Also, A;=
U,y 1A(2); &i=1} Put A(e)=pu(A(e)), then A(e)=0 and ¥,y A(e) =1,
pi=m(A) =Y con Ae)er, piy=p(AnA)=Y, 01 A(e)eg, for i=1,2...n
and {i,j} € S, hence p=Y A(e)u’ € c(n, S). Conversely, suppose that p € ¢(n, S), then
we can represent p=Y __ . » A(e)u® where A(£)=0, Y. o A(g)=1. Let X =
{0,1}", let X be the power set of X, define w(B)=Y__, A(e) for all B< X. Put
A;={e|e;=1}; then

w(A)= 2 A(e)e;=p; and ,U'(Aif\Aj) = 3 A(G)Ei%‘:Pu- (]
ec{0,1}" ee{0,1}"

From the “subjectivist” point of view of probability the polytope ¢(c, S) can be
interpreted as follows: let x, x,, ..., x, be distinct Boolean variable, or “atomic
propositions”, and consider the conjunctions “x; and x;”, {i, j}€ S. Each £€{0, 1)"
represents a truth value assignment to the propositions x,, . .., X,, and thus also for
the pairs “x; and x;”. Hence, the vertices of c(n, S) are all the possible truth
assignments, and every p € c(n, S) is nothing but a weighted average of these truth
assignments. This intuition will enable us to associate membership in c¢(n, S) with
a satisfiability problem, since a (complex) proposition is satisfiable if and only if it
can be assigned positive probability in some probability space.

The polytope ¢(n, S) has non-empty interior. To see that, consider the vectors u”
for

and

£=(0...,1,0...,1,0...0) for{ij}eSs.
There are n+|S| such vectors, and it is clear that they are linearly independent in
%(n, S).
1.2. Examples
(a) For n=2, S={{1,2}}, c(2, S) is the simplex in & (2, §) with vertices (0, 0, 0),
(1,0,0), (0,1,0) and (1, 1, 1). The inequalities for ¢(2, S) are
0= pr,<<min(py, p2), ntpa—pnsLl
(b) Let n=3 and $={{1,2}, {1, 3}, {2, 3}}. The inequalities for ¢(3, §) = c(3) are
O<p;=min(p, p;), 1=<i<j=3,
pitp—py<1, 1si<j=3,
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D1t petps—Po—Pis—pnsl,
P1— P12~ P13t P =0,
(1.2)
P2~ P12~ Pt p13=0,
P3— Pz~ Pt pi2=0.

Necessity follows directly from the fact that all u®, e =(e, &, £5) €{0, 1}* satisfy
these inequalities. As for sufficiency, let p satisfy all these inequalities, and let n be
a real number (which will subsequently play the role of w{A,A,n A;) in the
notations of Theorem 1.1),

n<min{pis, P13, P23, 1 = (P1+ P2+ p3—Pi2—Pi3—P23)}s
n=max{0, —p,+ piz+pi3, —p2t P2t pas, —ps+pistpat

Such a choice is possible because of the above inequalities. Now define A(e)=
A(ey, &2, £3) by

A0,0,0)=1=(p;+p2+ps—Ppi2— P13 —P23)— M, A1, 1,1)=m,

A(100) = 0+ (p; — P12 = P13), A(110) =p,—,

A(010) = n+ (p2— P12 —P23)s A(101) = py3—,

A(001) =0+ (ps— P13~ P2s)s A(011) = pys— .
It is easy to see that

Ale)=0, Y A(e)=1, Y Alg)u*=p.

ee{0,1} £e{0,1F

I shall call this polytope the Bell-Wigner polytope. Inequalities (1.2), and some
of their generalizations, play an important role in the controversy concerning the
interpretation of quantum theory [1-8].

(¢) Clauser et al. [3], and following them Clauser and Horne [4], extended (1.2)
to the following case: let n=4 and S={{1, 3}, {1, 4}, {2, 3}, {2, 4}}. The following
inequalities are necessary and sufficient for p € (4, S) to be an element of c(4, S):

0<p;<min(p,p), i=1,2, j=3,4,
Ptp-py=1, i=12, j=3,4,

—1=pua+putpu—Pn—P—pas0,
—1<postputpa—pia—p—ps=<O,
(1.3)
—1<pu+pstpr—Pu—n—p:;=90,
—1=<putpitps—pu—p—p;=<0.

The inequalities (1.3) are called the Clauser-Horne inequalities.
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Sufficiency was proved by Fine [5]. Mermin and his students attempted to
generalize these inequalities to higher dimensional cases. In particular, one should
mention [6] where the first connection between Bell-type inequalities and linear
programming is made. Correlation polytopes were introduced in [7]. There, the
relation between these polytopes, classical logic, and quantum logic is indicated.
(See also [8].)

1.3. Ising spin

Another, less dpparent source of correlation polytopes, has to do with the ising spin
model. This model is used in a variety of applications: in statistical mechanics to
model spin glasses [9], in the theory of computation to model “‘connectionist”
computers, or even the collective action of neural networks [10]. The amount of
published work on these issues is vast.

An ising spin system is a set of n cites, at each cite i there is a component capable
of taking two ising spin values g =0 or & =1 (often the values =1 are taken, but
the transformation is clear). Between the ith and jth cites there is an ‘‘action
potential” J;; (a real number), and sometimes the ith cite is subjected to an “external
field” J;. If, at a given moment the values of the ising spins are given by &=
(g1, ..., ,)€{0, 1}", the energy of the system at that moment is

Wiey=3% Je+ Y Jjee.
i=1 isi<j<n
A typical combinatorial problem associated with the model is to determine the
minimum energy of a given ising spin system (minimum, that is, over all possible
configurations ¢ € {0, 1}"). To see the connection with correlation polytopes, consider
the vector (Jy, ..., Ju, ..., Jij, .. )€ R(n, K,,), where K, is the set of all pairs. Rather
than taking the discrete optimization problem of the minimum energy, consider the
linear program

minimize YIpt Y Jgpy
i=1

l<i<jsn
subject to  the constraint that p=(p,,...,P.,..., Pijs..-y€c(n).

The linear program and the discrete problem are clearly equivalent. If we attempt
to use linear programming in order to establish the minimum energy of the ising
spin system, we have to compute first the facet inequalities for ¢(n). The minimum
energy problem was proved to be NP-hard by Barahona [11]. I shall provide a very
short proof of this fact in the third section. This seems to indicate that deriving all
inequalities for ¢(n) is a very difficult task.

1.4. Boole’s problem

The search for the facet inequalities of c(»n) has a long history, though the problem
had been phrased in a probablistic rather than geometric terminology. Let (X, X, u)
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be a probability space, and let A, ..., A, € 3. A typical question asked by George
Boole [12] is the following: suppose that we are given the values of p,= w(A;)
1< i< n, but have no further information. What then is the best possible estimation
of w(A;u---uA,)? The answer is

max[py,...,pal<p(A U U A)<min[l, p;+ -+ - +p,]

Boole considered other similar problems, attempting to derive the best possible
bounds for the probability of certain Boolean functions of events, given the values
of others. He often applied methods which can be identified today as primitive
forms of linear programming. (Further details on this can be found in [13, 14].)
Consider the following generalization of Boole’s problem: given the values of
pi=wr(A), 1<i=<n, and p; = n(A; N A;), 1<i<j<n, but no further information,
what then is the best lower bound for u(A,UA,u --- UA,)? Following the
notations of Theorem 1.1 we know that u(A, VAU -+ - UA,)=Y_ ., A(g), where
foreach0#e€{0,1}":A(e)=0and ¥ _A(g)e; =p;, Y, A(e)eig; = pi;. Hence, the best
bound is given by the linear program

min Y A(e).
e#0
Constraints:
Ale)=0, x )\(5)51':1’:'5 Z /\(E)Eigjzpij-
ee{0,1}" £€{0,1}"

The dual program is

maX[ Z x,-p,-+ Z x,»jpij].
i=1

Issi<j=n

iz
Constraints:

—00 < X;, X;7, < 00, Y xE+ Y xeg <1 forall e {0, 1}"
i=1

1<si<j<n

ijs

By assumption, p=(py,..., Pn,..., Pij,-..) € c(n), hence the primal and the dual
are both solvable, and have identical optimal value <1. Note that the constraints
of the dual program define the polar ¢*(n) of c(n):

c*(n):{xe%*(n,K,,) Y x&+ ) xijs,-ajsl,se{o,l}"}.
i=1

1=<i<j=n
¢*(n) is obviously unbounded. Since 0 is an element of c(n) — albeit not an internal
point — we have (c*(n))* = c(n). Therefore, the extreme points of c*(n) define
facets of c(n), indeed, all the facets of ¢(n) of which 0 is not an element. We shall
see that unless NP =co-NP the determination of these facets is an intractable
problem, and therefore the above form of Boole’s problem is probably intractable
as well.
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Some lower bounds for w(A,u +-- U A,), given the values of Pi, Dij have been
known for years. Bonferroni [15] proved

Yp— X pi=p(AU---UA,). (1.4)

i=1 I<i<j=<n

Chung [16] generalized this formula:

2 7 2
— =< A ... An 1.
k+1i§1p k(k+l)1$i§js”pj l‘v( 1 ) ) ( 5)
whenever 1< k= n—1. We shall see that these inequalities give rise to exponentially
many independent inequalities when we apply the symmetries of ¢(n). Some of
these facts were summarized in an influential monograph by Fréchet [17]. Research
on this problem continues to the present day [18-21].

1.5. Statement of results

It is easy to see that every face of c(n, S), S< K, induces a face of c(n), so that
c(n) reflects in its face structure all the polytopes c(n, S). c¢(n) has a large symmetry
group, of cardinality n!2", which operates transitively on its vertices. I shall identify
these symmetries in Section 2.1. Using the symmetries we can prove that the edge
graph of c¢(n) is the complete graph on 2" vertices.

If we manage to guess one inequality for ¢(n), we automatically establish exponen-
tially many facets by application of the symmetries. In Section 2.2 a large family
of facets of ¢(n) is determined, a conjecture regarding the total facet structure of
¢(n) is formulated. As we shall see, this conjecture entails that NP = co-NP, so it
is probably false. In Section 2.4 some generalizations are proved. Chapter 3 is
devoted to a complexity study, where the following decision problems are considered

CORRELATION
Instance: a (rational) vector pe R(n, K,,) (K, -is the set of all pairs).
Question: is'pe c(n)?

I shall prove that CORRELATION is NP-complete. This means that unless NP =
co-NP, deriving all the inequalities for ¢(n) is an impossible task. The situation is
even worse in a sense; consider the following decision problem:

CORRELATION FACET
Instance: an inequality (a, x) < b, where a € R(n, K,,) and b are integral.
Question: is it a facet of ¢(n)?

It follows from Barahona’s result [11], in conjunction with the theorem of Karp
and Papadimitriou [22], that if CORRELATION FACET< NP, then NP = co-NP.
A short proof of Barahona’s theorem and this consequence is given in Section 3.4.
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2. Geometry

2.1. The groups I(n, S) and A(n, S)

Let pec(n, S), by Theorem 1.1 there is a probability space (X, 2, ), events
A, ..., A, €2 such that u(A;)=p;, n(A;nA;)=p;, for 1<i<n and {jj}eS.
Consider the transformation A, > A, =X \A; for some fixed i We have ,u(fi,—)=
1-w(A;) and ,u,(Ai N A;)=u(A;)—n(A;n A;), hence the affine transformation o;
defined on %(n, S) by

(op)i=1-p,,
(op)i=py Jj#i (
(op)i; = p;—p;; for all j such that {i, j} € S, (2.1)

(Jip)jk=pjk9 {j, k}esa Jak#la

leaves the polytope c(n, S) invariant. Obviously, o; is the identity, and o, i=
1,2,...,n, generate a commutative group of involutions isomorphic to Z3". We
denote this group by I(n, S). For £ =(&,, &, ..., 8,)€{0,1}" put o(e)=[[,_, o7,
and the o(e), {0, 1}", are all the distinct elements of I(n, S}. Obviously, the
elements of I(n, S) transform a vertex of c(n, S) to another vertex. Moreover, the
group I(n, S) acts transitively on the vertices of ¢(n, S): if u®=0 then o(¢)u’=u".

Consider next the automorphism group of the graph (n, S), that is, the group of
permutations 7:{1,2....,n}>{1,2,...,n} such that {ij}eS if and only if
{@ (i), w(j)} € S. Each such automorphism # induces a linear map on % (n, S), which
we also denote by 1, by f;= f.iy, 1<i<n, and f;; > f ) - for {i, j} € S. Clearly,
the transformation 7 leaves the polytope c(n, §) invariant, since its effect is to
permute the events Ay, ..., A,. Obviously, 7 maps a vertex of c(n, S) to another
vertex. Denote by A(n, S) the group of all transformations induced by the
automorphisms of the graph (n, S), and let G(n, S) be the group generated by both
A(n, S) and I(n, S). The mixed action of the groups I(n, S) and A(n, S) is easy to
identify, if me A(n, S) and o(e) =[], o' €I(n, S), then mox '=[],_, 0%, so
that I(n, S) is normal in G(n, S).

In case S = K, is the set of all pairs, we denote I(n, K,)=1(n), A(n, K,) = A(n)
is the full permutation group A(n)=S,, and G(n, K,,) = G(n) has cardinality n!12".

Using the symmetries we can easily prove:

Lemma 2.1. Let &', £7€{0, 1}", £' # £°; then the interval joining u® and u® is a face
of ¢(n), so that c(n) is a 1-neighbourly polytope.

Proof. The lemma is valid if and only if the interval joining 'r;u"‘I and nusz is a face
of ¢(n), whenever n e G(n). Take n=o(g'), then a(e))u® =0, apply a suitable
permutation & so that mr(sl).uez= u®, for 8 of the form 6 =(1,...,1,0,...,0), that
is §;=1for 1<i<k and §,=0 for k<i<n, k=1. Since w0=0, it is sufficient to
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prove that the interval joining the origin with u® is a face of ¢(n), where & has the
above form. Put

p=35u’+30. (2.2)

We shall show that (2.2) is the unique representation of p as a convex combination
of the vertices of ¢(n), and conclude.

We have p;=3, 1<i<k, p,=0, k<i<n, p;=3,1<i<j<k, and p;=0 for i>k
or j> k. Suppose that p=).cio1 A(e)u’, where A(e)=0 and ¥ __,,» A(e)=1.
Then A(e) =0 whenever there is k <i<n for which ¢;=1. If k=1, then A(g)=0
for all £#0, 8, and A(0) =A(8) =3, so the representation is unique. If k=2, then
Di=Dpij=D; =iforalll<i<j<k Let1<i<j<k;then A(e)e # 0 entails Ae)es; #
0, therefore A(e)>0 and ¢, =1 entails ¢, =1 for 1<i<j=k, hence A(e)#0 if and
only if £ =0 or £ =§, in which case A(e)=% [

2.2. Some facets of ¢(n)

The polytope ¢(n, S) is obtained from ¢(n) by a projection; simply by dropping the
coordinates p;;{i, j} £ S. It follows that every face of ¢(n, S) induces a face of c(n).
Hence, the face structure of ¢(n) reflects the face structure of c¢(n, S) for S< K,,.
Letl<sk=<nandlet A, A,, ..., A, be events in a probability space (X, X, n), then
we have by Bonferroni inequalities (1.4),

k
rou(A)- X ku(A,-mAj)Su(AiquU‘ UA)SL
i=1 isi<j<
Hence if p € ¢(n), we must have ZL Pi— ta<i<j<k Pij =1 for all 0 k< n. If this is
valid for p this must also be valid for op and 7rp for o € I(n) and 7 ¢ A(n). Summing
up these facts we conclude:
Y (op)i— X (op)i;=1 (2.3)

ica i<j
ijew
for all-non empty subsets a« ={1,2, ..., n} and all involutions o € I(n). To see how
these inequalities work take a ={i} then (2.3) reads p;<1, take a ={i,j} then
pi+p;—pi; =1, applying o; to this inequality we get (1—p;)+p;—(p,—p;;)<1, or
Pij < p;, similarity p;; < p;; applying g,0; we get (1—p;)+(1—p))—(1—pi~p; +p;) <
1, or p;;=0. Take a ={i, j, k}, then p,+p;+p, —p;; — pu — p. = 1, which is the first
of the Bell inequalities (1.2); apply o; to obtain p; —p;; — pa. ~ px =0, which is the
type of the other three Bell inequalities (1.2).
Let ¢*(n) denote the polar of ¢(n). We have already noted that since 0€ c(n),
we have (c¢*(n))* = c(n). Using this fact we shall prove:

Theorem 2.2. If |a|=2, inequality (2.3) represents a facet of c(n).

Proof. We assume n=3 (for n=2 the characterization of ¢(2) is trivial). Let
fi€ R(n, Sn) be the vector which is 1 in the coordinate i and zero elsewhere, and
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fi;€ R(n, S,) the vector which is 1 in the coordinate {i, j) and zero elsewhere, let
2<k=mn, put F¥=Y; fi-¥ ...;< f;;- We shall prove F*’ is an extreme point
of the polyhedron ¢*(n). Suppose F%® =1a+1p for a, be c*(n), that is (a, u®) <1
and (b, u®y=<1 for £€{0,1}", we shall show a=b=F®, Let 1<i=<k, and take
ee€{0, 1}", which is 1 in the ith coordinate and zero elsewhere, we get {a, u*) = a; <1,
and similarly, b;<1 but 5(a;+b;)=1, so that a;=b;=1, 1=<i<k Also, suppose
k<n,and let 1si<k k<I<n. Let ¢ be 1 on i and I and zero elsewhere, then
a;+a+a;<1, or q+a;<0; similarly, b,+b; <0, but a;,+ b, =0, a;+ b; =0, hence
a+a;=0forl<si<kand k<I<n Weknow k>1. Let 1<i<j<k, then a;+a;+
a;=<1, a;=a;=1,hence a; < —1; also, b;; < —1, but %(a,-j+ b;}=-1,hence a;;=b;; =
—1; therefore, the case is proved fork=n Take 1si<j<k k<I<n,then a;+a;+

a+a;+a;+a;<1,but q; = a; =1, a;; = —1, therefore a;+ a;+ a; < 0; also, b+ b, +
bj,\O and a,+b, 0, a,—,+b,-,=ézj,+bj,—0, hence a,+a,—,+aﬂ—0, but we proved
a;+a; =0, hence a; =0, and thus a;=0; and the case is proved for k=n—1. For
k<n-—1take k<I<r=nandl1=i=k then a,+a,+a,+a;+a,+a,<1,;substitut-
ing the values already obtained we get a,, <0, since a,, + b,, = 0 we obtain by standard
reasoning a, =0, and thus F™* is an extreme point of ¢*(n). Since (c*(n)))*=c(n)
we have

k

Zpi— Z pijsla 2<ksn:
i=1 Isi<j=sk

represents a facet of ¢(n). Since the operations of the group G(n) (involutions and

permutations) take a facet to a facet the claim follows. [J

Note that the inequality p, <1 is not a facet, since it is a consequence of other
inequalities: from p,+ p,—p;, <1 we conclude (by applying o,) that p,,<p, and
(by applying o,0>,) that p,,=0, hence p, =0; applying o, we get 1 —p;=0or p;<=1.

We have proved (examples a, b) that inequalities (2.3) are sufficient for n =2, 3.
I believe that they are sufficient for n =4 as well. In any case, inequalities (2.3) do
not represent all the facets of ¢(n) in the general case. Consider Chung inequality
(1.5) for k=2:

2y p— Y py=3 (2.4)
i=1 I<i<jsn
It is satisfied by all vertices of ¢(n), and therefore by all vectors pe c(n). If u® is
a vertex of ¢(n), then equality holds in (2.4) if and only if ¥.;_, &;=2,0r Y, & =3.
Hence, the convex hull of {u®|2<Y &,=3} is a face of c(n). It is easy to see that,
for n=35, this face is not a subset of any of the facets of the form (2.3).

2.3. The correlation conjecture

We can generalize inequalities (2.3), and (2.4) in the following way. Call a quadruple
(k, a, b, ¢) an n-adequate quadruple if the following conditions hold:
(a) 2=k=mn a, b, ccZ.
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(b) Forall1sjsk: a+b($)<c
(¢) For at least one index 1=<j=k there is equality in (b).
If (k, a, b, ¢) is an n-adequate quadruple and p € ¢(n) we have

a‘Z (op)itb Z (UP)ijgc (2.5)
ica ijea
i<j

for all @ ={1,2,..., n} such that |a|<k, and all o€ I(n). Thus I propose:

Conjecture. Let pe R(n, K,)). Then p € c¢(n) if and only if inequality (2.5) holds for
all n-adequate quadruples (k,a, b, c), all a <{1,2,...,n}, |a|<k, and all o€ I(n).

We shall see in the next chapter that the conjecture entails that NP = co-NP, so
it is quite probably false. In any case, let I(n) denote the polytope generated by
inequalities (2.5). (It is a polytope since it is a bounded polyhedron.)

Clearly, ¢(n) < l(n), and the group G(n) (involutions and permutations) acts as
a symmetry group of I(n). Moreover, for all £ €{0, 1}", u® is a vertex of I{n). This
is easy to see: first the origin is a vertex of I(n), since all elements of I(n) are
non-negative. But u® = o(£)0 and the operations of I(n) transform a vertex to a
vertex. From (2.5) it follows, in particular, that each pel(n) satisfies 0<p;; =<
min(p;, p;) and p;+p,—p;<1lforall Isi<j=<n.

Lemma 2.3. The following statements are equivalent:

(1) {n)=c(n) forn=2,3,...,

(2) I(n) is an integral polytope,

(3) if pe l(n) is a vertex, then the restriction of p to R(n—1, K,,_,) is a vertex of
I(n—1) (for n=3),
where by “restriction to R(n—1,K,_,)”", I mean the vector p obtained from p by
dropping the coordinates p,,, pi,, 1<i<n-—1.

Proof. (1)< (2), ¢(n) is an integral polytope. If I(n) is an integral polytope then
the coordinates of its vertices should be in {0, 1}, since 0= p;; <min{p;, p;} <1 for
all pel(n). But, if p € I(n) is a vertex, then p;; = p;p;, for otherwise p;=p; =1, p;; =0
entails p,+p,—p;=2>1.

(1)) If I(n)=c(n) then (3) is valid, since the vertices of ¢(n) have that
property @° =u® for 6 = (&, &,,..., e,_1) €{0,1}""". Conversely, suppose that (3)
is valid, then since I(2) = ¢(2) we can proceed by induction. Take a vertex p € [(n),
n=3, then pel(n—1) is a vertex, by the induction hypothesis, that is, p = u® for
6=(8,,6,,...,8,.,)€10,1}" . Thus we should have p;, = 8;p,.. To see that assume
8,=0,then 0<p,, <6, =0=p,5;. If §,=1 we have p,+1-p,, <1, or p, < p;,. Since
the reversed inequality holds in I(n) we have p,, = p, = p,.8;. Now, if 0<<p, <1 we
can represent p as a convex combination p=p,u‘+(1—p,)u, where e=
(81,...,8,-1,1)and ¢'=(8,,..., 8,1, 0). But since p is a vertex of I(n), we obtain
a contradiction. Hence, p, =0 or 1, and the claim follows by induction. [l
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Statement (2) of Lemma 2.3 may assist in proving (or disproving) the conjecture
by using well known characterizations of integral polytopes.

2.4. Generalizations, the simplex C(n)

Correlation polytopes can easily be generalized. Let S denote in this section (and
only in this section) an arbitrary family of non-empty subsets of {1,2,... n}, let
A(S) denote the real linear space of all functions f:S-> % so that dim %(S)=|$|.
For e =(¢gy,..., €,)€{0, 1}" let U* denote the following vector in &(S):

U(a)=1]] &, acs, (2.6)
and let C(S) stand for the closed convex hull of {U?®; & € {0, 1}"}. By repeating the
argument of Theorem 1.1 we can prove that pe C(S) if and only if there exists a
probability space (X, X, i), events A,, ..., A, € X, such that p(a)=u(),_, A;) for
acs.

In the following I will be concerned with the simple case where S is the family
of all non-empty subsets of {1, 2, ..., n}. Denote for this case C(§)= C(n);itis a
(2" —1)-dimensional polytope with 2" vertices, in other words a simplex.

In order to derive the 2" facet inequalities for C(n), first consider its symmetries.
For a fixed 1=<i=<n let {; denote the affine transformation, defined for x € &>V,
in the following way: ({x){i})=1—-x{i}), (&x}{j})=x{j}) for j#i, and for
ac{l1,2,...,n}Hea|=2, put ({x)(a)=x(a\{i})—x(a) in case i€ a, and ({x)(a)=
x(a) in case i€ a.

The transformation ¢{; leaves C(n) invariant, since its effect is to transform the
event A, to its complement: A, = X\A,. Let J(n) be the group generated by ¢;,
i=1,2,...,n; then J(n)=2Z4.

icea

Theorem 2.4. Let pc RV, Then the following conditions are equivalent:
(i) pe C(n).
(ii) (¢p){1,2,...,n})=0 for all L€ J(n).
(i) Yoy (-1 i (@) (@) <1 for all L I (n),

Proof. (i)=>(ii): Suppose p € C(n), then there exists a probability space (X, 2, u),
events A,,..., A, €2 such that p(a)=pu(),., A) forall 0 # a <={1,2,..., n}. For
BeXlet B'=B B°=B=X\B.If e =(e4,..., &,)€{0, 1}", denote Le)=TI/_, ¢{ne
J(n), and let £ {0, 1}" stand for the vector £ =1—¢;. Then

(P){L,2,...,n)=p(A3 NAZN- - N A =0,

(ii)=>(i): For £ € {0, 1}" put A(g) = ({(£)p)({1,2, ..., n})=0. We shall prove by
induction on k,0<k<mn, that if a<{1,2,...,n}, la|]=n—k, then ({p)(a)=
Y eciony A(£)(LU)(a) for all L€ J(n).
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Indeed, for k=0 we have

)L, 2,...,nh)=x(e)= Z),iA(fS)(é’(z‘)U‘s)({l,l---,n}),
5¢{0,1
since ({(£)U®)({1,2,...,n})=0if 8# ¢ and 1 for § =&.
Suppose the claim is valid for 1sk<n-1, let a<{1,2,...,n} be such that
la|=n—k—1.Let 1 <j=< nbeaninteger such that j £ «, then by induction hypothesis

(pHauijh = {%1},1/\(8)(§U6)(au{j}) for all {eJ(n).

Take { = {;, then p(a w{j})+({p) (@ u{j}) =p(a) by definition, also U*(a U {j})+
(GU N au{j})=U"(a), hence p(a)=% o A(e)U(a). If {€J(n) is arbitrary
we can repeat the argument for {p instead of p, and hence the claim follows.
Finally, ' _ ,» A(g) =1. To see that note that by the above proof we have for
a={1}:
P{H= ¥ Ale)e, and Gp){D=1-pd1)= ¥ Me)l-e)).

e€{0,1} £€{0,1}
Hence,

Y Ae)=p{1H+(&p)({1}) =1

£€{0,1}"

(i) < (iii): We have

l—k‘; (—1)“'“‘ ‘Z:k (L(p)a)=(Hp){L,2,...,n})
=p(A'NAZN- N AY)

=1-u(A; TUAY U UAT). O

3. Complexity

3.1. Introduction

Correlation polytopes exhibit a great deal of symmetry, a fact which may facilitate
facet determination. Thus, if we manage to derive one inequality for c(n), we
automatically obtain exponentially many by the application of the group operations.
Correlation polytopes, on the other hand, are very complex. This chapter is devoted
to the study of their complexity.

In Section 3.2 I shall prove that deciding membership in ¢(n, S) is NP-complete
for some particular S< K,. This is established by a transformation from a
particular SATISFIABILITY problem. By a further transformation from GRAPH THREE
COLORABILITY, I shall demonstrate in Section 3.3 that deciding membership in ¢(n)
is NP-complete.
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In Section 3.4 I shall prove, using the same SATISFIABILITY problem, that if
CORRELATION FACET€ NP then NP=co-NP. All this indicates that, unless NP =
co-NP, we shall not be able to derive all inequalities of ¢(n). In the concluding
Section 3.5 1 shall comment on this situation and on some further open problems.

It is easy to see that deciding membership in ¢(n, S) is an NP-problem. Let p be
a rationally valued vector in %(n, S) for some set of pairs S. By Caratheodory’s
theorem, p € ¢(n, §) if and only if it is a convex combination of dim &(n, S)+1=
n+|S|+1 vertices of c(n, S).

At the guessing stage our non-deterministic Turing machine (NDTM) produces
r= n+[S]+1 vectors u®, usz, ..., u", where ¢!,..., £ €{0,1}". Then the machine
turns to solve the following instance of LINEAR PROGRAMMING:

Are there \;=0, [=1,2,...,r such that

.
S Mei=p, 1<i<n, nequations,
I=1

Y /\,gﬁej’- =p;, {ij}eS8, |S|equations.

=1

Since LINEAR PROGRAMMING € P (see [23,24]), the computation stage terminates
after a number of steps which is less than fixed polynomial in the number of code
bits for r and p. By Caratheodory’s theorem, p € c(n, S) if and only if the machine
stops on YEs after some such guess, hence deciding membership in c¢(n, S) is an
NP-problem. (In fact we do not have to use a polynomial time machine for linear
programming, for our Turing machine can guess the A;s as well.)

3.2. Deciding membership in c¢(n, S) is NP-complete

Let 1=<k<n and let S, , be the set of all pairs {i, j}1<i<j=<n except for {1, n},
{2, n}, ..., {k, n}. I shall show in this section that deciding membership in ¢(n, S )
is NP-complete. For this I shall use a transformation from the problem oNE IN
THREE 3-SATISFIABILITY (see [25,26]). Let k=4 and m be integers, 3<m=(%). In
the present discussion a proposition over k of length m, will mean a set of triples

Vv ={{ai,as, a3}, {ai, a3, a3}, ..., {a]", a7, ai'}}

suchthatfori=1,2,...,mandj=1,2,3, a}is anatural number 1 < aj<aj<ai=k,
fori=1,2,..., m, and such that for each 1= b < k there exists 1< i=<m, for which
belai, a}, ai}. In such a case we shall say that b occurs in {a', ab, a}}. Let 1(b)
denote the number of distinct triples in which b occurs. A truth assignment for ¥
is any function ¢:{1, 2, ..., k} > {0, 1}; a truth assignment is called a solution for ¥
if 1(al)+t(ab)+t(al)=1 for all 1=<i=<m. The decision problem from which a
transformation will be defined is:
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Instance: A proposition ¥ over k.
Question: Is there a solution for ¥?

Let ¥ be a fixed proposition over k of length mput n=k+m+1; let S=5,,,
that is S is the set of all pairs {{i,j};i#j, 1<i<j=<n} except for {1,n},
{2, n}, ..., {k, n}. Let J =0 be a natural number, and consider the following vector
p eR(n, S.,):

Domain Value
isa<k pl=3""® _ ,
1<ism pl, =3 1ah 4 3-ied | 3-itah
n pr=J-37"
0 there is 1=<i=m such that
l<sa<bs<k P = {a, b}={a), a5, a3}
371@-)  therwise

In the following if a = b, pl, = pJ:

I1<a<k1<iSm  piii=phatPoait Pial
1<i<j<m Pivisers = Palal+ Patal F Pad.al
Pl alt Priait P ad
FPul el Paialt Polal
n p{<+i,n:~]'3_m

Note that for J#J',p’ and p’ are identical except for the coordinates n and
{k+i,n}forl<ism

Lemma 3.1. (i) If there exists J> 0 such that p’ € ¢(n, S,.,), then ¥ has a solution
(ii) Let J be the number of distinct solutions of ¥ (J =0 in case ¥ has no solution);
then p’ € c¢(n, S;.,).

Proof. (i) Suppose that p’ € ¢(n, S;,) for J>0; then by Theorem 1.1 there exists a

probability space (X, 2, u), and events A,,..., A, By,..., B,,, C € X such that
Pe=wu(A), 1sask  pia=p(B), l<ism,
pa=p(C)=J-37">0, pl,=p(A,nA,), 1sa<b<k,
Par+i=m(A N B),  Pria=n(BinB) and pi.=p(BnC).

In the following equality (inclusion) relation between sets will refer to equality
(inclusion) up to sets of u-measure zero.

Claim: B;=A,iu A, A,;. Indeed, by definition, pl i =piai+ Paait Prai- If
a=aj, then, since pyi,i=paiai=0, we have: pii ;= phiai =p: (by the convention
introduced in the above table), hence A,:< B,. Similarly, A,;< B;, A,i< B;, hence
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AaiUALUALCS B, Also, u(B;)=pivi=pai+paitpai,and A, A, A, are pair-
wise disjoint, hence the claim follows. Now pf(+,-,,,, =p}, thatis w(B;n C)=u(C),
therefore C < B; for all i and hence

Cc(1B=MN(AUALUA,.
i=1 i=1
But w(C)>0, therefore C#@; let xe C and define a truth assignment
t:{1,2,...,k}=>{0,1} by
tla)y=1 if xeA, l=sask

For every 1<i<m we have x€ A,iU A,;U A,i, hence t(aj)+t(ab)+t(al)=1, but
A,i, Ay, A, are pairwise disjoint (up to a set of u-measure zero, which makes no
difference here since we can eliminate it anyway), therefore we must have t(a})+
t(ay)+1(3)=1.

(ii) Let J be the number of distinct solutions for ¥. Let X ={1, 2,3}, and let 3
be the power set of X. Let w be the uniform probability measure on X so that
u({x})=3""forall xe X. For 1=a<k, let A,=D(a, 1)X D(a,2)x ---xD(a, m)
where D(a, i) = {1, 2,3} is defined as follows:

{1}’ a=a'1)
Pt o

{1,2,3}, otherwise.

Then u(A,)=3"""=pl. Let 1I<a<b=k, then u(A,nA,)=0 in case there is i,
such that a, be{a}, a5, a3}, otherwise w(A, N A,)=u(A)u(A,); put Bi=A,iu
AUAgand C=(", (As,UAUA,), then clearly w(B;)=pi.,, u(BinA,) =
Pakris Praigs; = (B0 B;), u(B;nC)=u(C). To complete the proof we have to
demonstrate that u(C)=J3"" (where J is the number of solutions of ¥). Let ¢ be
a solution for ¥; define an element x(¢) = (x,(1), ..., x,,(¢)) € X as follows: x;(1) =1
if t(a})=1, x,(¢1)=21if t(ab) =1 and x;(t) =3 in case t(al)=1. Since t(a})+ t(al)+
t(ai)=1 for all i=1,2,..., m the point x(¢) is well defined. Also, if 7# ¢’ then
x(t) # x(t") (remember we assumed that for all 1<<b < k there is 1 < i< m such that
be{a}, ab, ai}). Let 1< a<k, then x(t) € A, if and only if #(a) = 1. To see that put
A,=D(a,1)x---xD(a, m) as above, and let a=aji=a2=---=ar, r=1I(a) be
all the distinct occurrences of a in ¥, then t(a)=1 if and only if x,(¢r)=j; for
1=1,2,...,rif and only if D(a, i) =1{j} for I=1,2,..., rif and only if x(1) € A,.
But if ¢ is a solution t(a;)+1(a;)+t(al) =1, hence x(t)e AU AU A, for all
i=1,2,...,m, hence x(t) € C and therefore |C|=J. Also, if x € C we can define a
truth assignment ¢:{1,2,...,k}>{0,1} by #(a)=1 if and only if x€ A,, and as
before, it is easy to see that ¢ is a solution. Hence, |C|=J and w(C)=J3"" O

Let p°, p' denote p’ for J=0, J=1; then we can now easily prove:

Theorem 3.2. (i) We always have p°c c(n, S;,).
(ii) ¥ has a solution if and only if p' € c(n, S,).
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Proof. (i) Choose (X, X, 1) as in Lemma 3.1 part (ii), except take C =0 (instead
of C=(", B,), and the claim follows.

(ii) Suppose that p'e¢(n, S,,); then ¥ has a solution by Lemma 3.1 part (i).
Conversely, suppose ¥ has a solution, let J be the number of solutions of ¥
then p’ec(n, S.,) by Lemma 3.1 part (ii). But p’ec(n, S,), and p'=
(1/J)p” +(1=1/J)p° hence, since c(n, S, ,) is convex, the claim follows. [

From Theorem 3.2 it is clear that deciding membership in ¢(n, S), Sc K, is
NP-complete. For it we had a polynomial time, deterministic Turing machine
to decide membership in c¢(n, S) we would be able to decide ONE IN THREE
3-SATISFIABILITY in polynomial time as well. (It is easy to see that constructing p',
given a proposition ¥, can actually be performed in O(m(m+k)*) = O(k’) steps.)
It should be noted that by a similar, though somewhat more cumbersome technique,
a transformation from 3-SATISFIABILITY can be defined.

3.3. Correlation is NP-complete

In this section I shall show that deciding membership in ¢(n) is NP-complete. To
establish that, T shall use the same transformation as in the case of the previous
section, only this time the proposition ¥ will be such that p}, can be uniquely
defined also for 1<a<k

Let G=(V, E) be a simple graph, where V is the set of vertices, and E the set
of edges. As is well known (see [23]), deciding whether G is 3-colourable is an
NP-complete problem. Given a simple graph G we shall construct a proposition
V. The number of variables is k =3|V|+3|E|, and the number of triples is m =
|V|+3|E|. For each vertex ve V we shall have three variables v,, v,, v5, Where v, is
interpreted as: “the colour of the edge v is i” (i=1, 2, 3). For each edge ec E we
shall have three variables e,, e,, e; where e, stands for: “the colour i is missing from
the edge ¢ (i=1,2,3). The proposition ¥ consists of the triples of the form
{v,, v,, v} for all veV, and triples of the form {v,, v}, ¢} for i=1,2,3 and all
e={v, v’} e E. It is easy to see that G is 3-colourable if and only if ¥ has a solution,
that is, if and only if there is a truth function which satisfies one, and only one
variable in each triple of V.

Now let n=k+m+1=4|V|+6|E|+1. Define p’ as in the previous section. In
this way the value of p’ is given for all pairs in S, ,. Note that if G is 3-colourable,
then any permutation of the colours i =1, 2, 3 is a 3-colouring of G as well. Hence,
the proportion of the solutions of ¥ (i.e., 3-colourings of G), in which a variable
(e, or v,) is true, is 1. Thus we can put pl,=3p,=J-37"""" for 1< a<k By this
p’ is defined for all pairs, p’ € %(n, K,,), and we can proceed as before and prove
that G is three colourable (or equivalently, ¥ has a solution) if and only if p' € ¢(n).
Consequently, deciding membership in c(n) is NP-complete.
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Having established that, it is easy to see that the conjecture of Section 2.3 entails
that NP = co-NP. For let pe #(n, K,,) then, if the conjecture is true, we can have
a polynomial time, non-deterministic Turing machine, which decides whether
p#c(n). At the guessing stage the machine produces a quadruple (k, a, b, c),
a set ac{l,2,...,n}, |@|<k and an involution o€ I(n). Then the machine
checks whether (k, a, b,c¢) is n-adequate, and if so, whether a}, . (op);+
bY jcaic; (0P);>c. All this clearly takes only polynomial time. The only subtle
point here is the size of the coefficients a, b, ¢, which should not be of exponential
complexity. Since, however, c(n) is a zero-one polytope, this is guaranteed by Karp
and Papadimitriou [22, Lemma 1], which asserts that the complexity of the
coefficients of the facet inequalities of polytopes such as c(n) is bounded by a fixed
polynomial in the dimension. Hence, if the conjecture is valid, then deciding
membership in the complement of ¢(n) is in NP. Since deciding membership in
c(n) is NP-complete, we conclude that the conjecture of Section 2.3 entails that
NP =co-NP.

3.4. Optimization and CORRELATION FACET

Consider the following discrete optimization problem:

SPIN GLASS
Instance: An integral vector J € R(k, K,) and an integer M.
Question: Is

k
max |:Z Je+ Y J,-js,-sj:'BM?

ec{0,1}¥ Li=1 |<i<j<k

This decision problem is equivalent to the question: Is

k
max [Z Jp+ ¥ J,-jpij:| =M?
pec(k) Li=1 1si<j=<k
Thus if we were able to derive the facet inequalities for ¢(k) we could have used
techniques of linear programming to decide SPIN GLASS. As expected, however, this
problem is NP-complete as well.

Lemma 3.3. SPIN GLASS is NP-complete.

Proof. We shall use ONE IN THREE 3-SATISFIABILITY, as in Section 3.2. Let ¥ be a
proposition with k variables and m triples. For 1< a <k, I(a) denotes the number
of triples {a!, a}, ai} of which a is an element. For 1<a<b<k let I(a,b)=1 in
case there exist 1 <i=m such that a, be{a}, a’, ai}, and I(a, b) = 0 otherwise. We
shall prove that ¥ has a solution if and only if there exists & = (&, ..., &) € {0, 1}*
such that

EIE I(a)e,—3m Y,  I(a,b)e,e,=m. (3.1)

lsa<b=k
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Suppose that ¥ has a solution ¢:{1,2,...,k}>{0,1}. Put e, =1(a) for l1<a<n.
Since t(aj)+t(al)+t(ai)=1for1<i<m, wehave l(a, b)e,e, =0foralll<a<b<
k. Also,

S la)e,= 3 [1(a})+1(ab) +1(al)]=m

Therefore, equality holds in (3.1).
Conversely, suppose that & =(e,,..., £)e{0, 1} satisfies inequality (3.1). Put
t(a)e,, 1<=a<k Then

ZIE l(a)e(,:g [t(a})+1(ad)+1(a})]<3m.

i=

Suppose there exists 1=<a < b=k such that /(a, b)e,&, =1. Then

k

Y. lla)e,—3m Y, la,b)e,e,=0<m.

a=1 1<a<b=<k
Since the reverse inequality holds, by assumption, we conclude that e,e, =0
whenever there exist 1< i< m such that a, b, € {a}, a’, a;}. Therefore, t(a})+ t(ab)+
t(ai)=<1for all 1=<i<m. But since ¢ satisfies (3.1) we have t(a})+t(al)+t(a}) =1
for all 1<i<m, so that ¢ is a solution. Since ONE IN THREE 3-SATISFIABILITY i$ an
NP-complete problem it follows that sPIN GLASS is NP-complete as well. [

A variant of this lemma has been previously proved by Barahona [11]. His paper
deals with a spin glass system with £1 values rather than 0, 1. The components of
the system are located on a cubic lattice. The minimum energy problem is shown
to be NP-complete even if J;=0, 1<i=<n, and for each i: J;;=0 for all j, except
the lattice neighbours. Other variants of the problem are also demonstrated to be
NP-complete.

Consider now the problem CORRELATION FACET: given an integral vector Je
%(n, K,), and an integer M, does the inequality );_, I+ icicjen JiiPij < M rep-
resent a facet of ¢(n)?

Theorem 1 in Karp and Papadimitiriou [22] provides the connection between
NP-complete discrete optimization problems and facet determination in the corre-
sponding linear programs. Since SPIN GLASS is NP-complete by Lemma 3.3, a direct
application of this theorem gives:

Corollary 3.4. If CORRELATION FACET€ NP, then NP =co-NP.

From this conclusion we can see once again that the Conjecture of Section 2.3
entails NP = co-NP. In fact, Corollary 3.4 entails that if NP > co-NP, then CORRELA-
TION FACET is not even in NP. Papadimitiriou and Yannakakis [27] introduced the
class D, of all languages £ which have the form & =%, n%,, where Z, € NP and
%, e co-NP. Clearly, CORRELATION FACETE D,. One can probably prove also that
it is D,-complete, though I was not able to establish that.
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3.5. Conclusion

Many NP-complete problems have the structure of massive linear programming:
optimization on the travelling salesperson polytope, the clique polytope, and a host
of others (see [27] for details). CORRELATION has some advantages. Firstly, the
interior points of ¢{n), not just the vertices, have direct interpretation in terms of
probability assignments. In fact, all facet inequalities for ¢(n) should follow from
“Venn diagrams”, that is, the possible relations among n events in a probability space.

Secondly, the symmetries, which enable us to simplify facet determination. Let
a, ..., a" be vectors in R(n, S,), and let b, ..., b, be integers. We shall say that
a®,...,a"”, by, ..., b,is a generating set of facets for c(n), if all facet inequalities
of ¢(n) have the form ¥|_, aﬁ”(np),«+zlsi<j§n aP(np);;< by, for some group ele-
ment 7€ G(n) and some a'”, b; in the generating set. Since |G(n)|=n12", it is
possible that a polynomial size generating set can be found (that is, a set such that
r is bounded by a fixed polynomial in n). Moreover, if a non-deterministic, poly-
nomial time program can be found, which identifies the elements of the generating
set, then NP=co-NP. This follows from Corollary 3.4 in conjunction with the
Theorem of [22]. All in all, T believe that, apart from their intrinsic interest,
correlation polytopes may assist us in clarifying the relations between NP and co-NP.
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