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Extension of a Crack by a Shear Wave')

By Jan D. Achenbach, Department of Civil Engineering, Northwestern University,
Evanston, Illinois, USA

1. Introduction

The application of a sudden disturbance to the surface of an elastic body gives
rise to elastic waves which propagate into the interior of the body. If the system of
transient waves encounters internal flaws such as cracks, a complicated pattern of
diffracted waves is generated. It is well known that upon diffraction of a wave by a
crack the stress becomes singular in the vicinity of the crack tip, and it is therefore
conceivable that waves generated by surface disturbances will cause propagation of
existing internal flaws. ‘

In this paper we investigate the conditions for crack propagation upon diffraction
of an incident wave by a crack. We focus on some essential physical aspects of the
problem, and the mathematical analysis is simplified by considering a two-dimensional
geometry with a plane incident wave. The geometry is shown in Figure 1. In this first
approach the analysis is concerned with a horizontally polarized incident shear wave,
so that only one wave equation enters the analysis. Assuming that for a sufficiently
sharp pulse the question of crack propagation is decided at the instant that the wave
front strikes the crack tip, or briefly thereafter, the original length of the crack is
immaterial and we may simplify the analytical work by considering a semi-infinite
crack.

The analysis consists of two parts. The particle velocity behind the crack tip and
the shear stress ahead of the crack tip are first determined for the diffraction of a plane
transient wave by a crack which extends with an arbitrary (time-dependent) velocity.

Figure 1
Horizontally polarized shear wave
incident on a crack. undisturbed

disturbed
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The diffraction problem is solved by a method which was used by Kostrov [1] for a
problem of crack propagation, and much earlier by Evvard [2] for a mathematically
analogous problem of a wing in supersonic flow. Once the stress and the particle
velocity have been obtained in the plane of the crack we employ a fracture criterion
to investigate the conditions for crack propagation. In this paper the energy criterion
is used, which states that the formation of new free surface requires energy, and
fracture can thus occur only if energy is available.

The results of the analysis show that a crack in an undisturbed brittle elastic
medium can be incited to extend instantaneously only if the shear stress shows a
square root singularity at the wave front. If the shear stress is finite at the wave front,
crack propagation may be incited a short time after the wave front has struck the
crack tip. Also, if the material is already statically prestressed, crack propagation
may be generated almost instantaneously by a smooth wave if the stress intensity
factor of the static prestress is large enough.

Transient problems for cracks propagating at a constant velocity were investi-
gated by Broberg [3] and Craggs [4], who were concerned with a uniformly extending
central crack in a stressed body. The sudden appearance of a moving semi-infinite
crack in a stressed body was investigated by Baker [5]. The elastic field of a crack
extending non-uniformly under general anti-plane loading was recently studied by
Kostrov [1] and Eshelby [6]. In an earlier paper the author [7] investigated in con-
siderable detail, but by a different method, crack propagation at a constant velocity
generated by an incident shear wave. Elastodynamic problems of crack propagation
were reviewed by Sih [8] and by Erdogan [9], who supplied a rather complete list of
references.

2. The Diffraction Problem

The propagation of horizontally polarized shear waves in a homogeneous,
isotropic, linearly elastic medium is governed by the two-dimensional wave equation

0w n w0 (2.1a:
Ox? 0y 0s2 18)
where
P 1/2
s=ct, ¢= (m) . (2.1b)
0

In equations (2.1a) and (2.1b), w(x, v, s) is the displacement normal to the xy-plane,
¢ is the time, and x and g are the shear modulus and the mass density, respectively.
The non-vanishing stresses are

Ow Ow

Tz = M \'556 , and Ty: = M —oy— . (22a’b)

At s = 0, a plane wave of the general form
s+xsing — ycosa

w,(x,¥,s) = H (s + x sina — ¥ cosa) / g(v) dv, (2.3)
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where H( ) is the Heaviside step function, strikes the tip of a semi-infinite crack.
A short time later, at s = s,,, the crack is assumed to start extending in the xz-plane.
Thus, at a subsequent time defined by s > s,,, the crack tip is located at the point D
defined by x = X (s — s,,). It is assumed that

X(s—s,)=0 for s<s,, 2.4)
and
ax
1 >fd——>0 for s>=s,. (2.5)
s

As shown in Figure 2, the crack has then generated a reflected wave whose wave
front is indicated by EB, and a cylindrical diffracted wave whose wave front is
defined by (x2 + y2)112 = s,

Figure 2
Incident, reflected and diffracted waves for s > Sy

If there were no crack at y =0, ¥ << X (s — s,,) the incident wave (2.3) would
give rise to the following shear stress in the plane y = 0:

T,, = —Mg(s+ xsina) cosa H (s + x sina) . (2.6)

yz

The solution to the diffraction problem is now obtained by superimposing on the
incident wave the wave motion that is generated in an initially undisturbed medium
by shear stresses that are equal and opposite to (2.6}, and that are applied on both
sides of the slit y = 0, x << X {s — s,,). Through the superposition the surface of the
crack is rendered free of tractions. Since the wave motion induced by shear tractions
acting on the sides of a slit is obviously antisymmetric, the displacement vanishes for
% 2 X (s — s,,) and we need consider only the half-plane ¥ <{ 0. For s > 0, the wave
motion that is superimposed then must satisfy the following conditions at y = 0:

¥ <X (s—s,) :(;—7;) = g (s + x sina) cosa H (s + x sina) , (2.7)

rxr=2X(s—s,)w=0. (2.8)
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In addition, we have for s << 0

Owlx, y, )
Os

il
=)

w(x, vy, §) = (2.9)

Similar to the work of Kostrov [1], the wave propagation problem defined by
equations (2.1) and (2.7)-{2.9) can be solved by employing a Green’s function
approach. Thus we employ the function G(x, — ¥, 5, sp — 5), which represents the
displacement for a two-dimensional line source,

0*G 0*G 02G 1
‘o}g" + Tyé - 708;2)7 = - 7 9 (%o — %) 8(yo) 0 (sp — s} . (2.10)

Equation ({2.10) can easily be solved [10], and for s, > s we obtain
H{(so—5) — [l — #)* + 9212}

G(xg — %, ¥p, S — 5) = 2nuR , (2.11)
where
R? = (54— 8)2 — (% — %) — ¥ - (2.12)

By symmetry considerations it follows that 2 G(x, — x, v,, S, — s) is the displacement
field in the half-plane y, << 0 due to a unit force applied at position x on the
surface yg, = 0.

If the surface shear tractions at y = 0 would be known, say 7,,(x, 0, s) = 7(x, s),
linear superposition could be employed to write the displacement w(x, vy, s) in the
half-plane y, < 0 in the form

1 Hl
w(%xo, Yo, So) = n // T—(xRﬂ---- dx ds , (2.13)
S

where, as follows from equation (2.11), S is that part of the xs plane that falls inside
the cone defined by

(sg—s) —[(He— 22+ ¥2 42 20, 0<s<s,. (2.14)

To employ equation (2.13), the shear stress in the plane of the crack ahead of the
crack tip must, however, first be determined.

For y, = 0, the region of integration S reduces to a triangular region in the xs
plane, as shown in Figure 3. It is then convenient to introduce the following charac-
teristic coordinates in the xs plane

f=, e (2.15a, b)

whereby the denominator in (2.13) reduces to

(sg = 8)2 — (2o — %)* = 2 (o — &) (o — 1) . (2.16)
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Figure 3
Regions in the xs-plane. %

Let us first consider a point Z,, 5,, Of &, 7,, see Figure 3, such that &, < &, = Snll/2.
According to equation (2.8) the displacement vanishes ahead of the crack tip, and we
thus find for y, = 0, and &, <s,,/)2

&

o & En Mo
aé g(&, n) dn 1/ 3 /T(E, n) dn
= = + — | = = =0, (217
“’S“(./ & e G w) G i) Goger

—nk 13

where g(&, n) follows from equation (2.7), and

1 — sina ) (2.18)
1+ sina o

H o=

In equation (2.17) we have used that the medium is undisturbed ahead of the wave

fronts ¥ = s and ¥ = —s/sina. Equation (2.17) is evidently satisfied if
7-]0 d 5 d
[ eona [ BT 2.19)
J (M=) o)

The Abel integral equation (2.19) can be solved in the standard fashion to yield

£

- 5} E - 12
oy - - L [EENE-WR (220

—x

Equation (2.20) gives the stress at a position x > X (s — s,,) before the influence of
the propagation of the crack can be detected at that position.

Now consider a point %, s,, or &, 7o, such that & > &, = s,./)/2, and 5, = 7,,
see Figure 3. Again, since the displacement vanishes ahead of the crack, equation (2.13)



892 Jan D. Achenbach ZAMP

yields
Em dé: (S N(§) (E )d
7) 4 » M) an
°°S°‘/ & 8" / et °°S°‘/ & 1'2/ (o — 7)™
—xé Em —x&

) dy 1 e 2(&, n) dn
/ 1/2/ 7]0 7’])1/2 + / (EO 5)1/2 / W =0 R (221)
N(§)

where &, = s,,/)/2, and N (&) is the solution of
ECELIRECIS SN

(2.22)

Since 7, = 74, the first and the third terms in (2.21) cancel in view of equation (2.19),
and we conclude

"o N(§)
H d t d
/ e s _gﬁﬂ_gé_ . (2.23)
(190 — m)* (0 — )
N(E) —xé
The solution of (2.23) is obtained in the standard fashion as
N(g)

€ ) = —

14 cosa / 8(&, u) IN(§) — ™ (2.24)

m[n — NP2 J, n—u
Equation (2.24) is valid for & > s,,/)/2, i.e. after the influence of the propagation of
the crack can first be detected at a position x > X (s — s,,).

By employing equations (2.13), (2.7), (2.19) and (2.23), the displacement at
y = 0 behind the crack tip can now also be determined. If we consider the point %, s,
or , 7, where 5y > & > £, = s,,)/2, see Figure 3, we may write
&m & Em

o= - dE g&mdy 1 A
72 wE, ) = Cosa(f o /5- 7 — )i + p 0/ Eoan

—x

K(n) K{n)

(€, ) dn - g(é‘ mdy 1 [ dE 225
XS/@ e /(s B / 7 — i U/@—s)m 223

_ Em

n

n
(£, ) dny 3 g ) dn
X/ (7 — +°°S°‘/ (2—5)1/2_[ (7=

N(§) Ky)

LLY

where

(2.26)
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The first two terms in (2.25) cancel in view of equation (2.19). The next two terms,
however, cancel because of (2.23), and equation (2.25) thus reduces to

& il
7 — _ Cosa & g(&, n) dy
o= s [t [ &0
K{7) —x§

Thus, equation (2.27) yields the displacement for 0 << x < X (s —s,,), where s > s,,,
and K(n) must be computed from (2.26).

In principle the displacement at an arbitrary position can be obtained by
employing equation (2.13), but the evaluation of the integrals is rather complicated
for yo + 0.

3. The Field Variables Near the Crack Tip

To investigate whether or not the crack extends once it has been struck by the
incident wave, the stress just ahead of the crack tip and the particle velocity just
behind it must be known. After the crack tip has started to move, the stress ahead of
the crack tip is given by equation (2.24). In terms of the physical coordinates x and s
the expression for 7(x, s) can be written as

X(sl—sm)
1 cosa glu,s —x+ u) [ X (5, —s,) — u)*?
T(x, §) = — du ,
w(x— X (s; — s,)]2 X — u
fo) (3.1)
where
s—x
SRy =— 3.2
f(s, %) 11 sina (3.2)
and s, is computed from
S—x=28 —X (s —5,). (3.3)

Some care must be exercised in extracting from equation (3.1) the singular term
just ahead of the crack tip. Let us observe at s = s* a point ¥ = x* ahead of the crack
tip after the tip has started to move. At s = s* the crack tipislocatedat x = X (s* —s,,)
and it is assumed that ¥ — X (s* — s,,) = ¢ is very small. From equation (3.3) it is
noted that at ¥ = X (s* —5,,), s = s* we have s, = s*. Consequently, at x = x* we
may write

0

sy(x*, s%) ~ s* + Ral iy (3.4)
0x

Thus, by using equation (3.3)
0
x*—X(sl—sm)—s*—slz—% (3.5)
0s, \ 2
= X (s (=) - X (et ) 39)
x
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From equation (3.3) we also find

0s ax \—1!

By employing (3.1), (3.6) and (3.7) the shear stress just ahead of the crack tip may
then be written as

X(s—s,,)
m(x,s) (1 —adXxjds)*®  r glu,s— X (s—s,) + u]
M COS« N [x - X (S - sm):!:l/2 / [X (S - sm) - %]1/2
h(s)
+ 0 [x - X (S - Sm)]llz (38)
where
s—X (s—s,)
h(s) = — =2 Tml 3.9
1(s) 1+ sina 39)

The particle velocity behind the crack tip can be obtained by differentiating
equation (2.27), and employing

Ow _ 1 Ow 0w 3.10
Sl 319

By using the limiting procedures that were discussed previously in this section we
obtain after some manipulation

T 0w dX|ds 1
cosa 0s (14 dX[ds)¥2 [X (s —s,) — x]U
X(s—sm)
) glu,s— X (s—s,) + u] Y2
X / X5 —5,) — ui® du + O [X (s —s,,) — x]42, (3.11)

h(s)

where A(s) is defined by (3.9).

4. The Balance of Rate of Energy
If we consider the problem defined by (2.7) and (2.8}, and we consider an element
containing the crack tip, the balance of rate of energy may be expressed in the form

alU  av ar

e, e 4.1
I R SR )

In equation (4.1), dU/ds is the instantaneous rate of work of the tractions on the
bounding surfaces of the element. Also, IV and T are the strain and the kinetic energy,

respectively, and D represents the energy dissipation. In the present problem energy
is dissipated only as surface free energy or fracture energy.
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To determine the terms dU/ds, dV[ds and d1[ds, we observe that the crack
propagation problem may also be thought of as a problem for a half-space which is
free of tractions at y =0, x << X (s —s,,), but which at y =0, ¥ = X (s —s,,) is
subjected to shear tractions depending on x and s in such a manner that the displace-
ment vanishes identically for x == X (s — s,,). In a power balance for an element near
%=X (s — s,) in the half-plane y < 0, the term dD/ds does not enter, but now there
is an additional instantaneous rate of work term dE_/ds which gives the rate of work
of the surface tractions for ¥ = X (s — s,,) along the surface y = 0 as the surface is
released. For an element in the half-plane the power balance may then be written

1 dU 1 4, 1 aT 1 av 42
Ta v e 2as Tz s “2)

Since dU/ds, dT|ds and dV[ds are the same whether one looks at the problem as a
crack propagation problem or as a problem for a half-space subjected to surface
tractions, we conclude from equations (4.1) and (4.2)

e Ak (4.3)

Equation (4.3), which was also derived by Erdogan [9], provides us with a power
balance condition for crack propagation.

The particle velocity just behind the propagating crack tip and the shear stress
just ahead of the crack tip are given by (3.11) and (3.8), respectively. The term dE [ds
may now be expressed as

X(s—s,)+4
Ow(x, 0, s)
0T o L0, 5) 0 g 4.4
2 ds v 0, 9) 0s 8 4
X(s—s, )—4

m

where A is a small positive number.

It is noted that the stress 7(x, s) vanishes for x < X (s — s,,) while the particle
velocity vanishes for x > X (s —s,,), and both 7 and Ow/0s are singular at x =
X (s — s,,). The evaluation of (4.4) is simplified by the observation that the product
of the singular terms in equations (3.8) and (3.11) actually represents a Dirac delta
function. This observation, which is discussed in the Appendix, may be expressed in
the form

H)  H(-v)

Ttz (—v)i2

=7 8(v) . (4.5)

By substituting (3.8) and (3.11) into (4.4) and by employing (4.5) for v =
x— X (s — s,), we then arrive at the following expression for the rate of energy
available to create new fracture surface

1 dE W costa ( 1 —dX/ds )1’2 ax

1)z .
2 ds T 1+ dX/ds ds (0*, (+6)
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where
X(s—s,,)

I:/ glu,s— X (s—s,) + ul du ‘ “4.7)

[X (S - sm) - M]1/2
R(s)

For the case that g(x, s) is of the form of equation (2.7), i.e. if

glg,s— X (s—s,)+u]l=g[s—X(s—s, + (1-+sina) ], 4.8)
it is convenient to introduce a new variable of integration

[=s—X(s—s,) + 1+ sino) % . 4.9)

The integral I may then be rewritten as

s+X(s—s, )sina

[ / 94 (4.10)

(1 +4 sine)t2 [s + X (s — s,,) sino — ]2

Equation (4.3) must be completed by a suitable expression for the dissipation
term dD/ds. Since we are considering a crack propagating in a linearly elastic solid
where the only energy dissipation taking place is in a small region near the crack tip,
D(s) may be written as

S

ax
D(s) = Z/desds, (4.11)

s
m

where vz is the amount of energy needed to create a unit area of fracture surface and
is called the specific fracture energy of the solid. In the case of brittle fracture, the
specific fracture energy has usually been identified with the surface tension of the
material and thus has been assumed to be a material property, constant with respect
to time and crack velocity. In that case we obtain from (4.11)

aD aX
= — . 4.1

ds 27r ds (+.12)
Fors > s,,, the balance equation (4.3) now emerges from (4.6), (4.10) and (4.12) as

s+X(s—s,)sina

2 : 1 —dX|ds \'* g(¢) d¢ 2
g (1 sine) (m) { f T X (s sina ﬂuz} =7pe (413)
0

5. Discussion

The balance equation (4.13) represents a balance of rate of energy, which must be
satisfied at all times for the fracture phenomenon to take place. For prescribed values
of yr, o and g, and for a given g({) defining the shape of the incident wave, the path
of the crack tip X (s — s,,) can be determined from equation (4.13).
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Let us first examine whether crack propagation can be generated instantaneously
as the wave front strikes the crack tip, i.e., whether we can have s, = 0. If we set
s, =0, it is noted immediately that at s = 0 the left-hand side of (4.13) can be
different from zero only if

g(8) = wjge, (5.1a)

or
g(x, s) = W/(s + x sine)2 (5.1b)

This leads to the rather interesting conclusion that a crack in an nitially undisturbed
medium will be incited to extend instantancously only if the incident shear wave
shows a square root singularity in the shear stress at the wave front. This conclusion
is of course reached on the basis of the generally accepted assumption that in brittle
elastic solids the specific fracture yz is independent of time and independent of the
rate of crack extension dX/ds.

If g(x, s) is of the form (5.1a), equation (4.13) reduces to

( 1—dXjds

12 Ve
- — 1 — si = 5.2
1+ dX/ds ) (1 = sin) 52

Equation (5.2) shows that the rate of crack propagation dX/ds is constant only for an
incident wave defined by (5.1b).

If the shear stress is finite at the wave front the crack tip may still start to move,
but only for s,, > 0. the value of s,, can be computed from (4.13) by considering s
slightly less than s,,. At that instant dX/ds = 0, and we find

Sm i .
_gQdc \F_ mye (5.3)
(5 — PP (1 — sina)
0
As an example we consider an incident step-stress wave,
T
g = > . (5.4)
H

Equation (5.3) then yields

TEYE (5.5)

™4 (1 — sina) 72

If the crack is of finite length 4, the present analysis is valid for s,, << 2 a (1 + sin«).
For s > s, the function X (s — s,,) must be solved from the non-linear differential
equation

aX ax

1/2 1/2
(1 —sine) [s + X (s —s,,) sinoc](l — ?) = (1 + 7;) Ye.  (5.6)

2
4715

™

ZAMP 21/57
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The equation can easily be solved for a = 0, i.e. when the wave front is parallel to the
plane of the crack. For « = 0 we obtain for s > s,

aX (AP~ (apye)?
ds @RSt [wpyp)?

It is noted that dX/ds — 1 as s — oo.

Now let us assume that the material is already statically in a state of stress before
the incident wave arrives. If a crack propagates into a statically disturbed medium
the solution to the diffraction problem can be obtained by superimposing on the
incident wave both the solution of the problem defined by (2.1), (2.7) and (2.8),
and the solution of a problem defined by (2.1), (2.9) and the boundary conditions
aty=0:

(5.7)

ow 1
O<x<X(s—sm):—07:nM—[~ 7,.(%, 0], , (5.8)

x=2X(s—s,) w=0. (5.9)

To solve for this set of boundary conditions, the mathematical technique of Section 2
can be employed. In fact, the analysis of Section 2 carries through unchanged, except
that » = — 1 whenever — x & appears as a lower limit in an integral. Similarly, the
lower limit becomes zero in equations (3.8) and (3.10). By employing the static stress
(5.8}, the integral analogous to (4.7) becomes

X(s—-sm)
. [_ Tg{‘:z_‘(rul O)J&t
e ”/1/ X (s = 5,) e o0

For anti-plane shear, static fields around a crack have been investigated in great
detail. It is well known that the shear stress just ahead of the crack tip is of the form

1
[22(%, 0]ee = 5 pe Ba7+ O(x1) (5.11)

where B is the intensity factor which depends on the static loading.

For the case that the transient wave which provides the dynamic disturbance
to start crack extension is a step-stress wave of the form (5.4), the integral I, equation
(4.10), becomes

2{s+ X (s —s,) sina]¥? [ g,\1?
(1 + sina)? 7 '
The balance of energy equation then yields

) 2 p coso cos2a 1 —dX/ds \?
[Z (L)% + —ﬁn— I, I,+ ﬂ"“’;{‘”’ (Iw)z] (mﬁ“‘is—) =g, (5.13)

I, =

w

(5.12)

where I, and I, are defined by (5.10) and (5.12), respectively. It can then be con-
cluded from equation (5.13) that in a prestressed medium instantaneous crack propa-
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gation at s = 0 is possible. If we set s,, = 0 we find in view of (5.11) and (5.10)

n
Uliwo == B. (5.14)
At s = 0, equation (5.13) then reduces to
1 ax \v? ax \?
T uaB(1 -0} = 14 2 . 1
cuaB (1) = (1450 5.15)

The rate of crack extension at s = 0 can immediately be computed from (5.15). It is
noted that dX/ds at s = 0 depends only on the static pre-stress, in particular on the
intensity factor B, and it follows that instantaneous crack extension does not take
place if B? < 4y /un. If B is slightly less than (4 yz/u 71)Y2 the crack will, however,
propagate almost instantaneously if the shear stress due to the incident wave is of the
same sign as the static prestress. If the crack starts to move, the rate of extension
dX/ds for s > 0 must be computed from a rather complicated non-linear differential
equation which can be determined from (5.13).

In summary, it has been shown in this paper that a crack may be incited to
extend by an incident horizontally polarized transient shear wave. As the wave front
strikes the crack tip in an initially undisturbed medium, instantaneous crack propa-~
gation can occur only if the shear stress shows a square root singularity at the wave
front. If the shear stress is continuous at the wave front, crack propagation may be
initiated a short time after the crack tip has been struck. In a statically prestressed
medium containing a crack, almost instantaneous crack propagation may occur
depending on the magnitude of the stress intensity factor of the static prestress.

The analysis of this paper is based on the assumption that the material is homo-
geneous, isotropic and linearly elastic, and suffers brittle fracture. It should be noted
that as the rate of crack extension increases, the maximum shear stress may occur in a
plane other than the plane of the crack, which may give rise to branching. It is finally
observed that the analysis as presented in this paper can easily be extended to the case
where y depends on dX/ds. All that has to be done is to modify (4.12) appropriately,
which will change the right-hand side of equation (4.13).

Appendix

Equation (4.5), which was stated as

1 H@) H(~v)
7 vl (=)l =0()

can be proven by considering the left-hand side as the limit case for £ — oco of the
function

1
0 f —,
or |v|> k

si(v) =

i
e
@
+
| =
S —
&
S
e
| =
!
<
S —
L
]
—n
Q
=
)
| =
1
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It can then easily be shown that lim s, (v) satisfies the usual criteria for a delta function:

k—00
0, v=+0,
(a) lim sg(v) =
ko0 oo, v=20,

{b) lim sp(vydv=1,

© lim [ g0) s,(0) dv = 9(0),

where g(v) is integrable and continuous at v = 0.
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Zusammenfassung

Eine ebene, unstetige, horizontal polarisierte Schubwelle breitet sich in einem briichigen
elastischen Material aus, das einen Riss enthidlt. In dieser Arbeit werden die Bedingungen fiir
den Rissfortschritt untersucht, nachdem die ankommende Welle durch den Riss gebeugt wurde.
Die Untersuchung besteht aus zwei Teilen. Im ersten Teil werden die Teilchengeschwindigkeiten
und Schubspannungen in der Ebene des Risses infolge Beugung der Schubwelle bestimmt. Es wird
dabei angenommen, dass der Riss sich sofort, oder kurz nachdem die Wellenfront die Risskante
getroffen hat, mit beliebiger Geschwindigkeit ausbreitet. Im zweiten Teil wird die Energie-
gleichung als Kriterium fur den Rissfortschritt benitzt. Es wird gezeigt, dass in einem urspriing-
lich ungestérten Material der Riss sich nur dann sofort ausbreitet, wenn die Schubspannung eine
Quadratwurzelsingularitit an der Wellenfront zeigt. Wenn die Schubspannung an der Wellenfront
kontinuierlich ist, dann beginnt der Rissfortschritt, kurz nachdem die Risskante getroffen wird.
In einem statisch vorgespannten Material, das einen Riss enthilt, kann der Rissfortschritt sofort
cinsetzen, wenn der Spannungsfaktor gross genug ist.
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