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In this paper we are concerned with global optimization, which can be defined as the problem of finding 
points on a bounded subset of N" in which some real valued function f assumes its optimal (maximal 
or minimal) value. 

We present a stochastic approach which is based on the simulated annealing algorithm. The approach 
closely follows the formulation of the simulated annealing algorithm as originally given for discrete 
optimization problems. The mathematical formulation is extended to continuous optimization problems, 
and we prove asymptotic convergence to the set of global optima. Furthermore, we discuss an implementa- 
tion of the algorithm and compare its performance with other well-known algorithms. The performance 
evaluation is carried out for a standard set of test functions from the literature. 
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I. Introduction 

A global min imiza t ion  p rob lem can be formalized as a pair  ( S , f ) ,  where S c  R" is 

a b o u n d e d  set on N" and  f : S ~ R  an n -d imens iona l  real-valued funct ion.  The 

p rob lem now is to find a po in t  Xmin e S such that  f(Xmin) is globally min ima l  on S. 

More specifically, it is required to find an Xr~n e S with 

Vx~S: f ( X m i n ) < f ( x ) .  (1.1) 

Here we restrict ourselves to minimiza t ion .  This can be done wi thout  loss of 

generali ty,  since a global  m a x i m u m  can be found  the same way by reversing the 

sign o f f .  

Globa l  opt imiza t ion  problems arise in many  practical  appl ica t ion  areas such as 

economics  and  technical  sciences. Despite its impor tance  and  the efforts invested 

so far, the s i tuat ion with respect to algori thms for solving global min imiza t ion  

problems is still unsat isfactory.  The s i tuat ion is satisfactory only for relatively simple 

funct ions  f, where f is differentiable and  the zero points  of the derivative can be 

computed  analytical ly.  

* Also with the Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, Netherlands. 
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For the minimization of more complicated functions one usually resorts to 
numerical solution methods. Many of these numerical methods cannot produce 

optimal results, but merely return a value 'close to '  a global minimum, where 'close 

to '  can be formalized by the following definitions: 

Definition 1.1. For e > 0 ,  Bx(e) is the set of points close to a minimalpoint, i.e. 

Bx(e) = {x ~ S] 3Xmin ." [IX --Xllrlinll < e}. (1.2) 

Definition 1.2. For e > 0, Bf (e) is the set of  points with a value close to the minimal 

point, i.e. 

Bj (e) = {x c S I 3  . . . .  : I f (x)  --f(Xmin)l < e}. (1.3) 

Definition 1.3. For e > 0, a point x ~ S is near-minimal if 

x c B(e) ,  (1.4) 

where B(e)  = Bi (e )  u B, (e) .  

Numerical global optimization methods can be divided into two classes: (i) 

deterministic, and (ii) stochastic methods. In stochastic methods, the minimization 

process depends partly on probabilistic events, whereas in deterministic methods 

no probabilistic information is used. 
The disadvantage of deterministic methods is that they find the global minimum 

only after an exhaustive search over S and additional assumptions on f The faster 
among these methods have the additional disadvantage that even more assumptions 

must be made about f, or that there is no guarantee of  success (Rinnooy Kan and 

Timmer, 1984). 

Stochastic methods, in contrast, can almost all be proven to find a global minimum 

with an asymptotic convergence guarantee in probability, i.e., these methods are 
asymptotically successful with probabili ty 1. Furthermore, the computational  results 
of  the stochastic methods are, in general, better than those of the deterministic 

methods (Rinnooy Kan and Timmer, 1984). For this reason we concentrate on 

stochastic methods. 

An important  problem in global minimization is to recognize a local minimum. 
To quantify this problem we need the following definition: 

Definition 1.4. A region of  attraction Bx,o~ is defined as a subset of  S, surrounding a 
local minimum Xjoc c S, such that applying a strict descending local search procedure 

to each point of  B~,o c will yield X~oc. 

Local minimality is no guarantee of  global minimality. So a fundamental  concern 
in global minimization is to avoid getting stuck in a local minimum. Up to now, 
there are two classes of  methods known to overcome this difficulty in stochastic 
minimization: the first class constitutes the so-called two-phases methods; the second 
class is based on simulated annealing. 
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In two-phases methods, the search for a global minimum is divided into two 

steps: first, a number of points are sampled (randomly) from S; second, for each 

of these points a local minimum is detected, i.e., for each point, the local minimum 
is determined for the region of attraction to which the point belongs, and each of 
these local minima is considered as a candidate for a global minimum. Determination 
of a local minimum is done by a local search procedure. Reviews of two-phases 
methods are given by Dixon and Szeg6 (1978) and Rinnooy Kan and Timmer (1984). 
Local search procedures are reviewed by Scales (1985). As examples of two-phases 

methods we mention: 
- Pure Random Search (Rinnooy Kan and Timmer, 1984, 1987a); 
- Controlled Random Search (Price, 1978); 
- Multistart (Rinnooy Kan and Timmer, 1984, 1987a); 
- Clustering methods (T6rn, 1978; Rinnooy Kan and Timmer, 1987a; De Biase 

and Frontini, 1978; Gomulka, 1978b); 
- Multi Level Single Linkage (Rinnooy Kan and Timmer, 1984, 1987a, 1987b). 
Methods based on simulated annealing apply a probabilistic mechanism that 

enables search procedures to escape from local minima. This approach is extensively 
discussed in the remainder of this paper. This paper is organized as follows: In 
Sections 2 and 3 a simulated annealing method, which is known from discrete 
minimization, is transformed into a global minimization method for real-valued 
functions; Section 2 contains the mathematical model of the algorithm and the proof  
of the asymptotic convergence to a global minimum; Section 3 describes a detailed 
implementation of the algorithm, which fits into the theoretical framework of Section 
2. In Section 4 the simulated annealing algorithm is compared to some well known 

methods by using a set of test functions from the literature. Section 5 concludes the 
paper with some inferences and remarks. 

2.  S i m u l a t e d  a n n e a l i n g :  t h e o r y  

2.1. Origin of the algorithm 

Simulated annealing is a stochastic method to avoid getting stuck in local, non-global 
minima, when searching for global minima. This is done by accepting, in addition 
to transitions corresponding to a decrease in function value, transitions correspond- 
ing to an increase in function value. The latter is done in a limited way by means 
of a stochastic acceptance criterion. In the course of the minimization process, the 
probability of accepting deteriorations descends slowly towards zero. These 
'deteriorations' make it possible to 'climb' out of local minima and explore S entirely. 
This procedure will lead to a (near) global minimum. 

Simulated annealing originates from the analogy between the physical annealing 
process and the problem of finding (near) minimal solutions for discrete minimiz- 
ation problems. The physical annealing process is known in condensed matter 
physics as a thermal process for obtaining low energy states of a solid in a heat 
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bath. As far back as 1953, Metropolis et al. (1953) proposed a method for computing 
the equilibrium distribution of a set of particles in a heat bath using a computer 
simulation method. In this method, a given state with energy E1 is compared to a 
state that is obtained by moving one of the particles of the state to another location 
by a small displacement. This new state, with energy E2, is accepted if E 2 -  E1 <~ 0, 
i.e., if the move brings the system in a state of lower energy. If E 2 -  E1 i> 0, the new 
state is not rejected, but accepted with probability e x p ( - ( E 2 - E 1 ) / ( k T ) ) ,  where k 
is the Boltzmann constant and T the temperature of the heat bath. So a move to a 
state of higher energy, a 'deterioration', is accepted in a limited way. By repeating 
this process for a large enough number of moves, Metropolis et al. (1953) assumed 
that the canonical distribution, known as the Boltzmann distribution, is approached 
at a given temperature. 

The first authors that linked the simulated annealing of solids with combinatorial 
minimization were Kirkpatrick et al. (1983). They replaced the energy by a cost 
function, and the states of a physical system by solutions of a combinatorial 
minimization problem. The perturbation of the particles in the physical system then 
becomes equivalent to a trial in the combinatorial minimization problem. The 

minimization is done by first 'melting' the solution space at effectively a high 
temperature (temperature now simply being a control parameter), and then slowly 
lowering the temperature until the system is 'frozen' into a stable solution. 

This algorithm, when applied to combinatorial minimization problems, can be 
proven to converge to a global minimum with a guarantee in the probabilistic sense. 
It is generally applicable because no specific information about the cost function 
or solution space is needed a priori. Furthermore, it is easy to implement and shows 
good performance. For an overview of the applications of the simulated annealing 
algorithm to combinatorial optimization problems the reader is referred to Aarts 
and Korst (1988) and Van Laarhoven and Aarts (1987). 

Because of the success of the simulated annealing algorithm in combinatorial 
minimization problems, we have been investigating its potential for solving con- 
tinuous minimization problems. 

2.2. S imulated annealing and continuous minimization 

Application of simulated annealing to the minimization of a continuous valued 
function has been addressed by a number of authors. The proposed approaches can 
be divided into the following two classes. 

In the first class, applications of the algorithm are described that follow closely 
the original physical approach introduced by Kirkpatrick et al. (1983). For example 
Vanderbilt and Louie (1983) use a covariance matrix for controlling the transition 
probability. This matrix should in some way reflect the topology of the search space 
and the acceptance criterion. Khachaturyan (1986) presents a method that is closely 
related to a physical system as described by Metropolis et al. (1953). Bohachevsky 
et al. (1986) present a simple and easy to implement method in which the length 
of a generation step is constant. Kushner (1987) describes an appropriate method 
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for cost functions, for which the values can only be sampled via a Monte Carlo 

method. If  no sampling noise exists, this method is a regular version of the simulated 

annealing algorithm. 
In the second class of approaches, the annealing process is described by Langevin 

equations, and proven to converge to the set of global minima. A global minimum 
is then found by solving stochastic differential equations. Aluffi-Pentihi et al. (1985) 
propose the computation of global minima by following the paths of  a system of 
stochastic differential equations. They use a time-dependent function for the accept- 
ance criterion which tends to zero in a suitable way. Their method finds a global 

minimum for all test functions that were used. The papers of Geman and Hwang 
(1986) and Chiang et al. (1987) consider the same concept. A continuous path 
seeking a global minimum will, in general, be forced to 'climb hills', with a standard 

n-dimensional Brownian motion, as well as follow down-hill gradients. The 
Brownianmot!on  - is  controlled by a time dependent factor, tending to zero as time 
goes to infinity. The convergence proof given by Geman and Hwan~ (1986) is based 
on Langevin equations. They make use of  an inhomogeneous Markov chain, and 
the probability distribution function they use is the same as the one used in Theorem 
2.2 (see below). Recently, it was brought to our attention that similar work was 
done by Tovey et al. (1989). 

The simulated annealing algorithm, as described in this paper, fits in neither of 

these two classes. Our algorithm is a transformation of the simulated annealing 
method for discrete minimization to one for continuous minimization. The definition 
and the convergence proof  of the algorithm are analogous to the ones given for the 
algorithm when applied to discrete optimization problems, and are based on the 
equilibrium distribution of Markov chains (see Aarts and Korst, 1988; and Van 
Laarhoven and Aarts, 1987). 

2.3. Mathematical model of  the algorithm 

We now present a mathematical model of the simulated annealing algorithm for 
continuous optimization based on the ergodic theory of Markov chains. 

Definition 2.1. X ( k )  is a random variable denoting the outcome of  the kth trial 
by simulated annealing. The outcome of a trial is a point x c S and depends only 
on the outcome of the previous trial. A Markov chain in the simulated annealing 
algorithm is a sequence of trials. 

Definition 2.2. gxy is the generation probability distribution function, i.e., the prob- 
ability distribution function for generating a point y from point x at a fixed value 
of the control parameter c c •*. 

Definition 2.3. Axy(c) is the acceptance probability, i.e., the probability of accepting 
point y if x is the current point in a Markov chain and y is generated as a possible 
new point. 
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Definition 2.4, The transition probability of transforming x ~ S into a point y c T c S 
is the probability of generating and accepting a point in T if x ~ T. Thus, if x is the 
current point of the Markov chain, then the probability that an element out of T 
is the next point of the Markov chain is 

Ify pxy(c) dy f o r x ~ T ,  
P(TIx; c)=  . r  (2.1) 

[i~7P~Y(C) dy+(1- i~s  Pxy(c) dy) f o r x e  T, 

where 

and 

pxy(c) =gxy.A~y(c) (2.2) 

P( TIx; c)=P{X(1)~ TIX(l-1)= x; c}. (2.3) 

Def in i t ion  2.5.  

VxeS: 

and 

A probability distribution function r(x, c) is stationary if 

r(x,c)=fy~sr(y,c)py~(c)dy+r(x,c)(1-fy~sP~y(c)dy ) 

Ix r( x, c) dx  = 1. 
~S 

(2.7) 

(2.8) 

2.4. Asymptotic convergence of the algorithm 
In this section it is shown that the procedure given above converges asymptotically 
to a point x, where x6 Bf(e) (Definition 1.2), i.e., we prove that 

VE>o: l i m l i m P { X ( k ) e B f ( e ) l c } > ~ l - e  (2.6) 
c$0 k~oe 

for all starting points X(0). 
The proof is based on the convergence proof of the simulated annealing algorithm 

when applied to the discrete minimization problem (see Aarts and Korst, 1988; and 
Van Laarhoven and Aarts, 1987). Essential to the proof of the convergence algorithm 
is the fact that under certain conditions there exists a unique stationary probability 
distribution function of a homogeneous Markov chain. 

Note that pxy(c) is not a proper probability distribution function, for 

fy~s pxy(c) dy (2.4) ¢ 1. 

Therefore, pxy(C) is called the quasi probability distribution function. In this paper, 
the acceptance probability Axy(c) is chosen to be equal to the Metropolis criterion, 
i.e., 

a~y(C) = min{1, e x p ( - ( f ( y )  -f(x))/c)}. (2.5) 
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Definition 2.6. The probability that a point x 6  S is transformed into a point 

y c T c S i n  k t r i a l s i s  

p(~(c) dy for x ~ T, 

(2.9) 

p~ky~(c)dy+(1-fy~sp~y(c)dy) k for x ~ T, 

where 

P(x~)(C) : Iz ( k - l )  C ~sPx ~ (c)p~y() dz 

+ P~ky-')(c)( l -  fz~sPyz(c) dz) + ( 1 -  f~sP~=(c) dz ) 
k - I  

px,(c) 

(2.10) 

i.e., p~ky)(C) is the quasi probability distribution function of transforming x into y 

in k trials, and hence (k) p~y (c) is equal to the summation of three terms: 
(i) the first term is the quasi probability distribution function of transforming 

x into z in k -  1 trials, and from z to y in the next trial integrated over all z; 
(ii) the second term is the quasi probability distribution function of transforming 

x into y in k -  1 trials and then rejecting the kth trial; 
(iii) the third term is the quasi probability distribution function of transforming 

x into y in one trial after k -  1 rejected trials from x. 

Lemma 2.1. 
set and S has no cyclically moving subsets (Doob, 1953), /f 

Vxo~sVr=s: r e ( T ) > 0  ~ f g~oy(c) dy>O, 
Jy e T  

where m( T) is the Lebesgue measure of the set T (Weir, 1973). 

For the Markov chain, given by Definition 2.1, S is the unique ergodic 

(2.11) 

Proof. For each Xo ~ S we have 

VT=S: m(T)<m(S) ~ l=p(k)(SIxo;e) 

= P(k)(TIxo; c)+P(k)(S\TIxo; c). (2.12) 

Condition (2.11) assures that P(k~(S\Tlxo; c ) >  0, and hence 

VxoVT=S: P(k)(Tlxo; c ) <  1. (2.13) 

So S is the only invariant set (Doob, 1953). Now S has to be decomposed into 
disjoint invariant sets and a transient set (Doob, 1953), but S is the only invariant 
set and the complement of S is empty, and therefore S is a unique ergodic set. 

Furthermore, S cannot be divided into t disjunct sets T1 . . . .  , T, such that 

Vx~r,: P(T,+,]Xo;C)=l, l<~i<~t, (2.14) 
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(where Tt+l is interpreted as T1) (Doob, 1953), because of (2.11). Hence, S has no 
cyclically moving subsets. This completes the proof of Lemma 2.1. [] 

Theorem 2.1 (A continuous analogue of Feller's theorem (Feller, 1957, 356-357)). 
The stationary probability distribution function of a homogeneous Markov chain as in 
Definition 2.1 exists if S is the unique ergodic set and has no cyclically moving subsets. 
Moreover, this probability distribution function q is defined as 

q(x, c) = ~im p~'(c) (2.15) 

for arbitrary y c S, and is uniquely determined by the following equations 

(i) Vx~s: q(x, c)>O; (2.16) 

(ii) Ix~s q(x, c) d x  = 1; (2.17) 

(iii) V~s :  q(x,c)=fy~sq(y,c)ps~(c)dy+q(x,c)(1-fy~sp~y(c)dy ). 

(2.18) 

Reformulation: I f  the above holds, then for an arbitrary initial probability distribution 
function ux, we obtain as k-~ 0o, 

(k)[ c u~ k)= Uypyxt ) d y + u x  1 -  Pxy(c) dy ~q(x,c).  (2.19) 
~S cS 

Proof. Note that for all n > 0 we have 

;, (fy P(')(Slx; c) (n) -- Px, (c) d y +  1 -  pxy(C) dy = 1, (2.20) 
e S  c S  

which implies that 

fy (n) Pxy (c) dy <~ 1. (2.21) 
~ S  

Since S is the unique ergodic set and S has no cyclically moving subsets, 
- ( n )  h m n ~ p x y  (c) exists as an ordinary limit, and is independent of x (Doob, 1953). 

Hence, we obtain 

fy q(y ,c)dy  fy lira (~) - l i m  f (') = px, (c) <~ 1. (2.22) 
~S eS n~°~PxY (C) -- . ~  dyeS  

Furthermore, we have 

x~ tc)= p~, (C)pz,(C) 1 
~S ~S 
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Now, as m-~ ec we obtain 

_ ( m + l ) / ~ ' ~  q(y, c)-- lim /~xy tel 
m-~co 

m~OO ~ S  m-~co \ E S  

Note that Sy~S q(Y, c) dy ~< 1. Next, define 

r(y, c)= q(y, c) / [  fz~s q(z, c)dz], (2.25) 

then 

(i) r(y, c )>  O, because S is the unique ergodic set; (2.26) 

(ii) fv~sr(y,c) dy=[fy~sq(y ,c )dy] / [ f z~sq(Z ,c )dz]=l;  (2.27) 

(iii) r(y, c)=q(y, c) /[ Iz¢s  q(z, c)dz] 

fx~sq(X,c)pxy(c)dx+q(y,c)(1-fx~sPyx(C) dx) 

z~s q(z, c) dz 

=fx~sr(X,C)Pxy(c)dx+r(y,c)(1-Ix~spyx(c)dx). (2.28) 

Hence, at least one stationary probability distribution function exists. 

Lemma 2.2. Let r(z, c) be any distribution satisfying Definition 2.5. Then we have 

r(z, c) = ~s r(x, c)p(~kz~(C) dx+r(z, c) 1- ~sPz~(c) dx . (2.29) 

Proof (by induction). For k-- 1 (2.29) holds. Now assume (2.29) is correct for k. 
Then, multiplying (2.29) by pzy(C) and integrating over z c S yields 

f z r ( z , c )p~y (c )dz f~ f x r (X  ' (k )  = c)px~ (C)pzy(C) dx dz 
c S  ~ S  ~ S  

+fz~sr(Z,C)pzy(e)(1-fx~spzx(e)dx)kdz. (2.30) 
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Next, using Definition 2.5 and (2.10) we obtain 

r(y,c)-r(y ,c)(1-fx~sPyx(c)dx ) 

So, using (2.29) for k, 

r(y, c) = f r(x, C)Pxy(k+ 1)(c) dx 
.Ix ~S 

+r(y,c)(1-fx~sPYX(C)dx ) 

= C)Pxy ~ jdx+r(y ,c )  1 pyz(c) dz) . (2.32) 

Thus (2.29) is correct for k +  1. This completes the proof of Lemma 2.2 [] 

We now complete the proof of Theorem 2.1. As k-~ oe, (2.29) transforms into 

lim r(z, c) = ~im r(x,c)p~(c)dx+r(z,c) 1-  pzy(c) dx 
k~oo ~S ~S 

= f~s  r(x'c)q(z'c)dx+O=q(z'C) fx~s r(x,c) dx=q(z,c). 

(2.33) 

Hence, any distribution satisfying Definition 2.5 is equal to the probability distribu- 
tion function q. So, q is unique. This completes the proof of Theorem 2.1. [] 

Theorem 2.2. L e t  Pxy(C) be given by Definition 2.4 and let S be the only ergodic set 
not having any cyclically moving subsets for the Markov chain induced by P( T I x; c) 
(Definition 2.4). Furthermore, let the following conditions be satisfied: 

(i) Vx, y~S : gxy(c)=gyx(C); (2.34) 
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(ii) gxy(C) is not dependent on c (and can therefore be written as gxy). (2.35) 

Then the stationary probability distribution function is given by 

q (x ' e )=exp ( - ( f ( x ) - fm in ) /C) / [ i c seXp( - ( f (Y ) - fm in ) / c )dy l '  (2.36) 

where fmin is the minimal function value, i.e., fmin=f(Xmi~) for all Xmin (see (1.1)). 

Proof. If q(x, c) satisfies (2.16), (2.17) and (2.18), it is the unique stationary 
probability distribution function (Theorem 2.1): 

exp(-(f(x)  -fmin)/C) 
(i) Vx~s: q(x, c ) -  ->0; (2.37) 

v~s exp(-(f(y)--fmin)/C) dy 

fx exp(--(f(x)--fmin)/C) dx C 
(ii) Jx~s q(x, c) dx - ' f  = 1; (2.38) 

E S  

| exp(--(f(y)--fmin)/C) dy 
Oy e S  

(iii) Let N(c), S-(x) and S+(x) be defined as follows: 

N(c) = f exp(-(f(y)-fm~,)/c)  dy; (2.39) 
Jy c S  

S-(x) = {y c S]f(y) ~<f(x)}; (2.40) 

S+(x) = {y c S]f(y) > f(x)}. (2.41) 

Then 

y~s q(y' c)pyx(C) dy 

=_.I,,~s (~) 1 . N(c) exp(-(f(y)-fmin)/C) 

x gy,¢ min{1, exp(-(f(x)  - f ( y ) ) / c ) }  dy 

+ - - exp ( - - ( f ( y ) - - fm in ) /C)  
~s+(~) N(c) 

x %,, min{1, exp ( - ( f (x ) - f (y ) ) / c )}  dy 

=I, 1 
~s (x) N(c~-~ exp(-(f(x)  -fmin)/c)gxy dy 

+ + - -  exp(--(f(y)--fmin)/c)gxy dy 
~s (~) N(c) 

=q(x'c) fy~s (x) gxydY Iy + ~s+(x) q(y'c)gxydY (2.42) 
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- ' '  min ,, 

q(x, c) - q(x, c) f g.y dy 
ay ES-(x) 

~s+(x) N(c~-] e x p ( - ( f ( y )  --fmin)/C) 

X gyx min{1, e x p ( - ( f ( x ) - f ( y ) ) / c ) }  dy 

=q(x,c)-q(x, c)Iy~S-(x) gxydy-q(x,c) fy~S+(x) gxydy. (2.43) 

Combining (2.42) and (2.43) yields 

Vx~s: i~spyx(C)gyxdy+q(x,c)(1-fy~sPxy(c)dy)=q(x,c). (2.44) 

This completes the proof of Theorem 2.2. [] 

We now prove that the simulated annealing algorithm converges to a near minimal 
solution if the stationary probability distribution function is given by (2.36). 

Theorem 2.3. 

lim f q(y, c) dy > 1 - e  (2.45) V~>o: 
c$o .ly~Bi(~ ) 

if the number of local minima is finite and f is uniformly continuous. 

Proof. Since the number of local minima is finite we have 

3.,>o: If(x,oc) --fmi,-,I > el, (2.46) 

3~2>0vxm,°: Ilx,o<-Xm,nll>e2, (2.47) 

where fmin =f(Xmin) for all Xmin (see (1.1)) and Xloc is a local, non-global minimum. 
Now choose e, such that 

0 < e < min{¼ea, ¼42}. (2.48) 

(If all minima are global then e should be chosen such that :l~s:f(x)--fmin > e.) 
Because f is uniformly continuous we have 

3~,>oV~,y~s: IIx-yll~<a, ~ [f(x)-f(y)[<½e. (2.49) 
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Let 3 be chosen as follows: 

6 = min{16,, s}. 

Then we have 

VyeB~(a) : f ( y ) - - fm in  <1 ~8, 

where Bx(6) is given by Definition 1.1. 
Now take a point 

Xo~ S\Bx(a),  with f(xo)-fm~n = e. 

(This is possible because f is continuous.) Then 

exp(- ( f (xo)  - fmi,)/c) 
lira q(xo, c )  = lim r c~,o c~O 

| e x p ( - ( / ( y ) - f m i . ) / c )  dy 
ay cS 

e x p ( - e / e )  
= lim r c~O 

/ e x p ( - ( / ( y ) - f m i . ) / e )  dy 
ay eS 

j' 
=lira exp((e --(f(y)--fm~n))/C) dy 

c$0 eS 

= l i m [  f exp((e-(f(y)-fmi.)) /c)  dy 
~o LdyeS\G(a) 

+ fv~x(~) exp((e - ( f ( Y ) -  fmi°)/ c)) dY] -1 

<~lim[ [ exp((e-( f (y)- fmi .)) /c)dy] 1 
c$0 L JyeB~(a) 

r i  ]_l ~< lira e x p ( ( e - l e ) / c )  dy 
L ~,o e B.(8) 

[limo ( /2 ) (B ( a ) ) ] - '  = exp e c m x ~ O. 

So, with re(S) as before the Lebesgue measure of S, 

E 
3~o>oV~<~o: q(Xo, c)< re(s)" 

Hence 

8 
V¢<~oV~.s+(~): q(x, c) ~ q(xo, c) < -  re(S) 
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(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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and 

V . . . .  Vx~S-(x): f ( x ) - - f m i n  %'f', (2.56) 

where S (x) and S+(x) as in (2.40) and (2.41). 
Now for all c < co we have 

l = f v  q(y,c) dy= i q(y,c) dy+ ! q(y,c) dy 
ES eS (Xo) ~S+(xo) 

I, ! f, < q(y, c) dy + rn-(S) dy <~ q(y, c) dy + e. (2.57) 
eBi(~ ) eS+(Xo) eBj-(~) 

Note that Bf(e) = S-(xo) and that there is no local minimum in Bs(e) because of 
(2.47) and (2.48). Hence we have 

l imfy q(y,c) dy>l-e, (2.58) 
c$0 cBj(~) 

which completes the proof of Theorem 2.3. [] 

In conclusion, we have shown in this section that the simulated annealing 
algorithm for continuous minimization, modelled as a Markov chain with the 
following transition probability (Definition 2.4) 

f fyp .y(c)dy for x~  T, 
P(Tlx; c)= er 

[ i~r  Pxy(c) dy+(1-fy~S pxy(c) dy) f o r x c  T, 

where 

and 

pxy(C) =gxy(c)'Axy(c). 

P(TIx; ¢) =P{X(1)~ TIX(I-1)=x; c}. 

converges to the set of minimal points of a function f :  $-~ R. 
Thus 

lim lim P{X(1) c Bs(e) I c}> l - e (2.59) 
c$0 14oo 

if the following conditions are met 
(i) f :  $ ~ ~ is uniformly continuous; 

(ii) S is a bounded subset of ~" and all the minima are interior points of $; 
(iii) the number of minima is finite; 
(iv) the acceptance criterion Axy(C) is given by (2.5), 

Axy(c) = min{1, e x p ( - ( f ( y )  -f(x))/c)}; 



(v) 

r 
Vxo~SVr=s: m ( T ) > O  ~ ] g~oy(c) dy>O 

Jy ~S 

gx,(c)  = g,x(C) 

g~y(c) does not depend on c 

Finally, we mention that these conditions are sufficient but not necessary. 
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the generation probability distribution function gxy(C) is defined by 

((2.11)); 

((2.34)); 

((2.35)). 
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3. Simulated annealing: Practice 

3.1. Cooling schedule 

The simulated annealing algorithm described in the previous section can be viewed 
as an infinite number of homogeneous Markov chains of infinite length. This is due 

to the two limits of (2.59), i.e., l i m k ~  and lime+0. Clearly, an implementation of 
the algorithm according to this prescription is impracticable. In this section, a more 

explicit and practicable approach is given, which is similar to the approach given 
by Aarts and Van Laarhoven (1985) for discrete minimization. This approach realizes 
a finite-time implementation of the simulated annealing algorithm by generating 
homogeneous Markov chains of finite length at a finite sequence of (descending) 
values of the control parameter. To achieve this, a set of parameters must be specified 
that governs the convergence of the algorithm. This set of parameters constitutes a 
so-called 'cooling schedule'. 

Definition 3.1. A cooling schedule specifies 
- an initial value of the control parameter c; 

a decrement function for decreasing the value of the control parameter; 
- a final value of the control parameter, i.e., a stop criterion; 

a finite length, L, of each Markov chain. 

The above leads to the following simulated annealing algorithm in pseudo-PASCAL: 

PROCEDURE SIMULATED ANNEALING ; (3.1) 

begin 
"initialize (c, x)" ;  
stopcriterion := false; 
while stopcriterion = false do 
begin 

for i : = l t o  Ldo 
begin 

"generate y from x";  
if f (y )  - f ( x )  <- 0 
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then accept 

else if e x p ( - ( f ( y ) - f ( x ) ) / c ) >  random [0, 1) then accept; 
if accept then x :=y 

end; 
"lower c" 

end 
end. 

Below, we elaborate on the parameters of  the cooling schedule in more detail. 
We mention beforehand that a guarantee that this finite-time implementation of the 
simulated annealing algorithm will eventually succeed in finding a global minimum 
cannot be given; this is because of the finite length and finite number of Markov 

chains. However, the probability of finding a global minimum is still large, and can 
be increased by using longer Markov chains and a more careful decrease of the 
control parameter. This will, however, affect the efficiency, and therefore a com- 
promise has to be made between effectiveness and efficiency. 

We now briefly summarize the cooling schedule as introduced by Aarts and Van 

Laarhoven (1985). 

Initial value of  the control parameter 

The basic assumption underlying the calculation of the initial value of the control 
parameter c0 is that it should be sufficiently large, such that approximately all 
transitions are accepted at this value. This can be achieved by generating a number 
of trials, say too, and requiring that the initial acceptance ratio Xo = X(Co) is close to 
1, where X(c) is defined as the ratio between the number of accepted transitions 
and the number of proposed transitions. The initial value of c is then obtained from 

the following expression 

--1 
m 2  

m= Xo + 

where ml and m 2 denote the number of  trials (m~+m2=mo) with Afxy~<0 and 
Afxy > 0, respectively, and a f  + the average value of  those Afxy-values, for which 

Afxy > 0 (Afxy = f ( y )  - f ( x ) ) .  

Decrement of  the control parameter 
The new value of c, say c', is calculated from the following expression 

c '=  c(1-~ c l n ( l +  6)'~-1 - ~ - ( ~  ] , (3.3) 

where o-(c) denotes the standard deviation of the values of the cost function of the 
points in the Markov chain at c, and is a small positive real number. The constant 
6 is called the distance parameter and determines the speed of the decrement of the 

control parameter. 
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Final value of the control parameter 
The stop criterion is based on the idea that the average function value f of  a Markov 

chain is an increasing function of  c, i.e., if c is decreased then f will also decrease, 

such that f ( c )  converges to  f(Xmin) as C ~ O. The algorithm is terminated if 

dj~(c) c 
dc f(c0) < es, (3.4) 

where f(co) is the mean value of the points found in the initial Markov chain, fs(c) 
is the smoothed value o f f  over a number of  chains in order to reduce the fluctuations 
of  f ( c ) ,  and es is a small positive real number, called the stop parameter. 

Length of the Markov chains 
The length of  the Markov chains is based on the assumption that they should be 
sufficiently large to enable the algorithm to explore the neighbourhood of a given 
point in all directions. A straightforward choice, therefore, is given by the following 

relation 

L = Lo" n, (3.5) 

where n denotes the dimension of S and Lo a constant called the standard length. 
Note that this choice leads to a chain length which is constant for a given problem 
instance. 

3.2. Generation of points 

There are several possibilities for generating new points from a given point. The 
only requirement is that the generation mechanism should satisfy (2.11), (2.34) and 
(2.35). We discuss two alternatives. 

Alternative A. A uniform distribution on S, i.e. 

gxy = 1/m(S) .  (3.6) 

Clearly, this alternative satisfies conditions (2.11), (2.34) and (2.35). An obvious 
disadvantage of this choice is that no structural information about function values 
is used. This disadvantage can be circumvented by introducing an additional mechan- 
ism that uses descent directions. For each new generation there are two possibilities: 
either a point is drawn from a uniform distribution over S; or a step is made into 
a descent direction from the current point, i.e., 

Alternative B. 

fLS(x)  if w >  t, 
(3.7) 

gxy=[1 /m(S  if w<~ t ' 

where t is a fixed number in the interval [0, 1), and w a random number drawn 
from U[O, 1). LS(x) is a Local Search procedure that generates a point y in a descent 
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direction of x, thus with f(y)<~f(x) (y is not necessarily a local minimum). This 
generation mechanism seems more efficient, because of its local search steps. There 
is one drawback to this generation mechanism: gxy # gyx, and thus (2.34) is no longer 
satisfied. It can be shown, however, that this method still converges to By(e) 
(Definition 1.2). 

Theorem 3.1. Let P denote the transition probability associated with the simulated 
annealing algorithm (Definition 2.4), and let the random variables X(  k) and Y( k) 
be defined as the outcomes of the trials in the simulated annealing algorithm using 
Alternative A and Alternative B, respectively. Then 

V~>o: lim lim P{Y(k)eBy(e)]c}>~lim lim P{X(k)EBf(e)]c}> 1-e .  
c,LO k ~  c,LO k-~oo 

(3.8) 

Proof. 

P{ Y(k)  e Br(e) I Y ( k -  1) e By(e); c} 

= tP{X(k)  e B y ( e ) t X ( k -  1) c By(e); c) 

+ ( 1 -  t)P{LS( Y ( k - 1 ) ) c  By(e)l Y ( k - 1 ) ~  Bs(e); c} 

= tP{X(k)  c B y ( e ) l X ( k -  1) c By(e); c}+ (1 - t); 

P{ Y(k)e Bf(e)l Y ( k - 1 ) ~ B y ( e ) ;  c} 

= tP{X(k)  e U y ( e ) I X ( k -  1) ~ By(e); c} 

+(1 - t ) P { L S ( Y ( k - 1 ) ) c  By(e) I Y ( k -  1)~ By(e); c} 

= t re(By(e)) + (1 - t)tP{LS( Y(k  - 1)) e By (e) I Y(k  - 1) ~ Bf(e); c}; 
re(s) 

(3.9) 

(3.1o) 

P{ r ( k )  ~ By(e) I V ( k -  1) ~ By(e); c} 

= tP{X(k)~  B s (e) I X ( k -  1) c By(e); c} 

+ ( 1 -  t)P{LS( Y ( k - 1 ) ) ~  Bf(e)] Y ( k - 1 ) ~  Br(e); c} 

= t(1 - P { X ( k )  e B y ( e ) l X ( k -  1) e By (e); c}); (3.11) 

P{ Y(k) ¢: By(e)] Y(k  - 1) ~ Bf (e); c} 

= tP{X(k)¢: By (e) I X(k  - 1) ~ By (e); c} 

+ (1 - t)P{LS( Y(k  - 1)) ~ Bf (e)l Y(k  - 1) ~ By (e); c} 

= t ( 1  m(Bf(e))~ 
re(s) ] 

+ ( 1 - t ) ( P { L S ( Y ( k - 1 ) ) e B y ( e ) ]  Y ( k - 1 ) ~ B s ( e ) ;  c}). (3.12) 
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Consequent ly ,  using 

PB(c) = P { X ( k )  c Bl(e)lX(k - 1) E BI (e);  c}, 

PLS(c)  = P{LS( Y ( k -  1)) c Bf(e) I Y ( k -  1) ~ Bf(e); c}: 

l:(waiting t ime of  Y(k) in Bj-(e)l c) 
oo 

= ~ P{V0~i~k: Y(i)6Bf(e) and Y(k)~Bf(e)l  Y(O)cBf(e); c} 
k = O  

(3.13) 

(3.14) 

oo 

= ~, k( t 'PB(c)+(1- t ) )  k I ( t ( 1 - P B ( c ) ) )  
k = O  

co 

= t ( 1 - P B ( c ) )  • k(t 'PB(c)+(1-t))  k 1 
k = O  

1 
= t(1 - PB(c))  (t(1 - P B ( c ) ) ) = -  (t(1 - PB(c)))  1. (3.15) 

Similarly 

E(waitingtimeof Y(k) inS\Bl(e)lc)= t m(Bl(e)) - t )PLS(c)  m(S) t-(1 

(3.16) 

l:(waiting time of  X(k) in Bf(e)] c) = (1 - P B ( c ) )  1, (3.17) 

~(waiting t ime o f  X(k) in S\Bf(e)] e)= m(S)/m(Bi(e)). (3.18) 

From Theorem 2.2 we have 

V=>o : lim lim P { X ( k )  ~ BI ~ s ;  c} > 1 - e. (3.19) 
c $ 0  k ~ c o  

Fur thermore ,  we have 

lira P { X ( k )  e Bf(e)]X(O) c S; c} 
k ~ o o  

I:(waiting time of  X ( k )  in Bl(e)lc) 
E(waiting t ime of  X ( k )  in Bs(e)lc)+~_(waiting t ime of  X ( k )  in S\Bs(e)]c) 

(1 - PB(c))  -1 
- ( 1 - e n ( c ) )  l+m(S)/m(By(e))" (3.20) 

Hence  

(1 - PB(c))  -~ 
V=>o: f i ~ 0 ( 1 - P B ( c ) ' + m ( S ) / m ( B s ( e ) )  

Finally, we obtain 

V=>o: l i m l i m P { W ( k ) c B s ( e ) l Y ( 0 ) ~ S ; c }  
c~,O k --> co 

> 1 - e. (3.21) 

E(waiting time of  Y(k) in Bl(e)lc ) 
£(waiting time of  Y(k) in BI (e)l c) + E(waiting t ime of  Y(k) in S\Bf (e)] c) 



386 A. Dekkers, E. Aarts / Global optimization and simulated annealing 

(t(1 - PB(c))) -~ 

- (t(1 - PB(c ) ) ) - I+  ( t (m(Bf(e) ) /m(S))  + (1 - t)PLS(c)) -1 

(t(1 - PB(c) ) ) - '  

(t(1 - PB(c)))-I  + m(S)/[tm(Bf(e))] 

(1 - PB(c)) -1 

(1 - P B ( c ) ) - ' +  re(S)~ m(Bf (e)) 
1 - e. (3.22) 

So 

V~>o: l i m l i m P { Y ( k ) ~ B f ( e ) l Y ( 0 ) ~ S ; c } > l - e .  (3.23) 
c$0 k~eo 

This completes the proof  of the theorem. [] 

4. Numerical results 

The performance of the simulated annealing algorithm presented in Sections 2 and 
3 is compared with the performance of a number of two-phases methods known 
from the literature. There are three criteria that determine the performance of an 
algorithm: 

(i) the number of function evaluations; 
(ii) the running time; and 

(iii) the quality of the final result. 
The latter criterion can be quantified by the difference in the value of the cost 
function between the obtained minimum and the global minimum. Our performance 
analysis is carried out for a set of test functions known from the literature. The test 
functions are taken from Dixon and Szeg6 (1978b), and from Aluffi-Pentini et al. 
(1985) (see Appendix A and Appendix B, respectively). Because all methods were 
implemented on different machines we used the standard unit of time as introduced 
by Dixon and Szeg6 (1978b). One unit of time then is the running time needed for 
1000 evaluations of the Shekel 5 function in the point (4, 4, 4, 4) (see Appendix A). 

It should be mentioned that a comparison between the various methods will never 
be entirely fair. The implementation of the methods is done by different persons on 
different machines, and this always gives rise to some discrepancies in the results. 
Furthermore, different implementations emphasize different aspects, namely a com- 
promise is made between efficiency and reliability, where reliability refers to the 
probability of obtaining a (near) global minimum. Choosing for efficiency will affect 
the reliability, and vice versa. 

4.1. Implementation of the simulated annealing algorithm 

The simulated annealing algorithm has been implemented on a Burroughs B7900 
of the Eindhoven University of Technology using the programming language PASCAL. 
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For the cooling schedule we used the following parameters (see Section 3.1): Xo = 0.9, 
6 = 0.1, es = 10 4 and Lo = 10. Generation of  points was done according to alternative 
B, where t = 0.75. The local search procedure is taken as a combination of  steepest 
descent in the early stages o f  the optimization and Quasi -Newton in the latter stages. 
The Quasi -Newton procedure is implemented as the Broyden-Fletcher-Goldfarb-  
Shanno procedure, as presented by Scales (1985). This local search is done along 
one descent direction. 

4.2. Results 

In this section the computational results of the methods listed in Table 1 are 
summarized. 

In Table 2 the number of function evaluations are given of methods A-G for the 

set of test functions proposed by Dixon and Szeg6 (1987b) (see Appendix A). In 
Table 3 the running time in units of standard time for these methods is given. There 
are no results for method G, because there is no running time available in units of 
standard time, only in absolute computer time. 

Table 1 

Listing of different methods used in the comparison 

Method Name Reference 

A Multistart Rinnooy Kan and Timmer (1984) 
B Controlled Random Search Price (1978) 
C Density Clustering T6rn (1978) 
D Clustering with distribution function De Biase and Frontini (1978) 
E Multi Level Single Linkage Rinnooy Kan and Timmer (1987b) 
F Simulated Annealing This paper 
G Simulated Annealing based on Aluffi-Pentini et al. (1985, 1989) 

stochastic differential equations 

Table 2 

Number of function evaluations 

Function GP BR H3 H6 $5 $7 $10 
method 

A 4400 1600 2500 6000 6500 9300 11 000 
B 2500 1800 2400 7600 3800 4900 4400 
C 2499 1558 2584 3447 3649 3606 3874 
D 378 597 732 807 620 788 1160 
E 148 206 197 487 404 432 a 564 
F 563 505 1459 4648 365 a 558 797 
G 5439 2700 3416 3975 2446 4759 4741 

aThe global minimum was not found in one of the four runs. 
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Table 3 

Running time in units of  standard time 

Function G P  BR H3 H6 $5 $7 $10 
Method 

A 4.5 2 7 22 13 21 32 

B 3 4 8 46 14 20 20 

C 4 4 8 16 10 13 15 
D 15 14 16 21 23 20 30 

E 0.15 0.25 0.5 2 1 I a 2 

F 0.9 0.9 5 20 0.8" 1.5 2.7 

aThe global minimum was not found in one of  the four runs. 

It should be mentioned that for most methods the number of function evaluations 
and the running time used for the generation of the initial random sample are not 
taken into account. This benefits some methods. The Multi Level Single Linkage 
method, for instance, uses 1000 function evaluations for the random sample, and 
consequently the corresponding running time is not negligible; whereas for simulated 
annealing the initialization uses m0 = 10n function evaluations (see (3.2)), where n 
is the dimension. This number is clearly less than in the Multi Level Single Linkage 
method. 

Tables 2 and 3 show that Multi Level Single Linkage is the best method, and that 
our simulated annealing algorithm is a good alternative. However, the Multi Level 
Single Linkage algorithm is implemented in an efficient dynamic way: the data are 
handled without extra costs in running time. Simulated annealing, on the other 
hand, is tested using a rather primitive implementation, which is not fully optimized. 
Hence, we may anticipate an increase in efficiency of the latter algorithm by using 
a more sophisticated implementation. 

In Table 4 the results of methods F and G are given for some of the test functions 
used by Aluffi-Pentini et al. (1985) (see Appendix B). For method F, both the 
running time and the number of function evaluations are given; for method G only 

Table 4 

Results for methods F and G 

Function F G 

#f .e .  b running time #f .e .  b 

P3 780 a 3.5 a 241 215 

P8 2667 7 72 851 

P16 9018 33 66 365 

P22 1677 2.3 74 194 

aThe global minimum was not found in one of  the four runs. 
b#f.e, is the number of  function evaluations. 
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the number  of  function evaluations is presented. Again, the running time for this 

method is given in absolute time on a specific machine. Table 4 shows a striking 

difference in the number  of  function evaluations used by both methods. Unfortu- 

nately, no appropriate  figures are available on the running time of method G, which 
makes us unable to draw any further conclusions. It does, however, seem that our 

simulated annealing method is much faster. For method G the results are taken 
from the trials with the weakest stop criterion. 

The effectiveness of all methods seems acceptable for the set of test functions we 

have been investigating. These functions (especially those of Dixon and Szeg6, 
1978b) have only a few local minima, and their dimensions range from 2 to 6. For 

functions with more local minima or of higher dimension, the performance may be 

worse: Multistart, both clustering methods, and Multi Level Single Linkage then 

have to store all minima found during execution of the algorthm (this can be as 
many  as 30 n for some functions, where n is the dimension; see, for instance, 
Aluffi-Pentini et al., 1985, problem 12). For higher dimensions this number  is too 

large to handle, and this will cause those methods to fail. Simulated annealing has 

the advantage that Markov chains are used, for which only the last point has to be 

stored. But the convergence of simulated annealing may become slow for these kind 
of functions. 

5. Conclusion and suggestions for further research 

The problem discussed in this paper  concerns the global minimization of real valued 
functions over N n. There are several methods available from the literature to solve 

this problem. The best method,  up to now, is the Multi Level Single Linkage method 

developed by Rinnooy Kan and Timmer (1987a, 1987b). This method is capable of  
finding the global minimum with a high probabili ty in a reasonable amount of  
computer  time, as long as the function has a moderate  number  of  minima and the 

dimension of the search space is small. For higher dimensional spaces, problems 

occur due to the enormous amount  of data that has to be stored; to cope with this 

problem a different approach seems to be necessary. Simulated annealing is proposed 
as such an approach.  The amount  of data that has to be stored while running the 

simulated annealing algorithm is negligible; only the current point in a Markov 

chain and some data used for updating some parameters are needed. Furthermore, 
if the dimension or the number  of  local minima increases, this has no effect on the 
amount  of  data stored. Therefore, simulated annealing is a method that can cope 
with such problems. The simulated annealing algorithm performs slightly worse 
than the Multi Level Single Linkage method in the sense that, for most functions, 
a slightly larger running time is required. However,  there is evidence that the total 
running time (including the initialization overheads) compares favourably. 

The simulated annealing algorithm presented in this paper  should be seen as a 
first step. Preliminary results show that the method is quite effective and efficient. 
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However ,  fur ther  research may  yield more  efficient genera t ion mechanisms.  Perhaps  
a more  sophis t icated step than  the one based  on a un i formly  distr ibuted one can 

be found,  in which in fo rmat ion  gathered during the minimiza t ion  is used. It might  

also be possible  to make  local search steps at more  suitable moments ,  to avoid a 

relatively expensive local search step being fo l lowed by the accepta t ion  of  a large 

deter iorat ion.  

It  is certainly possible  to improve  the implemen ta t ion  (the local search procedure  
was imp lemen ted  in a rather  primit ive way),  which will influence the pe r fo rmance  
positively. 

It  can be conc luded  that  there are several s tochast ic  a lgori thms for  global  minimiz-  

at ion that  pe r fo rm satisfactori ly but  none  of  these a lgori thms is perfect .  Global  

opt imiza t ion  remains  a chal lenging research topic.  

Appendix A 

Test funct ions p roposed  by Dixon  and Szeg5 (1978b) (xi denotes  the ith coordinate  

of  x): 

GP (Goldstein and Price). 

f ( x l ,  x2) : [ 1 + (xl + x2 + 1)2(19 - 14xa + 3x 2 - 14x 2 q- 6XlX 2 q- 3X2)] 

X [30 + (2Xl -- 3X2)2(18 -- 32X~ + 12X 2 + 48X2 -- 36XlX2 + 27X2)]. 

S={x6~21-2<~xi<~2, i = l , 2 } ,  Xmin=(0,--1) ,  f (Xmi , )=3 .  

There  are four  local minima.  

BR (Branin). 

f ( x , ,  x2) : a(x 2 --  b x 2  q - c x  1 - d ) 2  + e(1 - f )  cos(x, )  + e 

where  a = 1, b = 5.1/(4~r2), e = 5/'rr, d = 6 ,  e = 10, f =  1/(8~r). 

S={xcR2l-5<~xl<~lO and 0 ~ < X 2 ~  15}, 

Xm~n = (-~r,  12.275); (~r, 2.275); (3~r, 2.475), f(xmi~) = 5/(47r). 

There  are no more  minima.  

H3 and H6 (Hartmann's family). 

ao (x, - p~ )~ f ( x )  = -  ci exp - j  l 

Table A.1 

H3 (n =3 and m =4)  

i aq c~ pq 

1 3 10 30 1 0.3689 0.1170 0.2673 
2 0.1 10 35 1.2 0.4699 0.4387 0.7470 
3 3 10 30 3 0.1091 0.8732 0.5547 
4 0.1 10 35 3.2 0.038150 0.5743 0.8828 
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Table A.2 

H6 (n =6 and m =4) 

391 

i a~ i c~ Pu 

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 3 3.5 1.7 10 17 8 3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

S = {x c R n 10 ~< xi <~ 1, 1 ~< i <~ n}.  T h e s e  f u n c t i o n s  b o t h  h a v e  f o u r  l oca l  m i n i m a ,  X~oo 

( P i l ,  . . . , P in ) ,  f(Xloc) ~ --Ci. 

$5 ,  $ 7  and SIO ( S h e k e l ' s  f a m i l y ) .  

f ( x )  = -  ~ ( ( x - a i ) V ( x - a i ) + c , )  ' 
i=1 

w i t h  t h e  d i m e n s i o n  n = 4 ,  m = 5, 7, 10 fo r  $5,  $7,  S10,  r e s p e c t i v e l y ,  x = ( x l , . . . ,  x , )  T 

a n d  ai = ( a i l , . .  . ,  a i , )  v. 

Table A.3 

$5, $7, S10 

i aq e i 

1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 

6 2 9 2 9 0.6 
7 5 5 3 3 0.3 

8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 

S = {X C ~4 I 0 ~ Xj ~ 1, 1 <~j  <~ 4}. T h e s e  f u n c t i o n s  h a v e  5, 7 a n d  10 l o c a l  m i n i m a  

f o r  $5,  $7  a n d  S10,  r e s p e c t i v e l y ,  X, oc ~ aj ,  f (X,  oo) ~ 1 /e j  f o r  1 <~ i ~  < m. 

A p p e n d i x  B 

I n  t h i s  A p p e n d i x ,  f o u r  o t h e r  t e s t  f u n c t i o n s ,  u s e d  b y  A l u f f i - P e n t i n i  et  al.  (1985) ,  a r e  

g i v e n .  T h e s e  f u n c t i o n s  c o n t a i n  a n  a d d i t i o n a l  p e n a l t y  t e r m ,  f o r  A l u f f i - P e n t i n i  et  al., 
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minimized over  ~ .  For  s imula ted  anneal ing the minimizat ion  is done  over  S, where  

S contains only unpena l ized  points.  The penal ty  funct ion is defined by 

[k(xi--a)  m, xi> a, 

u(xi, a ,k ,m) J = O, -a<~xi<~a, 
k(-xi  - a) ~, xi < -a.  

P3 (two-dimensional penalized Schubert function). 

f (xl ,x2)  = icos[( i+l)x l+l  ] ~ icos[(i+l)x2+l] 
i= l  i 1 

+u(x~, 10, 100, 2 ) +  u(x2, 10, 100,2). 

S={xcN21-10<~xi<~lO, i =  1, 2}. 

This funct ion has 760 local minima,  18 of  which are global.  

P8. 

{ nl } 
f (x )  = (re~n) k 1 sin 2 (vy~) + ~2 (Yi - k2)2[1 + k~ sinZ(vyi+l)] + (y~ - k2) 2 

i~ l  

n 
+ ~. u(x~, 10, 100, 4), 

i=1 

where Yi = 1 + ¼(xi + 1), kl = 10 and k2 = 1. 

S={x~3l- lO<~xi<~lO,  i = 1, 2, 3}, Xmin = (1 ,  1, 1) ,  

This funct ion has roughly  53 local minima.  

P16. 

f ( X m i n )  = O. 

n--I 
f (x )  = k3 sin 2 (vk4xl)  + ~ (x i -  k5)2[1 + k6 sin2(vk4Xi+l)] 

i=l  

+ (xn - k5)2[1 + k6 sin2(~rk7xn)] + ~ u(x,  5,100, 4), 
i=1 

with k 3 = 0.1, k4 = 3, k5 = 1, k 6 = 1, k7 = 2. 

S={xEN51-5<~xi<~5, i =  1, o . . ,  5}, 

This funct ion has roughly  155 local minima.  

P22. 

= 10 (X 1 -{- X2) 10  Xl-[- Xz--(Xl-~- X2) -{- f (x )  k 2 2 2 22 l 2 24 

w i t h k = 5  and 1 = - 5 .  

S =  {xcR21-20~<xi~<20 ,  i =  1, 2}, 

Xmin = (0, 15); (0, --15), f(Xmi.) = --24775. 

The origin is a local m in imum.  

Xmi n ~---(1, 1, 1, 1, 1 ) ,  f ( X m i n ) 7 _  O. 
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