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In this paper we describe computational results for a modification of the shortest augmenting path 
approach for solving large scale matching problems. Using a new assignment start procedure and the 
two-phase strategy, where first the problem is solved on a sparse subgraph and then reoptimization is 
used, matching problems on complete graphs with 1000 nodes are solved in about 10-15 seconds on an 
IBM 4361. 
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1. Introduction 

The p r o b l e n  o f  f inding a min-cos t  per fec t  ma tch ing  in a g raph  G = ( V, E )  is one o f  

the few efficiently so lvab le  corners tone  p r o b l e m s  in combina to r i a l  op t imiza t ion .  

Unt i l  recen t ly  all efficient ma tch ing  a lgor i thms  were combina to r i a l l y  na tu red  and  

based  on  the p r inc ip le  o f  i tera t ively  cons t ruc t ing  shor tes t  ( augment ing)  paths ,  i.e. 

fo l lowing  the  class ical  ideas  o f  E d m o n d s  (1965). 

Recen t ly  Gr6 tsche l  and  H o l l a n d  (1985) p re sen ted  results  with an  LP-based  facet  

genera t ing  cut t ing p l a n e  a lgor i thm.  Fo r  large p r o b l e m s  thei r  i m p l e m e n t a t i o n  which  

uses a commerc ia l  LP-package  - -  the sys tem M P S X  from I B M - - w a s  at least  

c o m p a r a b l e  to the shor tes t  augmen t ing  pa th  i m p l e m e n t a t i o n  S M P  pub l i shed  in 

Burka rd  and  Derigs  (1981). 

In  this no te  we briefly ana lyze  Gr6 tsche l  and  H o l l a n d ' s  i m p l e m e n t a t i o n  and  we 

descr ibe  its ma in  ideas  and  thei r  l imi ta t ions .  We then  out l ine  a new S M P - b a s e d  

i m p l e m e n t a t i o n  which  ou tpe r fo rms  its compe t i to r s  by  an o rde r  o f  magni tude .  

In  the fo l lowing  we assume tha t  the  r eade r  is fami l ia r  with the  p r o b l e m  of  

match ings  in graphs  and  thus we avoid  the  usua l  ca ta log  o f  l engthy  defini t ions.  

2. The facet-generating approach 

The  bas ic  idea  o f  this a p p r o a c h  is the fo l lowing.  Star t ing f rom the LP- re laxa t ion  o f  
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the matching problem 

m i n { c ' x i A x  = 1, x >10} 

with A the node-edge incidence matrix of G, a sequence of linear programs is solved 
by the LP-solver MPSX and its reoptimization features. This sequence is defined 
by successively adding facets of the matching polytope, i.e. so-called blossom 
constraints of the form 

xij<~l([w[-1) where W ~ V w i t h [ W [ ~ 3 ,  odd, 
i,jE W 

to the LP-relaxation which "cut-off" the optimal fractional solution of the pre- 
decessor problem until an optimal integer solution is obtained which then defines 
an optimal matching. 

Gr6tschel and Holland's (1985) results show that the number of facets to be 
added is extremely small. Also, the blossom constraints which cut-off the noninteger 
optima are constructed via efficient heuristics, a fact that speeds up the whole 
solution process. 

The key-issue in Gr6tschel and Holland's implementation of the facet-generating 
approach to the matching problem is the following. Instead of considering the whole 
graph throughout the solution process they start the procedure on a sparse subgraph 
G' which is very likely to contain an optimal matching of G. This subgraph is 
constructed by only looking at the cheapest edges in the neighbourhood of any 
node. After the optimal matching in G' is constructed the remaining edges are 
checked for dual-feasibility ("outpricing-step"). Then either the present matching 
turns out to be optimal in G, too, or the edges which do not price out correctly - -  i.e. 
those which are dual infeasible--are added to G' and a new optimal matching in 
the modified subgraph G' is constructed. 

Keeping the working subgraph small this way speeds up the time for the LP-solver 
significantly. Moreover the results of Gr6tschel and Holland indicate that on their 
randomly generated problems choosing the cheapest 5 edges in the neighbourhood 
of any node, the optimal matching in the initial subgraph G' often occurs to be 
optimal in G, too. 

This approach of first solving a smaller subproblem and then performing 
reoptimization introduced by Holland and Gr6tschel (1985) for the matching prob- 
lem is a common technique in linear programming and has been applied successfully 
to the assignment problem by Gavish et al. (1977). 

3 .  T h e  n e w  S M P - b a s e d  a p p r o a c h  

During the last years we have improved the basic SMP-approach in two respects, 
too, by 

- developing a new startprocedure, and 
- implementing the idea of keeping the working subgraph sparse. 
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With these modifications the combinatorial approach has become significantly 

faster. 
Derigs (1985) has shown that reoptimizing a matching problem after some cost 

changes can be done by applying the basic shortest augmenting path idea and hence 
the existing efficient SMP-code. Thus a so-called "two-phase approach" which starts 
by solving a matching problem on a sparse subgraph and then eventually reoptimizes 
can be implemented using the basic SMP-instruments only. Several reoptimization 
strategies are described in Derigs (1986). 

In Derigs and Metz (1986a) we have shown how the optimal primal and dual 
solution of the standard LP-relaxation of the matching problem can be used to 
construct a start solution for the shortest augmenting path method. Computational 
results have shown that the SMP-code, started with such an initial solution, out- 

performs the basic SMP-code significantly. 
The LP-relaxation is thereby interpreted as an assignment problem on a related 

bipartite graph and solved by special assignment codes. Note that the assignment 
problem is a matching problem on a bipartite graph and can be solved by the 
two-phase approach based on the shortest augmenting path variant for bipartite 

matching problems. 
Now we are able to outline the new SMP-based matching approach: 

Two-phase approach for solving large scale matching problems. 
PREPHASE: Solve the LP-relaxation using the two-phase assignment code. 
From the optimal LP-solution construct a startsolution Mb for SMP. 
PHASE I: Construct a sparse subgraph G' = (V, E').  

Solve the matching problem in G ' =  (V, E u Mb) using a sparse version of the 
SMP-code starting from the initial matching Mb. 
PHASE II: Check the optimal solution from PHASE I with respect to optimality 
in G ("outpricing step") and reoptimize using the SMP-code if necessary. 

4. Computational results 

Our computational results reported here were obtained on an IBM 4361 of the 
Sonderforschungsbereich 303 at the Institute for Operations Research at the Univer- 
sity of Bonn. All running t i m e s - -  except for Table 3 - -  are given in CPU-seconds. 

Our first set of data/problems contains complete graphs with n = 600, 7 0 0 , . . . ,  
1000 nodes the (integer) cost coefficients of which were generated randomly (equally 
distributed) in the interval [0, C] with C = 100, 1000, 10 000, 100 000. For each 
(n, C)-combination 10 examples are generated and contained in this set. 

In Table 1 we display results for the basic (one-phase) shortest augmenting path 
approach. Here we elaborate on the original SMP-code contained in Burkard and 
Derigs (1980) where we only replaced the cost matrix by a simple list structure to 
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Table 1 

Running times for SMP with different startprocedures 

C n Subroutine SMP Subroutine SMP Subroutine SMP 
(MPS1K) (MPASS (MP2PA) 

Average Maximum Average Maximum Average Maximum 

100 600 239.831 475 .109  9 3 . 7 1 4  429.375 4.408 5.574 
700 294,393 552 .504  14.529 16.713 24.875 77.526 
800 397.147 629.701 5 5 . 3 5 5  195.720 47.894 191.267 
900 910.769 1650.645 17.793 19.386 21.724 57.950 

1000 889,002 1552,638 26.780 35,317 17.925 19.755 

1000 600 231.335 343 ,802  21.848 30.741 13.332 34.897 
700 358.701 717 .770  39.042 83.203 17.595 55,774 
800 394.210 656 .075  45.303 53.747 16.894 27.556 
900 755.683 1461.371 8 1 . 0 8 8  140.475 42.993 111.804 

1000 1523.564 2265.819 64.831 96.415 27.733 50,765 

10 000 600 224.360 273 .215  24.416 27.526 7.499 8.636 
700 398,987 454 .618  6 0 . 0 3 0  135.812 26.442 98.525 
800 447.215 500.245 54.356 69.658 16.625 34.059 
900 938.202 1143.301 70,398 84.099 19.226 34.591 

1000 1042.907 1421.668 9 4 . 7 0 6  102.855 23.456 40.745 

100 000 600 260.548 355 .004  27.939 32.105 9.905 14.294 
700 371,148 416 .912  39.803 43.507 10.116 13.169 
800 490.848 552 .987  7 1 . 3 9 9  114.470 33.022 66.101 
900 1010.319 1587.376 69,966 81.942 18.714 31.985 

1000 1043.135 1303.158 9 7 . 8 0 1  127.786 24.908 31.420 

represent  the graph and the cost data. We tested this a p p r o a c h / c o d e  with three 

different s tar tprocedures:  

MPS1K:  The original  greedy-l ike s ta r tprocedure  of  the SMP-code  f rom Burkard 

and Derigs (1980). 

MPASS:  The ass ignment  s ta r tprocedure  with solving the ass ignment  p rob lem via 

the (one-phase)  shortest  augment ing  path  method.  

MP2PA:  The ass ignment  s ta r tprocedure  with solving the ass ignment  p rob lem via 

the two-phase  approach.  

The message o f  this exper iment  is clear. The  ass ignment  start is significantly 

superior ,  especial ly  when  using the two-phase  solut ion technique.  

In Table  2 we present  our  results for the new two-phase  match ing  code  T P H A S E  

on the same set o f  problems.  The initial subgraph G '  was const ructed by choosing 

the k = 6 resp. k = 8 cheapes t  edges in the n e i g h b o u r h o o d  of  any n o d e - - v a l u e s  

which have shown to be rather  efficient. 
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Table 2 

Running times for the new two-phase matching approach 

117 

C n Subroutine TPHASE Subroutine TPHASE 
k=6  k=8 

Average Maximum Average Maximum 

100 600 3.540 3.684 3.367 3.488 
700 4.376 5.158 4.329 4.709 
800 5.238 5.461 5.154 5.252 
900 7.113 9.159 6.918 8,377 

1000 8.978 11.741 8.858 10.919 

1000 600 4.345 4.766 4.333 4.892 
700 5.849 6.982 5.907 7.518 
800 7.930 10.703 7.320 8.217 
900 9.911 12.646 9.640 11.249 

1000 10.621 12.137 10.906 12.986 

10 000 600 4.554 4.692 4.594 4.799 
700 6.684 9.328 6.558 9.275 
800 7.769 8.307 7.725 7.937 
900 9.816 12.017 9.434 10.320 

1000 11.795 12.187 11.683 12.154 

100 000 600 5.181 5.498 5.265 5.498 
700 6.959 7.468 6.987 7.518 
800 9.551 12.141 9.523 11.721 
900 11.109 12.224 11.045 11.828 

1000 13.558 14.713 13.677 15.379 

These  resul ts  show tha t  the  two-phase  a p p r o a c h ,  which  is also us ing  the idea  o f  

solving the LP- re l axa t ion  v ia  an ass ignment  p r o c e d u r e  at the  start,  is ou tpe r fo rming  

the  (one -phase )  shor tes t  augmen t ing  pa th  app roach .  Yet,  the  marg ina l  r educ t ion  

over  the S M P ( M P 2 P A ) - c o d e  seems to ind ica te  tha t  the  idea  o f  solving the LP- 

r e l axa t ion  efficiently is a d o m i n a n t  t ime saver. No te  that  for  solving the ass ignment  

p r o b l e m  no da ta  t r ans fo rma t ion  is necessary  since the ma tch ing  da ta  also defines 

the  a s soc ia t ed  L P - r e l a x a t i o n / a s s i g n e m e n t  p r o b l e m  and  is used  as inpu t  for  the  

a s s ignment  code.  Also  for  bo th  p rob l ems  - -  the  ass ignment  and  the ma tch ing  p rob-  

l e m -  we can use the  same sparse  subg raph  in the two-phase  app roach .  

F ina l ly  we presen t  the  results  of  exper imen t s  with the set o f  large ma tch ing  

p r o b l e m s  cons ide red  by  GrStsche l  and  Ho l l and .  We first review the results  ci ted in 

GrStsche l  and  H o l l a n d ' s  p a p e r  where  they  c o m p a r e  thei r  i m p l e m e n t a t i o n  with the  

S M P - c o d e  f rom Burka rd  and  Derigs  on an I B M  4331. The runn ing  t imes  inc lude  

the t ime for  i n p u t / o u t p u t ,  i.e. for  r ead ing  the da t a  into ma in  memory .  (See Table  3.) 

The  da t a  o f  these  p r o b l e m s  is s tored  on  an externa l  s torage m e d i u m  (disk)  in a 

form which  is su i tab le  for  the  G r S t s c h e l - H o l l a n d  code  as a vec tor  con ta in ing  the 

u p p e r  t r i angu la r  pa r t  o f  the  symmet r i c  cost  mat r ix  of  the comple t e  graph.  Al l  our  

codes  requi re  the  i npu t  o f  the  cost  da t a  in the  form of  a list. This requ i red  the  
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Table 3 

Running times for basic SMP-code and the 
Gr/Stschel-Holland code in IBM 4331 
CPU-minutes 

Iv[ SMP-code Gr6tschel-Holland 
approach 

300 4:07 3:45 
400 5:04 6:06 
500 10:31 9:19 
600 24:43 14:15 
666 56:09 73:31 
700 51:04 23:42 
800 69:47 33:55 
900 59:05 50:22 

1000 66:35 61:09 

transformation of the stored data. When discussing the computational  results we 

also report the overall running time including input to be compatible with Gr6tschel 

and Holland's  study. Since our data structure has about 50% redundancy (every 

edge is contained in two neighbourhoods) we can estimate that our input times are 

at least twice as long as Gr6tschel and Holland's.  

In Table 4 we display the results for three of  our matching codes mentioned above: 

- the original SMP-code which was used in the Gr6tschel-Hol land study, 
- the SMP-code with the MP2PA-startroutine, 

- the two-phase code TPHASE(8) (with k = 8). 

In addition to the overall running time we display the time for input /output  and 

the time for computing the optimal matching separately. No parts of  the algorithm 

are hidden in the input time, the times given are spent on just reading the list 

structure representing the graph and the cost data from disk. When solving the 
problems from the other set, the data was generated every time and no input 
operations were necessary. 

In Table 5 we display the time which the TPHASE(8)-code spends for solving 
the various phases/ tasks during the overall procedure. Note that since we are solving 

the LP-relaxation/assignment problem via the two-phase approach the generation 
of the sparse subgraph is done as the first step. 

Note that an entry of  0.0 in the "Reopt imizat ion"  column indicates that the 
problem was solved by applying the PREPHASE only, i.e. the optimal LP-relaxation 
(assignment) was integer-valued (a matching). Moreover, due to a special analysis 
of the (optimal) dual solution it is possible to reduce the number  of  superfluous 
outpricing operations and thus to speed up PHASE II  significantly. The basic idea 
of this savings technique is given in Derigs and Metz (1986b) for the bipartite 
matching problem. The extension to the nonbipartite case is straightforward and 
can be found in Metz (1987). 
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Table 4 

Running times on the GrStschel-Holland examples 

119 

n Code Total Input Optimization 

300 SMP 56.28 14.80 41.48 
SMP(MP2PA) 16.10 14.20 1.90 
TPHASE(8) 16.00 14.61 1.39 

400 SMP 86.83 26.40 60.43 
SMP(MP2PA) 28.15 25.38 2.77 
TPHASE(8) 28.13 26.03 2.10 

500 SMP 136.61 41.14 95.47 
SMP(MP2PA) 44.99 39.71 5.28 
TPHASE(8) 44.05 40.71 3.34 

600 SMP 365.24 59.25 305.99 
SMP(MP2PA) 71.66 56.98 14.68 
TPHASE(8) 63.76 58.88 4.88 

666 SMP 773.75 73.30 700.45 
SMP(MP2PA) 240.32 70.17 170.15 
TPHASE(8) 87.23 72.59 14.64 

700 SMP 721.86 80.77 641.09 
SMP(MP2PA) 85.33 77.59 7.74 
TPHASE(8) 85.77 79.88 5.89 

800 SMP 1166.35 105.43 1060.92 
SMP(MP2PA) 148.47 101.40 47.07 
TPHASE(8) 113.66 104.22 9.44 

900 SMP 757.37 134.83 622.54 
SMP(MP2PA) 146.24 128.55 17.69 
TPHASE(8) 141.41 132.13 9.28 

1000 SMP 877.56 167.38 710.18 
SMP(MP2PA) 186.38 160.80 25.58 
TPHASE(8) 175.51 163.49 12.02 

Table 5 

Running times for TPHASE(8) spend for the different phases 

n Generation of Optimization of the 
sparse subgraph 

Assignment Sparse problem 

Reoptimization 

300 0.702 0.699 0.0 0.0 
400 1.125 0.985 0.0 0.0 
500 1.651 1.504 0.143 0.037 
600 2.283 2.070 0.493 0.050 
666 3.162 2.190 6.673 2.609 
700 3.025 2.902 0.0 0.0 
800 3.827 3.691 1.794 0.100 
900 4.786 3.844 0.609 0.080 

1000 5.917 5.268 0.732 0.097 



120 U. Derigs, A. Metz / Large scale matching problems 

5. Concluding remarks 

From the above we can draw the following information: 

- The combinatorial two-phase approach outperforms the basic SMP-code and 
the Gr6tschel and Holland approach by more than an order of magnitude. 

- The Gr6tschel-Holland examples seem to indicate that the real "computing 
time" of the algorithm may only be a fraction of the entire running time necessary 
to solve large problems due to the required input operations. Thus even further 
algorithmic improvements may not be able to reduce the overall solution time 
significantly. 

The results on these artificial, i.e. randomly generated, problems show that in 

nearly all cases the optimal solution for the sparse problem induces an optimal 
matching and only a small amount of computing time is necessary to prove this 
optimality. Obviously it is easy to construct "bad"  examples for the two-phase 
approach where the choice of the initial subgraph does not contain the optimal 
matching and which require to reoptimize, i.e. to add additional edges eventually 
several times. Even for arbitrary problems with a small cost-range the two-phase 
approach will lead to difficulties since either the initial subgraph has to be chosen 

quite dense or several enlargement steps of the working subgraph have to be allowed. 
Both choices will significantly increase the running time of  any two-phase approach. 

So for instance solving the cardinality matching problem by the two-phase approach 
as a matching problem with two-valued edge cost may be infeasible. 

Yet, from our experiments and the results given in Gr6tschel and Holland we 
feel that the SMP-based two-phase approach is less sensitive to subgraph size and 
the number of reoptimizations than the facet-generating two-phase approach. Since 
at any time of the procedure we can flip to optimization over the full graph the 
time for the SMP-code with the MP2PA-start is in a sense the worst we can expect. 
And also this code is a significant improvement over the basic SMP-code and other 
previously known matching codes. 
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