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Extension of  a Crack by a Shear Wave 1) 

By Jan D. Achenbach, Department of Civil Engineering, Northwestern University, 
Evanston, Illinois, USA 

1. In troduct ion  

The application of a sudden disturbance to the surface of an elastic body gives 
rise to elastic waves which propagate into the interior of the body. If the system of 
transient waves encounters internal flaws such as cracks, a complicated pattern of 
diffracted waves is generated. It  is well known that upon diffraction of a wave by a 
crack the stress becomes singular in the vicinity of the crack tip, and it is therefore 
conceivable that waves generated by surface disturbances will cause propagation of 
existing internal flaws. 

In this paper we investigate the conditions for crack propagation upon diffraction 
of an incident wave by a crack. We focus on some essential physical aspects of the 
problem, and the mathematical analysis is simplified by considering a two-dimensional 
geometry with a plane incident wave. The geometry is shown in Figure 1. In this first 
approach the analysis is concerned with a horizontally polarized incident shear wave, 
so that only one wave equation enters the analysis. Assuming that for a sufficiently 
sharp pulse the question of crack propagation is decided at the instant that the wave 
front strikes the crack tip, or briefly thereafter, the original length of the crack is 
immaterial and we may simplify the analytical work by considering a semi-infinite 
crack. 

The analysis consists of two parts. The particle velocity behind the crack tip and 
the shear stress ahead of the crack tip are first determined for the diffraction of a plane 
transient wave by a crack which extends with an arbitrary (time-dependent) velocity. 

Figure 1 
Horizontally polarized shear wave 
incident on a crack. 
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The diffraction problem is solved by  a method which was used by  Kostrov Ell for a 
problem of crack propagation, and much earlier by  Evvard  E2~ for a mathematically 
analogous problem of a wing in supersonic flow. Once the stress and the particle 
velocity have been obtained in the plane of the crack we employ a fracture criterion 
to investigate the conditions for crack propagation. In this paper the energy criterion 
is used, which states that  the formation of new free surface requires energy, and 
fracture can thus occur only if energy is available. 

The results of the analysis show that  a crack in an undisturbed brittle elastic 
medium can be incited to extend instantaneously only if the shear stress shows a 
square root singularity at the wave front. If  the shear stress is finite at the wave front, 
crack propagation may be incited a short time after the wave front has struck the 
crack tip. Also, if the material is already statically prestressed, crack propagation 
may  be generated almost instantaneously by  a smooth wave if the stress intensity 
factor of the static prestress is large enough. 

Transient problems for cracks propagating at a constant velocity were investi- 
gated by  Broberg I3J and Craggs [4], who were concerned with a uniformly extending 
central crack in a stressed body. The sudden appearance of a moving semi-infinite 
crack in a stressed body was investigated by  Baker I51. The elastic field of a crack 
extending non-uniformly under general anti-plane loading was recently studied by 
Kostrov Ell and Eshelby E61. In an earlier paper the author [7] investigated in con- 
siderable detail, but by a different method, crack propagation at a constant velocity 
generated by an incident shear wave. Elastodynamic problems of crack propagation 
were reviewed by Sih E81 and by  Erdogan E91, who supplied a rather complete list of 
references. 

2. The Diffraction P r o b l e m  

The propagation of horizontally polarized shear waves in a homogeneous, 
isotropic, linearly elastic medium is governed by the two-dimensional wave equation 

02w 02w 02w 
oX ~- Jr . . . . . . . .  , (2.1a) @2 Os ~ 

where 

s = c t ,  c =  - . (2.1b) 

In equations (2.1a) and (2.1b), w(x, y, s) is the displacement normal to the xy-plane, 
t is the time, and ~ and ~ are the shear modulus and the mass density, respectively. 
The non-vanishing stresses are 

Ow Ow 
*x, : # ~-bx ' and *yz =/~ Oy (2.2a, b) 

At s = 0, a plane wave of the general form 

$ + X  S i l l ~  - -  y eOSCZ 

wi(x, y, s) : H (s + x sin~ - y cos~) / g(v) 
# 

dv,  (2.3) 
0 
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whcre H( ) is the  Heavis ide  s tep function,  s t r ikes  the  t ip  of a semi-infinite crack. 
A short  t ime later ,  a t  s = s~, the  crack is assumed to s t a r t  ex tend ing  in the  xz-plane. 
Thus, a t  a subsequent  t ime defined b y  s > Sm, the  crack t ip  is loca ted  at  the  poin t  D 
defined b y  x = X (s - s,,). I t  is assumed tha t  

X ( s - s m )  =-0 for s ~ s , , ,  (2.4) 

and  
d X  

i >-ds-  > / 0  for s ~ s  m .  (2.5) 

As shown in Figure  2, the crack has then genera ted  a reflected wave  whose wave 
front  is ind ica ted  b y  E B ,  and a cyl indr ical  d i f f rac ted  wave  whose wave  front  is 
defined b y  (x 2 + y~)l/2 = s. 

Figure 2 
Incident ,  reflected and diffracted waves for s > sm. 

If  there  were no crack at  y = O, x < X (s - -  S m )  the  inc iden t  wave  (2.3) would  
give rise to the  following shear  stress in the  plane y = 0: 

rv z = - #  g (s + x sin ~) cos ~ H (s + x sin a) . (2.6) 

The solution to the  diffract ion problem is now ob ta ined  b y  super imposing  on the  
incident  wave the  wave  mot ion  t ha t  is genera ted  in an in i t ia l ly  und i s tu rbed  med ium 
b y  shear stresses t h a t  are equal  and  opposi te  to (2.6), and  t h a t  are appl ied  on bo th  
sides of the  slit  y = O, x ~ X (s - -  Sin). Through the  superposi t ion  the  surface of the  
crack is rendered  free of t rac t ions .  Since the  wave  mot ion  induced  b y  shear  t rac t ions  
ac t ing on the sides of a slit is obviously  an t i symmet r i c ,  the  d i sp lacement  vanishes for 
x ~ X (s --  sin) and  we need consider on ly  the  hal f -p lane  y ~ 0. Fo r  s > 0, the  wave  
mot ion  tha t  is super imposed  then  mus t  sa t i s fy  the  following condi t ions  at  y = 0: 

0W 
X < X (s - -  Sm) " 031 - -  g (S ~- X s i n s )  c o s ~  H (s + x s i n s )  , (2.7) 

x >~ X ( s -  s m ) : w  = 0 .  (2.8) 
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In addition, we have for s < 0 

Ow(x,  y ,  s) 
w (x ,  y ,  s) - -  Os = 0 .  (2.9) 

Similar to the work of Kostrov [11, the wave propagat ion problem defined by 
equations (2.1) and (2.7)-(2.9) can be solved by  employing a Green's function 
approach. Thus we employ the function G(x  o - x ,  Yo, So - s), which represents the 
displacement for a two-dimensional line source, 

O~G O2G O~G 1 
- - ~ (Xo - x)  ~(yo)  ~ (So - s ) .  ( 2 . 1 o )  Ox'~ + oy'~ Os~, 

Equat ion  (2.10) can easily be solved L10], and for s o > s we obtain 

H {(s o -  s) - -  E(x o - -  x) 2 + y'~]llz} 
G(Xo - x ,  y o ,  So - s) = , ( 2 . ] 1 )  

2 ~ # R  

where 

n ~  = ( s  ~ _ s ) ~  _ ( x  ~ _ x ) 2  _ y ~ .  ( 2 . ] 2 )  

By symmet ry  considerations it follows tha t  2 G(x  o - x ,  Xo, So - s) is the displacement 
field in the half-plane Yo < 0 due to a unit  force applied at position x on the 
surface Yo = 0. 

If the surface shear tractions at y = 0 would be known, say  zv~(x, 0, s) = z ( x ,  s), 

linear superposition could be employed to write the displacement w(x ,  y ,  s) in the 
half-plane Yo ~< 0 in the form 

1 f f  r(x, s) 
W(Xo, Y0, So) . . . . . . . . . . . . . .  j j  d x  ds  (2.13) 

x #  R ' 
s 

where, as follows from equation (2.11), S is tha t  par t  of the x s  plane tha t  falls inside 
the cone defined by  

(So s ) - [ ( X o - x p + y ~ , ] l l ~ > ~ 0 ,  0 ~ < s ~ < S o .  (2.14) 

To employ equation (2.13), the shear stress in the plane of the crack ahead of the 
crack tip must, however, first be determined. 

For Y0 =- 0, the region of integration S reduces to a tr iangular region in the x s  

plane, as shown in Figure 3. I t  is then convenient to introduce the following charac- 
teristic coordinates in the x s  plane 

s - - x  s + x  
-- , ~ . . . .  _=- , (2.15a, b) 

/ 2  V2  

whereby the denominator  in (2.13) reduces to 

(So - ~)~ - (Xo - x )~  = 2 (~o - ~) (no - n)  �9 ( 2 . 1 6 )  
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Figure 3 
Regions in the xs-plane. 

x=X(s-Sm; 

s /~-) ~ •  / q  

L /  " X /  / "- / 
, f  / s ,  , 

/ / /  y /  \ \ \  

• ~l@~ \ / /  / /11/ /  / 

Let  us first  consider  a poin t  }o, ;o, or ~o, ~o,see  Figure  3, such t ha t  ~-o < ~,~ = Sm/l/2-- 
According to equat ion  (2.8) the  d isp lacement  vanishes ahead  of the  crack t ip,  and  we 
thus  f ind for Yo = 0, and  ~o < Sm/l/2 

cose. (L --~11/~ (~o - ~)~/~ + ~ G --~)~/' 2 - ~  2 ;7~' 
0 -n~ 0 $ 

-- 0 ,  (2.17) 

where g(~, ~7) follows from equa t ion  (2.7), and  

1 - sin e = (2.1.8) 
i + s ine  

In equat ion (2.17) we have used tha t  the  med ium is und i s tu rbed  ahead of the  wave  
fronts x = s and  x = - s / s i n e .  Equa t ion  (2.17) is ev iden t ly  sat isf ied if 

;7. 

�9 (G-~)~/~ - acose  (G-~)i /~  
- ~  

(2.19) 

The Abel  in tegra l  equat ion  (2.19) can be solved in the  s t a n d a r d  fashion to y ie ld  

cose f g(& u) (~ - u)l/2 
a u  . (2.20) 

Equa t ion  (2.20) gives the  stress a t  a posi t ion x > X (s - -  Sm) before the  influence of 
the p ropaga t ion  of the  crack can be de tec ted  at  t h a t  posit ion.  

Now consider  a poin t  x0, So, or ~0, ~0, such t ha t  ~0 > ~,, = SIn~V2, and  ~0 = ~0, 
see Figure  3. Again,  since the  d isp lacement  vanishes  ahead  of the  crack, equat ion  (2.13) 
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yields 
~m ~ ~o N(~) 

/ d~e / g(~' rl) drl + c o s ~ / d ~ /  g(~' rl) drl 
COS0r 

(~o - ~)~ ~ : v ) ~  (*o :~ )1~  ( n o -  n)~ 
0 - ~  Cm --~* 

~m r/o ~e o :% 

+ (~o - ~ ) ~  (~o - n)i~ + ~ ( ~ o :  ~)~ ( n o -  n )~  - o ,  (2.21) 
o ~ ~m N(~) 

where ~,, = sm/V2 , and N(~:) is the solution of 

}/-~ - =  - / ~  Sm 

Since To = ~o, the first and the third terms in (2.21) cancel in view of equation (2.19), 
and we conclude 

no N($) 
/ z(~,~)d~ / g(~,~)d* 1 

(~o - V) 1~ - a cos~ (~o - V) ~ (2.23) 

The solution of (2.23) is obtained in the s tandard  fashion as 

X(~ e) 

# cose f g(~, u) [N(~) -- u] 1/2 d u .  (2.24) 
-u~  

Equat ion  (2.24) is valid for ~ > Sm/V2 , i.e. after the influence of the propagation of 
the crack can first be detected at a position x > X (s - Sin). 

By  employing equations (2.13), (2.7), (2.19) and (2.23), the displacement at 
y = 0 behind the crack tip can now also be determined. If  we consider the point ~, ~, 
or ~, ~/, where -~ > -~ > ~m ~ Sm ~2~ see Figure 3, we may  write 

/ 2  ~(~, v) = cos~, (~ _ e) ~ ~ :  77)-1~ ~ + .;- (~ _ s) ~ 
0 - - ~  0 

K(~) N(~) K(~) 

~m -- ~ ~m 

N(~) K(~) _u~e 

(2.25) 

where 

- K(~) 

V~ 
-- X [ ~ +  K(~) 

[ V2 
Sm]" (2.26) 
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The first two terms in (2.25) cancel in view of equation (2.19). The next  two terms, 
however, cancel because of (2.23), and equation (2.25) thus reduces to 

W(~, ~) --- 2"/7 / 2  (~ ~ ~:)112 ~(,~ __ ~ ) G  - (2 .27)  
K(~) --n~ 

Thus, equation (2.27) yields the displacement for 0 ~ x ~ X (s - Sin), where s > s m ,  

and K(~) must  be computed from (2.26). 
In  principle the displacement at an arbi t rary  position can be obtained by 

employing equation (2.13), but  the evaluation of the integrals is rather  complicated 
for Y0 4= 0. 

3. T h e  Field Var iab le s  N e a r  the  Crack  Tip 

To investigate whether or not the crack extends once it has been struck by  the 
incident wave, the stress just ahead of the crack tip and the particle velocity just 
behind it must  be known. After the crack tip has s tar ted to move, the stress ahead of 
the crack tip is given by  equation (2.24). In  terms of the physical coordinates x and s 
the expression for z(x, s) can be writ ten as 

X ( s  1 - sin) 

3(2, S) = -- 7/7 IX --  X ~ : ~ - / ~  cos0~ S,n)] 112 f g (u, s --  x -}- •)x EX- q/~ ($1 --  Sin) - -  u ] l [2  d u ,  

l (s, , )  (3.1) 

where 

/ (s, x) - 
S - - X  

1 + sine ' (3.2) 

and s 1 is computed from 

s - x = s l  - -  X ( s l  - s , , )  . (3.3) 

Some care must  be exercised in extract ing from equation (3.1) the singular term 
just ahead of the crack tip. Let  us observe at s = s* a point x = x* ahead of the crack 
tip after the tip has s tar ted to move. At s = s* the crack tip is located at x = X ( s *  - -  s , , )  

and it is assumed tha t  x* X (s* - sin) = e is very  small. F rom equation (3.3) it is 
noted that  at x = X ( s *  - -  s in) ,  s = s *  we have s I = s*. Consequently, at x = x* we 
m a y  write 

c)s 1 
s l ( x * ,  s * )  ~_ s *  + O x  e . (3.4) 

Thus, by  using equation (3.3) 

x *  - X ( s l  - S in )  = S *  - -  S l  " - -  
OS 1 (3.5) 
O x  

Os 1 ~11~ 
[ x * - -  X (s~-- Sm)1112~- -- OX y Ex*-- X (s* - -  Sm) ~l ~. (3.6) 
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From equat ion (3.3) we also find 

(3.7) 

By  employing (3.1), (3.6) and (3.7) the shear stress just ahead of the crack t ip may  
then be wri t ten  as 

x(s- sin) 
z(x, s) (1 -- dX/ds) 112 /~  g Eu, s - X (s - sin) + u? 

cos  - : - - -  Ex ............. 

h(s) 

+ 0 Ix -- X (s -- s . , ) 7  ~ (3.8) 

where 

S - -  X ( s  - -  Sm) 
h(s) . . . . .  (3.9) 

1 + s ins  

The particle velocity behind tile crack tip can be obta ined by  differentiating 
equat ion (2.27), and employing 

Os 1/2 ~ -  + -  . (3.10) 

By using the l imiting procedures tha t  were discussed previously in this section we 
obtain after  some manipula t ion  

Ow dX/ds 1 

c o s ~  O s  -- (1 + dX/ds) 1,2 iX. is  ~ s,,) ~ x] ',2 

X(s- sin) 
• / g [ u ' s - - X ( s - - S m ) + U l  

I X  (s  - -  s , , )  - -  u] 112 du + 0 I X  (s  - -  s , , )  - -  x111~ , (3.11) 

h(s) 

where h(s) is defined by  (3.9). 

4.  T h e  B a l a n c e  of  R a t e  of  E n e r g y  

If we consider the problem defined b y  (2.7) and (2.8), and we consider an element 
containing the crack tip, the balance of ra te  of energy m a y  be expressed in the form 

dU dV dT  dD 
ds - ds + d s  + ds " (4.1) 

In  equat ion (4.1), dU/ds is the ins tantaneous  rate of work of the t ract ions on the 
bounding surfaces of the element. Also, V and T are the strain and the kinetic energy, 
respectively, and D represents the energy dissipation. In  the present  problem energy 
is dissipated only as surface free energy or fracture energy. 
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To de te rmine  the  te rms dU/ds,  dV/ds  and dT/ds ,  we observe t ha t  the  crack 
p ropaga t ion  p rob lem m a y  also be thought  of as a p rob lem for a half-space which is 
free of t r ac t ions  at  y = O, x < X (s - s,,), bu t  which at  y = O, x ~ X (s --  Sin) is 
sub jec ted  to shear t rac t ions  depending on x and s in such a manner  tha t  the  displace-  
men t  vanishes ident ica l ly  for x ~ X (s - Sin). In  a power  ba lance  for an e lement  near  
x = X (s -- sin) in the  hal f -p lane  y ~ 0, the  t e rm  dD/ds does not  enter,  bu t  now there  
is an addi t iona l  ins tan taneous  ra te  of work te rm dEc/ds which gives the  ra te  of work  
of the  surface t rac t ions  for x ~ X (s - Sin) along the surface y -- 0 as the  surface is 
released. Fo r  an e lement  in the  hal f -p lane  the  power  ba lance  m a y  then be wr i t t en  

1 d U  1 d E  c 1 d T  1 dV  
................. + . . . . . . . . . . .  + - -  - (4.2) 
2 ds 2 ds 2 ds 2 ds 

Since d U f f s ,  dT /ds  and  dV/ds  are the  same whether  one looks at  the  problem as a 
crack p ropaga t ion  p rob lem or as a p rob lem for a half-space subjec ted  to surface 
t rac t ions ,  we conclude from equat ions  (4.1) and  (4.2) 

dD d E  c 
ds = - -  ds " (4.3) 

Equa t ion  (4.3), which was also der ived b y  Erdogan  E91, provides  us wi th  a power 
balance  condi t ion for  crack propagat ion .  

The par t ic le  veloci ty  jus t  behind  the p ropaga t ing  crack t ip  and the shear stress 
jus t  ahead of the  crack t ip  are given b y  (3.11) and (3.8), respect ively.  The te rm dEc/dS 
m a y  now be expressed as 

X ( s -  sin) ~ A 

1 d E  c f r(x ,  O, s) Ow(x, O, s) 
2 ds = Os d x ,  

,J 
X ( s -  Sm)--A 

(4.4) 

where A is a small  posi t ive  number .  
I t  is no ted  t ha t  the  stress z(x,  s) vanishes for x < X (s - Sin) while the  par t ic le  

ve loc i ty  vanishes for x > X ( s -  s,,), and  bo th  ~ and Ow/Os are s ingular  at  x = 
X (s - Sin). The eva lua t ion  of (4.4) is s implif ied b y  the  observa t ion  t ha t  the  p roduc t  
of the  s ingular  t e rms  in equat ions  (3.8) and  (3.11) ac tua l ly  represents  a Dirac de l ta  
funct ion.  This observat ion,  which is discussed in the  Append ix ,  m a y  be expressed in 
the  form 

H(v)  H ( - v )  
- -  :n  d ( v )  . ( 4 . 5 )  

v1/2 ( -  v)1/2 

By  subs t i tu t ing  (3.8) and  (3.11) in to  (4.4) and  b y  employing  (4.5) for v = 
x - X (s - Sin), we then  arr ive at  the  following express ion for the  ra te  of energy 
ava i l ab le  to  create  new fracture  surface 

1 d E  c # cos%~ 1 - d X / d s  ) 1'2 d X  
i + dX/ds ~ (i)2, - ( 4 . 6 )  

2 ds 



896 J a n  D. Achenbach  Z A M P  

where 

X(s -- Sm) 

I = f g Eu' s - X (s - -  Sm) ~- UJ d u  (4.7) 

J EX (S - -  Sin) - -  U] 112 
h(s) 

For the case that  g(x, s) is of the form of equation (2.7), i.e. if 

g EU, s -- X (S --  Sm) + U] = g [s --  X (s -- s,,) + ( l + s i n c ~ ) u ] ,  (4.8) 

it is convenient to introduce a new variable of integration 

= s - -  X (s - Sm) + ( l  + s i n s )  u . (4.9) 

The integral I may  then be rewritten as 

s+X(S--Sm) sinr 

1 f g(~) d~ 
I -  (1 + sin~)m . ]  - iS + X ( S - ~ - ~ ) ~ n ~  " ~i i)2 ' (4.10)  

0 

Equation (4.3) must be completed by a suitable expression for the dissipation 
term dD/ds .  Since we are considering a crack propagating in a linearly elastic solid 
where the only energy dissipation taking place is in a small region near the crack tip, 
D(s)  may be written as 

S 

D(s) = 2 ~ v  ds d s ,  (4.11) 

Srn 

where 7F is the amount of energy needed to create a unit area of fracture surface and 
is called the specific fracture energy of the solid. In the case of brittle fracture, the 
specific fracture energy has usually been identified with the surface tension of the 
material and thus has been assumed to be a material property,  constant with respect 
to time and crack velocity. In that  case we obtain from (4.11) 

d D  d X  
ds = 2 ~,F ds (4.12) 

For s > sin, the balance equation (4.3) now emerges from (4.6), (4.10) and (4.12) as 

s r sine 

zc 1 + d X / d s  [ J [s + X  (s ~ sin) sins --  ~1/2 
0 

= 7F" (4.13) 

5. D i scuss ion  

The balance equation (4.13) represents a balance of rate of energy, which must be 
satisfied at all times for the fracture phenomenon to take place. For prescribed values 
of 7F, c~ and #, and for a given g(~) defining the shape of the incident wave, the path 
of the crack tip X (s --  Sm) can be determined from equation (4.13). 
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Let us first examine whether crack propagat ion can be generated instantaneously 
as the wave front strikes the crack tip, i.e., whether we can have s m - O. If  we set 
s m - O, it is noted immediately tha t  at s = 0 the left-hand side of (4.13) can be 
different from zero only if 

g(~) = W / ~  lie , (5.1a) 

o r  

g(x,  S) = W / ( s  + x sin0~) 1/2 . (5.1b) 

This leads to the rather  interesting conclusion tha t  a crack in an i n i t i a l l y  u n d i s t u r b e d  
medium will be incited to extend i n s t a n t a n e o u s l y  only if the incident shear wave 
shows a square root singularity in the shear stress at the wave front. This conclusion 
is of course reached on the basis of the generally accepted assumption tha t  in britt le 
elastic solids the specific fracture 7F is independent  of t ime and independent  of the 
rate of crack extension d X / d s .  

If  g(x,  s) is of the form (5.1a), equation (4.13) reduces to 

1 -  d X / d s  )1/2 YF 
17- dX/ds (1 - s in~)  = ~ ~ W~ " (5.2) 

Equat ion (5.2) shows tha t  the rate of crack propagation d X / d s  is constant  only for an 
incident wave defined by  (5.1b). 

If  the shear stress is finite at the wave front the crack tip m a y  still s tart  to move, 
but  only for s m > 0. the value of s,, can be computed  from (4.13) by  considering s 
slightly less than s,,. At tha t  instant  d X / d s  = 0, and we find 

Sm }2 
( S m ~  ~)1/2 - -  (1 -- sins) # 

0 

(5.3) 

As an example we consider an incident step-stress wave, 

g(s) = T0 (5.4) 

Equat ion (5.3) then yields 

~ 7~  (5.5) 
s~ = 4 (1 -- sins) T~ 

If  the crack is of finite length a, the present analysis is valid for s m < 2 a (1 + since). 
For  s > Sin, the function X (s - Sin) must  be solved from the non-linear differential 
equation 

_ _  4~2~ (1 -- sine) Is + X (s -- Sin) sine~ 1 
~ ~ s  

x/e d X  ~ lie 
= ( l + - d s - !  7 ~ .  (5.6) 

ZAMP 21/57 
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The equation can easily he solved for ~ = 0, i.e. when the wave front is parallel to the 
plane of the crack. For  c~ = 0 we obtain for s ~ s m 

d X  (4 ~)~ s ~ - (~ # yF) 2 
- ( 5 . 7 )  

as (4 z0z) z s ~ + (~/,  yF) 2 

I t  is noted tha t  dX/ds -+ 1 as s -+ o~. 
Now let us assmne tha t  the material  is already statically in a state of stress before 

the incident wave arrives. If  a crack propagates into a statically disturbed medium 
the solution to the diffraction problem can be obtained by  superimposing on the 
incident wave both the solution of the problem defined by  (2.1), (2.7) and (2.8), 
and the solution of a problem defined by  (2.1), (2.9) and the boundary  conditions 
a t y = 0 :  

Ow 
O < x < X ( s - - s , , ) "  Oy 

X ~ X ( S - - S m ) :  W = O .  

1 

# 
[ -  ryz(X, 03,,, (5.8) 

To solve for this set of boundary  conditions, the mathemat ica l  technique of Section 2 
can be employed. In  fact, the analysis of Section 2 carries through unchanged, except 
tha t  ~ = - 1  whenever - u  ~ appears as a lower limit in an integral. Similarly, the 
lower limit becomes zero in equations (3.8) and (3.10). By  employing the static stress 
(5.8), the integral analogous to (4.7) becomes 

X ( s - s  m) 

1 / [ -  ~yz(u, 0)]~, du (5.10) 
I s t  = __ 

I X  (s - -  Sm) - -  u] 112 
0 

For anti-plane shear, static fields around a crack have been investigated in great 
detail. I t  is well known tha t  the shear stress just ahead of the crack tip is of the form 

1 
[,y,(x, 0 ] ,  = ~2 # B x -1/' + O(xi~), (5.11) 

where B is the intensity factor which depends on the static loading. 
For  the case that  the transient wave which provides the dynamic disturbance 

to start  crack extension is a step-stress wave of the form (5.4), the integral I ,  equation 
(4.10), becomes 

2 [s + X (s __ Sm) Sin~r (_;o )1/2 
I w -- {~ + sina)l/2 - �9 (5.12) 

The balance of energy equation then yields 

" (Ist)2 + ~ I ' t  Iw + . . . . . . . . .  ~ ([w)z 1 + dX/ds = ~]F, (5.13) 

where Ist and I w are defined by  (5.10) and (5.12), respectively. I t  can then be con- 
eluded from equation (5.13) tha t  in a prestressed medium instantaneous crack propa- 

(5.9) 
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gation at s - 0 is possible. If  we set s m = 0 we find in view of (5.11) and (5.10) 

7~ 
[I,,],,=0 = -  ~ B .  (5.14) 

At s = 0, equation (5.13) then reduces to 

4 l* x B2 1 -  d s  = Y F  l + - - d ~ - -  (5.15) 

The rate of crack extension at s = 0 can immediately be computed  from (5.15). I t  is 
noted tha t  dX/ds at s = 0 depends only on the static pre-stress, in particular on the 
intensity factor B, and it follows that  instantaneous crack extension does not  take 
place if B ~ < 4 ?'F/t* ~" If  B is slightly less than (4 YF/l* y~)l]2 the crack will, however, 
propagate almost instantaneously if the shear stress due to the incident wave is of the 
same sign as the static prestress. If  the crack starts to move, the rate of extension 
dX/ds for s > 0 must  be computed from a rather complicated non-linear differential 
equat ion which can be determined from (5.13). 

In  summary,  it has been shown in this paper tha t  a crack m a y  be incited to 
extend by  an incident horizontally polarized transient shear wave. As the wave front 
strikes the crack tip in an initially undisturbed medium, instantaneous crack propa-  
gation can occur only if the shear stress shows a square root singularity at the wave 
front. If  the shear stress is continuous at the wave front, crack propagat ion m a y  be 
initiated a short time after the crack tip has been struck. In  a statically prestressed 
medium containing a crack, almost instantaneous crack propagat ion m a y  occur 
depending on the magnitude of the stress intensi ty factor of the static prestress. 

The analysis of this paper is based on the assumption tha t  the material  is homo- 
geneous, isotropic and linearly elastic, and suffers brittle fracture. I t  should be noted 
that  as the rate of crack extension increases, the max imum shear stress may  occur in a 
plane other than the plane of the crack, which m a y  give rise to branching. I t  is finally 
observed tha t  the analysis as presented in this paper can easily be extended to the case 
where YF depends on dX/ds. All tha t  has to be done is to modify  (4.12) appropriately,  
which will change the r ight-hand side of equation (4.13). 

Appendix 

Equat ion  (4.5), which was stated as 

1 ~(~) H(-v) 
vll~ (_ @I2 

- ~(v),  

can be Proven by  considering the left-hand side as the limit case for k -+ oo of the 
function 

s~(v)  = 

1 
o for I~] > ~ , 

....... v +  - - ~  for I ~ 1 <  k "  :n k /  \ k  
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I t  c an  t h e n  eas i ly  be  s h o w n  t h a t  l i ra  Sk(V ) sa t i s f ies  t h e  u s u a l  c r i t e r i a  for  a d e l t a  f u n c t i o n :  

(a) l i ra  sk(v ) =  { O, v . O, 

k~oo oo , v = O , 

b 

(b) l im  / sk(v) dv = 1 , 
--tz 

(c) 
b 

l im  ; 9(v) sk(v ) dv = qD(O) , 
k ~ o o  �9 - - a  

w h e r e  ~0(v) is i n t e g r a b l e  a n d  c o n t i n u o u s  a t  v = 0. 
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Zusammenfassung  

Eine ebene, unstetige, horizontal  polarisierte Schubwelle brei tet  sich in einem brflchigen 
elastischen Material aus, das einen Riss enthAlt. In  dieser Arbeit werden die Bedingungen ffir 
den Rissfortschritt  untersucht,  nachdem die ankommende Welle dutch den Riss gebeugt wurde. 
Die Untersuchung besteht  aus zwei Teilen. Im ersten Teil werden die Teilchengeschwindigkeiten 
und Schubspannungen in der Ebene des Risses infolge Beugung der Schubwelle bestimmt. Es wird 
dabei angenommen, dass der Riss sich soiort, oder kurz naehdem die Wellenfront die Risskante 
getroffen hat,  mi t  beliebiger Geschwindigkeit ausbreitet.  Im zweiten Teil wird die Energie- 
gleichung als Kriterium fiir den Rissfortschritt  bent~tzt. Es wird gezeigt, dass in einem ursprang- 
lich ungest6rten Material der Riss sich nur  dann sofort ausbreitet,  wenn die Schubspannung eine 
Quadratwurzelsingularit~Lt an der Wellenfront zeigt. Wenn die Schubspannung an der Wellenfront 
kontinuierlich ist, dann beginnt der Rissfortschritt,  kurz nachdem die Risskante getroffen wird. 
In einem statisch vorgespannten Material, das einen Riss enthitlt, kann  der Rissfortschritt  sofort 
einsetzen, wenn der Spannungsfaktor gross genug ist. 
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