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We describe a primal-dual potential function for linear programming: 

4)(x, s)= p ln(xrs) - ~ ln(xjsj) 
j=l 

where p/> n, x is the primal variable, and s is the dual-slack variable. As a result, we develop an interior 
point algorithm seeking reductions in the potential function with p = n + ~fn. Neither tracing the central 
path nor using the projective transformation, the algorithm converges to the optimal solution set in 
O(,f~L) iterations and uses O(n3L) total arithmetic operations. We also suggest a practical approach 
to implementing the algorithm. 
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I. Introduction 

Since Karmarkar [17] proposed the polynomial interior algorithm for linear pro- 
gramming (LP), many developments have been made to the growing literature on 
interior algorithms: the projective algorithm, the affine scaling algorithm, and the 
path-following algorithm. All of these interior algorithms use the scaling technique 
and solve a least-squares problem at each iteration, and they are related to the 
classical barrier function method of Frisch [9] and Fiacco and McCormick [8] (see, 
for examples, Gill et al. [12] and Iri and Imai [16]). 

Karmarkar first introduced the potential function to linear programming in his 
projective algorithm [17]. Then, Anstreicher [2], Gay [10], de Ghellinck and Vial 
[11], Todd and Burrell [30] and Ye and Kojima [36] proposed a primal projective 
algorithm using dual variables. The projective algorithm, as well as Karmarkar's 
original algorithm, uses potential functions to measure its iterative progress and 
converges in O(nL) iterations a n d  O ( n 3 S L )  arithmetic operations, where L is the 
data length and n is the number of variables in LP. In practice, far fewer iterations 

This paper was presented at the AMS Joint Summer Conference, held at Bowdoin College, Brunswick, 
ME, 1988, under the title of "A class of potential functions for linear programming". 
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are required when a large-sized step is taken along the descent direction of the 
potential function. 

Barnes [3], Kortanek and Shi [19] and Vanderbei et al. [34] updated the primal 
affine scaling algorithm that was originally proposed by Dikin [7]. Adler et al. [1] 
and Monma and Morton [24] then developed and implemented the dual affine 
scaling algorithm. The polynomial status of the affine scaling algorithm is still 
unknown, but it works well in practice by taking a large-sized step along the descent 
direction of the objective function. 

Another polynomial interior algorithm, the (dual) path-following algorithm, was 
introduced by Renegar [27], who established the first O(~/-nL)-iteration interior 
algorithm for LP. Using Karmarkar's rank-one technique, Gonzaga [15] and Vaidya 
[32] further upgraded the algorithm's complexity to O(n3L). Renegar's algorithm 
is related to the "analytic center" of Sonnevend [29] and the central trajectories or 
pathways analyzed by Bayer and Lagarias [4], Megiddo [21] and Megiddo and 
Shub [22]. Finally, Kojima et al. [18] and Monteiro and Adler [26] developed the 
primal-dual path-following algorithm, Goldfarb and Liu [13] and Ye [35] developed 
the primal path-following algorithm, and Ben Daya and Shetty [5] and Mehrotra 
and Sun [23] developed the dual path-following algorithm for linear and/or convex 
quadratic programming. While remaining "centered", this algorithm seeks reduc- 
tions in the objective function and converges in O(v~ L) iterations and O(n3L) 
arithmetic operations. Unfortunately, the need to trace closely the central path 
severely limits the permissible stepsize at any iteration. (A large-step variant of the 
primal-dual path-following algorithm has been implemented by McShane et al. [20] 
with encouraging practical results, but the theoretical guarantee no longer exists.) 

Recently, several efforts were made to improve the interior algorithms. Todd and 
Ye [31, 37] introduced a class of potential functions for linear programming and 
proposed a primal-dual projective algorithm, the centered projective algorithm, 
using a primal-dual potential function. They have shown that the step direction of 
this algorithm is the gradient-projection of the potential function in the projective 
scaling fame. If the centering condition is satisfied, then the direction is also the 
direction of the path-following algorithm. The algorithm is motivated by seeking 
reductions in the potential function, as is the case for the projective algorithms. It 
converges in O(~/~ L) iterations but still has to follow the central path. Nevertheless, 
the approximate centering is an automatic by-product of the choice of the potential 
function. Monteiro et al. [25] simultaneously used the primal and dual affine scaling 
algorithm, resulting in an O(nL2)-iteration algorithm. Gonzaga [14] used the steepest 
descent method for a potential function in the primal affine scaling framework, 
leading to an O(n2L) or O(nL)-iteration algorithm. His potential function is a 
special case of Todd and Ye's class of potential functions, and it uses the assumption 
of the known minimal objective value. 

Therefore, the question remains open: Do we have to follow the central path to 
achieve O(x/~ L)-iteration convergence for linear programming, or can we obtain 
an O(V~ L)-iteration algorithm based on potential function reduction? 
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In this paper, we further study the primal-dual potential function described by 

Todd and Ye [31, 37]. As a result, we develop an interior algorithm directly minimiz- 

ing the potential function in the LP standard form via the scaled-gradient-projection 

method (see Ye [35]). The algorithm seeks reductions in a suitable potential function 
like the projective algorithm, but without using the projective transformation. It 
converges in O(x/-n L) iterations and O(n3L) arithmetic operations like the path- 

following algorithms, but without tracing the central path. We present the algorithm 
in two forms, the primal form and the dual form. We show how our algorithm is 
related to the other interior algorithms mentioned above. We also discuss a practical 
approach to implementing the algorithm. 

2. Potential function and linear programming 

A linear program is usually given in the following standard form: 

LP: minimize eVx 

subject to A x  = b, x >l O, 

where c ~ ~", A ~ W "×" and b E W ~ are given, x ~ R n, and v denotes the transpose. 
The dual to LP can be written as 

LD: maximize bVy 

subject to s = c - A V y  >~ O, 

where vector y 6 R 'n and s 6 ~". The components of s are called dual slacks. For all 
x and y that are feasible for LP and LD, 

b T y <~ z* <~ cTx, (1) 

where z* denotes the minimal (maximal) objective value of LP (LD) (Dantzig [6]). 
In this paper, the upper-case letter (X)  designates the diagonal matrix of the 

vector (x) in lower-case. We also assume that: 

(A1) The relative interiors of the feasible regions of LP and LD are nonempty. 
(A2) A has full rank. 

The second assumption is added merely for simplicity. 
Given an interior primal solution x ° and dual solution yO such that 

A x  ° = b  and x ° > 0  

and 

s ° =  c - - A T y  ° >  O, 

the primal affine scaling algorithm moves from x ° along the descent direction 

-- DPADDC, (2) 

where 

PAD = [ -- D A T ( A D 2 A T )  - I A D ,  
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and the dual affine scaling algorithm moves from yO along the ascent direction 

(ADZAT)- 'b,  (3) 

where D is a diagonal scaling matrix (see, for example, [1, 7, 34]). 
In the primal affine scaling algorithm D = X°; in the dual affine scaling algorithm 

D = (S°) -1. Note that if x ° and yO satisfy 

X°s  ° = e 

then (A(S°)-2AT)- lb  becomes (A(X°)2AT)-lb.  In general, we call (2) the primal 
affine direction and (3) the dual affine direction. 

For the primal we consider the potential function 

(P) ~(x, z) = p ln(cTx -- _Z) -- ~ ln(x~) 
j=l 

and for the dual we consider the potential function 

(D) ~_(y ,~)=pln(~--bTy)  - ~ ln(sj), 
j=l 

while for the primal-dual we employ the joint potential function 

(P-D) ¢5 (x, s) = p ln(xTs) -- ~ ln(xjsj), 
j = l  

where _ z ~ z * < ~  and n<~p<oQ The primal potential function was used by 
Karmarkar for p = n + 1 (see Ye and Kojima [36]) and by Gonzaga for p/> n and 
_z = z* [14]. The primal-dual potential function was introduced by Todd and Ye 
for p = n+4-~[31]  and p = 2 n  [37]. 

Since xTs = xT(c- -ATy)  = c T x -  bTy, both of the primal and dual potential func- 
tions are related to the primal-dual potential function in the following way: 

and 

4~(x, z) = ~b(x, s ) +  ~ ln(s~) (4a) 
j = l  

~(y, ~) = ~b(x, s ) +  ~ ln(x~), (4b) 
j = l  

and the gradient vectors of  (P) and (D) are 

and 

V~(x, z) = Vx~b(x, s) = ~ P  c - X - %  (5a) 
c T x  --  Z 

P b + A S - l e ,  V~(y, ~) =Vy~b(x, s ) -  ~_bTy (5b) 
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where 

z = b T y  and ~=cTx .  

Fur thermore ,  the p r ima l -dua l  potential  funct ion (PD) can be written in the 
equivalent  form (Todd  and Ye [31]) 

~b(x, s) = (p - n) ln(xTs) --s~l'= In 

From the geometr ic  mean  - ari thmetic mean  inequality,  we have 

- ~ ln(  XjSj ) >~ n ln n. 
j = l  X TS 

Hence,  

( p - n ) l n ( c X x - b X y ) = ( p - n ) l n ( x T s ) < ~ q b ( x , s ) - n l n n < ~ q b ( x , s ) .  (6) 

This tells the exact amount ,  - ( P -  n)L, by which ~b should be reduced to reach 

cTx -- bTy <~ 2 -L. 

Before going further,  we state the following lemma, which is essentially due to 
Karmarkar  [17]. 

L e m m a  1. L e t x c ~ "  and ]]x-e[Io~<l. Then 

lnx j~(eTx--n)  IIx-ell 2 
j = l  2(1  --IIX-- e IIo~) ' 

where e is the vector of  all ones, and II " [I (without subscript) denotes the Lz norm. 

Proof.  For  1 <~j~< n, 

l n x j = l n ( l + x j - 1 )  

(xj - 1) 2 + (xj - 1) 3 (xj - 1 ) _ _ _ ~  4 
(xj 1) ~ - . . .  

2 3 4 

~> ( x j -  1) 
(xj - 1) 2 

2 
- -  ( l + l x j - l l + l x j - 1 1 2 + . . . )  

(xj - 1) 2 (xj - 1) 2 

= (x j -  1) 2(l_lxj_ll)>~(xj-1)-2(l_llx_e]lo~). 
Summing up the inequali ty over j, we have 

n ~C lnxj~(dx-n)  Ilx-ell~ 
s=x 2 ( 1 -  I I x -  elloo)" 

[] 
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Due to the concavity of the first term of the potential functions, ln(cTx--z) or 
ln(g--bTy), and Lemma 1, for any two points 

x °>0 ,  x l > 0  and ]l(x°)-'(xl-x°)ll~<l 
we have 

4~(x l, _z) - ,~(x °, _z) <~ v 4~T(x °, z ) ( x '  - x °) 

and for any two points 

s o = c - A r y  ° > O, 

we have 

I I (x° ) - l (  x l - x 0 )  ll 2 
-+ 2(1 - I I ( x ° ) - l ( x  I - x °) Iloo) ' (7a) 

S l = c - - A T y l > O  and H (S°)- '(s  ' - s°) IIo~ < 1 

~(y , ,  £ )_  ~(yO, £) <~ v~T(yO, £)(yl_yO) 

i i(so)- '(sl-sO)[12 
-f 2(1 -I[(S°)-l(s  1-  s°)ll~) (7b) 

The right-hand sides of (7a) and (7b) provide quadratic over-estimators for the 
reduction of the primal and dual potential functions. 

3. The primal form 

Let z °= bTy ° for some s o= c - A T y ° > O .  Then, we minimize the linearized primal 
potential function subject to the ellipsoid constraint corresponding to the second 
order term in (7a): 

PP: minimize V {~T(x O, zO)(x  -- X O) 

subject to A ( x -  x °) = O, 

H (X°)-l(  x -  x°)l[ <-t~ < 1, 

and denote by x I the minimal solution for PP. Thus, we have 

XopAxoXOV d~(x o, gO) (S) 
X1 -- X0 : --l~ II PAx°X°V6(  x°, go)II " 

Let 

Then 

p(_z ° ) = pA , , oX°WS(x  °, z_°). 

v ~ T ( x  °, ~0)(Xl - x °) = - 8  II p(O)II .  

Hence, due to (7a) the reduction of the primal potential function satisfies 

/3 2 
~ ( x  1, _z °) - ~ ( x  °, z °) <~ - 8  II p(_z°)II ~ 2(1 - ~ "  (9) 
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Now, we focus on the expression of p(_z°), which from (5a) can be rewritten as 

p (  z_O) : P A x ° X O (  c T x L  zO c - ( X°)-l  e) 

=(I -X°AT(A(X°)2AT)-XAX°) (cTx-~-  z o X ° c - e  ) 

P ~,.-0 / ox 
--CTX~._zOA stz_ ) - e  (10) 

s(z ° ) = c - A T y(z_ °) (11) 

cTxO_ Z o ) 
y(_z °) = (A(X°)2AT)-~AX ° X°c  - e 

P 
cTx 0 - -  Z 0 

- Y l  - -  Y2 
P 

Yl = (A(X°)2A T)-I A ( X ° )  2c 

Y2 = ( A( X°)2A T) -~ A X °  e = ( A( X°)2 A T) -lb. 

It is clear that Yl is related to the primal affine direction of (2), which corresponds 
to the gradient-projection of the linear objective function; Y2 is related to the dual 
affine direction of (3), which corresponds to the gradient-projection of the barrier 
function. Both directions are also closely linked to the projective algorithm for the 
standard LP (see, for example, Ye and Kojima [36]). 

Regarding ][p(z°)l], we have the following lemma. 

Lemma 2. Let 

A 0 _ cTxO _ Z O __ (xO) TS0 
n n 

p = n + v'-ff, and a < l. I f  

] [P(Z-° ) l [<min(a~n+n+~, l -a  ) ,  

then the following, three inequalities hold 

s(_z °) > O, 

IIX°s(z °) - ael l  < ~ a  

and 

(x° )~s(z° )  
A 

n 

(12) 

(13a) 

(13b) 

/t < (1 - 0.5a/~/~)A °. (13c) 



246 Y. Ye / An O(n3L) potential reduction algorithm for LP 

Proof. The proof  is by contradiction. 
(i) If  the inequality of (13a) is not true, then 3j  such that sj(z °) ~< 0 and 

1[ p(_z°)ll/> 1 - ~ o  x~sj(- z°) ~ 1. 

(ii) If  the inequality of (13b) does not hold, then 

[[p(z°)[[ 2= X ° s ( z ° ) - n A - - ~ e +  e - e  
n 

i]xOs(zO)_aell2 + pa nA o e - e  

i> a2+ - n - ~ - I  n 

~>°L 2 n 
n + a 2  , (14) 

where the last relation prevails since the quadratic term yields a minimum at 

pk n 
n A 0 =  n_~_a 2 " 

(iii) If  the inequality of (13c) is violated, then 

( ,)( _0< 
P--~-~ >- l + ~ n  n 1 i>1, nA ° -  ~ ) 

which in view of (14) leads to 

d 2 

/> 1 2 2 

~ > ( 1 - - a )  2. [ ]  

Based on the above lemmas, we have the following potential reduction theorem. 

Theorem 1. Let  x ° and yO be any interior feasible solutions for  LP and LD, and let 
p = n +x/if,  z ° = bry  °, x* be given by (8), a n d y  1 = y ( z  °) and s '  = s ( z  °) o f  (11). Then, 

either 

(/)(X 1, S 0) ~ (~(X 0, S 0) -- 
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or 

¢ ( x  °, sl)<~ ,~(x °, s °) - ~  

where 6 > 0.05. 
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P r o o f .  If (12) does not hold, i.e. 

11 p(_z°)II ~> m i n ( a  ~ n @ a 2 ,  l - a ) ,  

then from (9), 

q~(x 1, _z o) ~ q~(x o, go)  _ / 3  rain a , 1  - a + - -  3 
2(1 - / 3 ) '  

hence from (4a), 

) c]~(xl, s ° )<~Cb(x° , s ° ) - /3min  a n---~a2,1-a  -t 
/32 

2(1 -/3)" 

Otherwise, from Lemma 2 the inequalities of (13) hold: 
(i) (13a) indicates that yl and s I are interior dual feasible solutions. 

(ii) Using (13b) and applying Lemma 1 to the vector X°s~ /A ,  we have 

n l n ( x O ) T s l _  ~, o 1 ln ( (xO)Ts1 /A)_  ~, o 1 l n ( x j s J A )  ln(xj s j) = n 
j = l  j= l  

= n In n - ~ ln(x °s)/A ) 
j= l  

< ~ n l n n 4  
IIX° sl/a-ell 2 

2(1 - I I x ° ~ ' / ~  - ell~) 

O/2 
~ < n l n n + - -  

2(1 - a )  

<~ n ln(x°)Ts ° -  ~ o o ln(xj s j)  + - -  
j = l  

2 

2 ( l - a ) "  

(iii) According to (13c), we have 

A o/ 
~/-n(ln(x°)rs ' - ln(x°)Vs ° ) = 4-ff In ~-6 ~< - ~-  

Adding the two inequalities in (ii) and (iii), we have 

2 Of OL 
q~(x °, s')~< ~b(x °, s °) - 5 + 2 ( 1  _ a )"  

Thus, by choosing a = 0.43 and/3 = 0.3 we have the desired result. [] 
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Theorem 1 establishes an impor tant  fact: the p r i m a l - d u a l  potential  funct ion can 

be reduced by a constant  via solving PP on the interior o f  LP and LD, no matter  

where x ° and yO are. In  practice, one can per form a line search to minimize the 

p r imal -dua l  potential  function.  This results in the following primal algorithm. 

Primal Algorithm. 
Given A x  ° = b, x ° > 0 and s o = c - A T y  ° > 0; 

let _z ° = bTy ° and set k = 0; 
while cTx k -- bTy k i> 2 -L do 

begin 
compute  s(_z k) of  (11) and formulate  p(_z k) of  (10); 

if the inequali ty o f  (12) does not  hold  then 

x k+~ = x k - f i * X k p ( z  k) with fl* = arg minz~>o 4~(x k - - f lXkp(_zk) ,  Sk); 
S k+l = S k and _z k+l = _zk; 

else 
s k+l = s(_z*) with _z* = arg min~>~k &(x k, s (z)) ;  
x k+l = x k and z k+l = bTy(_z*); 

end; 
k = k + l ;  

end. 

The per formance  of  the primal algori thm results f rom the following theorem. 

Theorem 2. L e t  p = n + v ~  and & ( x  °, s °) <~ O ( , / n  L) .  Then, the p r ima l  a lgor i thm 

termina tes  in O(~/-ff L)  i terat ions and  each i teration uses O(n 3) ari thmet ic  operations. 

Proof.  In  O(~ffn L) iterations 

&(x k, sk)~< -L~ /n .  

Then, f rom (6), 

ln(cTx k -- b Ty k) < - L.v/-ff, 

i.e. 

cT x k - -  b Ty k = ( x k ) T s  k < 2 -L. [] 

The condi t ion  o f  the initial potential  value in Theorem 2 is not critical. In fact, 

along the central path 

~b(x °, s °) = x/~ ln(cTx ° -  bTy °) + n In n. 

Hence,  ~b(x °, s °) = O(x/n L) while cTxO--bTyO<~2 L. Several papers on the path- 

fol lowing algori thm have shown how to t ransform a LP problem to an equal-sized 
LP problem with known centers x ° and s o (see, for  example,  Koj ima et al. [18], 

Renegar  [27] and Ye [35]). Also note that i f x  k+l = x k in the algorithm, the project ion 
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matrix in (8) is unchanged and should be reused for the next iteration. In practice, 
a strict  lower bound z ° < z* suffices to start the algorithm, i.e. the known yO and s o 
are not necessary. Moreover, a bi-directional search over/3 and _z can be employed 
to update x and  s simultaneously in minimizing ~b(x, s). 

The condition of (13b) is the centering condition crucial to path-following 
algorithms. While this condition is strictly enforced at any iteration of a path- 
following algorithm, our algorithm uses it as a signal to coordinate the movements 
of the primal and dual. If  the algorithm is implemented as it is, the iterative solutions 
will visit the central path many times; however, they are not required to stay on the 
central p a t h - - t h e  next iterate may not even be close to the central path. If the 
bi-directional search over/3 and _z is employed, the condition (13b) may never be 
true, and the solution sequence may never visit the central path. By any means, the 
progress of the algorithm is uniquely measured by the potential function. It ignores 
following any particular path and concentrates on shrinking the level-set of the 
potential function, which is contained in the feasible set and contains the optimal 
solution set of the LP. We believe that the actual solution path generated by the 
algorithm depends on various implementation and line search strategies, which is 
a subject for further research. 

4. The dual form 

Now we describe the algorithm in the dual form. Let ~o= cTx  o for some x°>  0 and 
A x  ° =  b. Next, we minimize the linearized d u a l  potential function subject to the 
ellipsoid constraint corresponding to the second order term in (7b): 

PD: minimize v~bT(yO, 2O)(y_yO) 

subject to II(S °) 1AT(y--y°)ll <~/3. 

Then, denoting by y~ the minimal solution for PD, we have 

y~ _ yO (A(S °)-2AT)- 17 ~ (yO, 20) (15) 
= -/3 /7~T(y0, 2 ° ) ( a ( s ° ) - 2 a T ) - a V ~ ( y  o, 20) . 

Let 

Then 

p ( ~O) = ( sO) - ~ A T ( A ( SO) - Z A T ) - ~ V ~ ( yO, ~o) . 

v_~T(y0, 20)(yl_y0) = _flllp( 2°)]1" 

Hence, due to (7b) the reduction of the potential function 

/32 
~(y~, 20)_ ~(yO, ~o) <~ _/3 ii p(ffO)ll ÷ _ _  

2(1 - /3)"  
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Now, we focus on the expression of p(gO), which from (5b) can be rewritten as 

P(e°) e° P-;Ty S ° x ( z ° )  + e (16) 

with 

where 

and 

~o _ b TyO 
x(ff °) = x ,4  - -  x2 (17) 

X 1 = (S°)-2AT(A(S°)-2A)-lb 

X2 ~-- ( S ° ) - I  pA(SO)-I( S ° ) - I  c, 

It is clear that xl is related to the dual affine scaling direction of (3), which 
corresponds to the gradient-projection of  the linear objective function; x2 is related 

to the primal affine scaling direction of (2), which corresponds to the gradient- 

projection of  the barrier function. We emphasize that 

A x (  2 °) = b, 

i.e. x(Z) satisfies the equality constraints of  LP. 

Parallel to Lemma 2, we have the following lemma whose proof  is omitted. 

Lemma 3. Le t  

A ° _ ~o_ b T y O  _ (S o) TxO A - 

n n 

p = n +~,/n, and  a < l.  I f  

 min(oC  1 o) 
then the fo l lowing  three inequalities hold: 

x(2 °) > 0, 

II S ° x (  ~ °) - a e  II < ~ a  

and 

(s0)Tx(2 °) 
n 

(18)  

< (1 - o.5 ~ / 4 - ~ ) a  °. [ ]  

Similar to Theorem 1, we have: 

Corollary 1. Le t  x ° and  yO be any interior feas ib le  solutions f o r  LP and LD, and let 

p = n +~-n,  2 ° = eVx °, s 1 = c - AVy  I o f  (15), and x 1 = x ( 2  °) o f  (17). Then, either 

~ ( x  °, s ' )  ~ ~ ( x  °, s °) - 6 
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o r  

4,(x', s°)< ,~(x °, s°/-~ 

where 6>0 .05 .  [] 
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Therefore, the dual algorithm can be described as follows. 

Dual Algorithm. 
Given A x  °= b, x ° >  0 and s o= c - - A T y ° >  0; 
let ~0= cTx o and set k = 0; 
while cTx k - bT y k ~ 2 - L  do 

begin 
compute x(~ k) of  (17) and formulate p(~k) of  (16); 

if the inequality of  (18) does not hold then 
s k+~ = s k +/3*Skp(~  k) with 13" = arg m i n ~ o  q~(x k, s k +/3Skp(~k)); 
X k+l  = X k and ~k+~ = ~k; 

else 
x k+l = x(~*) with ~* = arg m i n ~ k  ~(x(~) ,  sk); 
S k+l = S k and ~k+l = cTx(~,); 

end; 
k = k + l ;  

end. 

The worst-case complexity of  the dual algorithm is identical to that of  the primal 
algorithm. 

Corollary 2. Let p = n +vrn  and 49(x °, s °) <~ O(x/n  L). Then, the dual algorithm 
terminates in O(~/n L) iterations and each iteration u s e s  O(n 3) arithmetic 
operations. [] 

Again note that if S k + l  = S k in the dual algorithm, the projection matrix in (15) 

is unchanged and should be reused for the next iteration. In practice, a strict upper  

bound ~o> z* suffices to start the algorithm, i.e. the known x ° is not necessary. 

Moreover,  a bi-directional search over fl and ~ can be employed to update x and 
s simultaneously in minimizing &(x, s). 

5. Further complexity analysis 

Theorem 2 indicates that the potential reduction algorithm uses O(n3SL) arithmetic 
operations. Applying Karmarkar ' s  lower-rank scheme, we can employ a rank-one 
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updating technique to update the projection matrix in (8) (see, for example, Shanno 
[28]). This can be implemented as follows. 

Replacing X ° in PP by a positive diagonal matrix D such that 

-J-1 ~<-~<1.1 f o r j = l , . . . , n ,  
1.1 xj 

we have 

where 

Then 

D~(_z °) 
x l - - X 0 =  --/3 IIP(-?)II ' 

fi(z_ °) = PaDDV f ( x  °, z°). 

v ~ T ( x  0, Z0)(X 1 -- X 0) = --/3 II ~(_z°) II. 

Hence, from (7a) the reduction of the potential function is 

(1.1/3) 2 
(~(X 1, _Z 0) -- (~(X 0, _Z0)~ -/3 II ~(_z°)II 

2 ( 1 - 1 . 1 / 3 )  ' 

since 

II(x°)-'(x'-x°)ll~ I I (x  °) ' D D  l (x l -x°) l l  

[ I (x° ) - 'DI I  I lD- l (x  I - x°)ll 

~< 1.1llU-l(x ' -x° ) l l  = 1.1/3. 

Now,/3(_z °) can be written as 

P D s ( z  °) - D ( X ° ) - l e  = D(X° ) - ' p ( z_° ) ,  (19) p ( Z  O) --  cTxO -- Z 0 - 

where the expressions ofp(_z °) and s(_z °) are again given by (10) and (11) with 

y(_z °) = ( A D 2  A T ) -  ' A D (  Dc  

Thus, we have 

cTxO -- gO 
- -  D ( X ° ) - i  e) .  (20) 

P 

II~(z°)ll = [ [O(X°)- lp(z_°)[ I >t I IP(z°) l l / l lD-~X° l l  >i IIP(z°)ll/1.1. 

Noting that Lemma 2 still holds for p(_z°), we only need to modify the first inequality 
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in the proof  of Theorem 1 by 

~(x l ,  z°) <~ ~(x°,_z°) - min ~ -~ 2 (1-1 .1 f l )  " 

Therefore, upon choosing a = 0.43 and fl = 0.25, Theorem 1 is still valid for ~ > 0.04. 
As a result, the following modified primal algorithm can be developed. 

Modified Primal Algorithm. 
Given A x  ° = b, x ° > 0 and s o = c - ATy  ° > 0; 

let _z ° ---- bTy ° and D = X°; 

set o~ = 0.43, fl = 0.25 and k = 0; 
while cXx k - bTy k I> 2 -L do 

begin 
for j = 1 , . . . ,  n, if d f f x  k ~ [1/1.1, 1.1] then dj = Xk; 
using y ( z  k) of (20), formulate s(_z k) of (11), p(z_ k) of (10) and/3(_z k) of (19); 

if the inequality of  (12) does not hold then 
x k  + l -~ x k  --  fl Dfi(-zk) /11/3(- zk) I[; 
S k+l  = S k and _2' k+l ~_zk; 

else 
s k+l = s(_z*) with _z* = arg min_~k ch(x k, s(z)); 
x k+l = x k and z k+l = bTy(z*); 

end; 
k = k + l ;  

end. 

The projection matrix in (20) can be calculated using a rank-one updating 
technique whenever dj is changed, and each update uses O(n 2) arithmetic operations. 
Due to Karmarkar [17], Gonzaga [15], Vaidya [32], and many others, the total 
number of updates in O(~/-n L) iterations is O(nL) .  Therefore, we have 

Theorem 3. Let  p = n+v/-n and @(x °, s ° ) ~ O ( v / n  L). Then, the modified primal 

algorithm terminates in O(~/-nL) iterations and uses O(n3L) total arithmetic 

operations. [] 

One can also develop a modified dual algorithm with the same worst-case complexity. 
However, the modified algorithm may be of only theoretical value, since a much 
larger step has usually been taken in practice. 

6. A practical approach 

As discussed by many authors, such as McShane et al [20] and Vanderbei and 
Lagarias [33], a theoretical algorithm usually needs modifications to become a 
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practically useful algorithm. In practice, the affine scaling algorithm is considered 
one of the "practically best" algorithms, although it has not yet proved to be a 
polynomial algorithm. In this section, we discuss some of these theoretical and 
practical considerations• We propose an approach to implementing the potential 
reduction algorithm: while maintaining the polynomial complexity, we make the 
algorithm like the affine scaling algorithm as much as possible• 

Consider the gradient vectors for the potential functions in (5a). To make the 
gradient vector as much like the gradient vector of the true objective function as 
possible, we can choose either p = oc or z = cTx. The latter option was discussed by 

Ye [35]. However, to maintain polynomial complexity, p has to be finite and z ~< z*. 
Therefore, to maxweight the gradient vector of the objective function, we want z 
as close to z* as possible in the iterative process• This leads to a potential reduction 
version that is as close as possible to the affine scaling algorithm. We discuss the 
version in the primal form. Again we focus on solving the problem PP in Section 3. 

Regarding ]] p(z °) ]], we have another lemma: 

Lemma4.  Letz_°<~z *.Then,  f o r p > n :  
(1) I f  s(z °) = c-aXy(z_ °) ~ O, then 

]]p(_z°)]]/> 1. 

(2) Else 3z  ~ such that z°<~z~<~z *, and 

"P(_Z~)" ~> min(1,  ~ n n ) .  

Proof. 

solution for LD. Let A ° and zl be defined in Lemma 2. Then, from (14), 

If  

Case (1) follows (i) of Lemma 1. In case (2), y(z  °) is an interior feasible 

(21) 

p - n  
,# f i '  

or  

zl~>zl °, 

then let z 1= z ° and from (21), 

z °/> bTy(z °) (22) 
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otherwise,  we solve the fol lowing one-d imens iona l  LP p r o b l e m  over  _z: 

ZP: maximize  _z 

subject  to c--ATy(z_)~O,  

bTy(z)  -- z i> O, 

and  denote  by _z* the max ima l  solut ion o f  ZP. Then,  since y(z_*) is feasible for LD,  

_z ° < z* ~< bTy(_z *) <~ z*. 

Let _z 1= bTy(_z*). Then,  ei ther Case (1) or  the inequal i ty  (22) holds for  z ~, because  

_z a can not  be  an interior  solut ion for  ZP. This gives the desired result. []  

P rob lem ZP  is a one-d imens iona l  LP p rob l em once Yl and  Y2 o f  (11) are known.  
In  addit ion,  since _z ° is an interior  feasible solut ion for  ZP, ZP is feasible and  

b o u n d e d  f rom above by z*. Thus,  ZP can be solved by a ratio test (see Ye [35] for  
detail).  In  pract ice,  we can check ZP  in bo th  Case (1) and  Case (2) to see if a closer 

lower  b o u n d  z a for  z* can be found,  where  _z ~ = -oo  if ZP  is infeasible.  Thus,  the 

pr imal  vers ion can be descr ibed in the fol lowing pract ical  a lgori thm. 

Practical Algorithm. 
Given  A x  °= b, x ° >  0 and  _z°<~ z*; 

set k = 0; 
while dS(x k, z k) >! - p L  do 

begin 
compu te  Yl and Y2 of  (11); 
solve Z P  and let _z T M  = bay(z*) ;  
if _z k+l <_z k then _z k+l =_zk; 

compu te  y(_z k+l) of  (11) and  p (z  k+~) of  (10); 
x k+~ = x ~ - / 3 * X k p ( z  k+a) wi th /3"  = arg min  e q~(x k - /3Xkp(zk+a) ,  _Zk÷~); 

k = k + l ;  

end. 

The  pe r fo rmance  of  the pr imal  a lgor i thm results f rom the fol lowing theorem.  

Theorem 4. For p >1 n + v/-n, the practical algorithm generates the optimal solutions 
for  LP and L D  in O(pL)  iterations and each iteration uses O(n  3) arithmetic operations. 

Proof. Clear ly  

[Ip(_zk+l)l[ ~> 1 for  p ~> n +,~-n 
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and 

_Z k ~_Z k+l ~ Z :~, 

from (9), 

~ ( x ~ , ,  zk÷,) _ ~ ( x  k, z~) ~< ~(x~÷,,  z~÷,) _ ~ ( ~ ,  _~+1) 

~-/3[Ip(_zk+l)[I-+ - -  

3 
~< -/3 4 2(1 -/3~" 

3 
2(1 - /3 )  

Let/3 = 0.5, then the potential function is reduced by a constant greater than 0.25. 
Following the argument of Ye and Kojima [36], in O(pL) iterations 

c T x k - - Z * ~  c T x k - - _ z k ~ 2  -L. [] 

From Theorems 4, for any finite p, the potential function algorithm is a polynomial- 
time algorithm with the complexity O(pn3L) for some p~> n+~/-n. As discussed 
before, when p approaches to ~ ,  the algorithm becomes the affine scaling algorithm. 
It will be interesting to see what is the best p in practice. 

7. Concluding remarks 

We developed an O(x/-nL)-iteration and O(n3L)-operation potential reduction 
algorithm, compared with the O(nL)-iteration and O(n35L)-operation Karmarkar- 
type projective algorithm. Our algorithm is naturally equipped with a primal-dual 
potential function, which is uniquely used to measure the solution's progress. It 
does not need to trace any particular path as do path-following algorithms, or to 
use the projective transformation as the projective algorithm does. There is no 
step-size-restriction during its iterative process; the greater the reduction of the 
potential function, the faster the convergence of the algorithm. 

The algorithm itself works like a dynamic game, in which one player plays the 
leader and the other plays the follower. In the primal form the primal player, the 
leader, using only information about the current dual objective value from the dual 
player, reduces his potential function by a constant at each step until he is "stuck". 
Once the leader is "stuck", the follower can then make a move to reduce his potential 
function by a constant. No matter who moves, the joint primal-dual potential 
function is reduced by a constant. In this game, there is no winner or loser, they 
arrive at the optimal solution set (Cournot-Nash equilibrium set to their potential 
functions) together. One can also develop a symmetric, cooperative strategy so that 
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b o t h  p l aye r s ,  t he  p r i m a l  (x )  a n d  the  d u a l  ( s ) ,  m o v e  s i m u l t a n e o u s l y  at e a c h  s tep to  

r e d u c e  t h e i r  j o i n t  p r i m a l - d u a l  p o t e n t i a l  f u n c t i o n .  
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