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4. Any theory of elasticity must proceed from a relation between the tensors of stress
and relative deformation or strain. The tensor of stress can have the covariant or contra-
variant form, and expressions in these forms are therefore required also for the tensor of
strain. Usually the dimensions of the body are given in the initial state, and the strain
tensor must be expressed in such state. However, the initial state is not one of equitibrium;
this is the property of the final state. In some problems the necessity then arises of ex-
pressing the strain tensor in the final state. These conditions make it desirable to make use
of the eight expressions listed in the present paper.
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Phases of Elastic Materials

By MortoN E. GURTIN and WirLrLiaM O. WiLriams, Department of Mathematics,
Carnegie Institute of Technology, Pittsburgh, Pennsylvania, USA

Introduction

The nature of a simple material may be, in large part, described by its symmetry
groupl), which is the set of all transformations of reference configuration which leave
invariant the response of the material to all deformation-temperature histories. Clearly
this description is no longer adequate in the case of materials which suffer basic structural
changes due to deformation and temperature, changes which arise, for example, in the case
of phase transitions. Thus it is implicit in most treatments of the subject that constitutive
equations are to be taken as defined for a single phase of the material. More in keeping
with the general attitude of modern continuum mechanics, however, is to regard the consti-
tutive functional as fixed and to consider changes of the material under deformation to be
reflected in changes in symmetry. This is a rather simple concept, but one which we believe
may be useful in describing material response. We here demonstrate its application to the
simplest non-trivial case: an elastic material for which the phase is a function only of the
density and temperature. We begin by introducing a group, called the phase symmetry
group, which we allow to be a function of the density ¢ and temperature?) 6. For a given
o and 6 this group is the set of all density preserving transformations of the reference
configuration which are indistinguishable by an experiment in which the density and the
temperature after the deformation are ¢ and 0 respectively. Using this group we are able
to give physically meaningful definitions of such notions as solid pbase, liquid phase,
mesomorphic phase and crystalline phase. Further we show that most of the results known
previously for the symmetry group have immediate counterparts for the phase symmetry

group.
1) We prefer this term to “‘isotropy group”.

) Wang and Bowen [1966] in considering the “instantaneous isotropy group” of a quasi-elastic
material allow the group to depend upon the present temperature.
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Elastic Materials. The Symmetry Group &,

An elastic material is described by a constitutive equation relating the stress tensor S
to the deformation gradient I and temperature 0:

S = Sy(F, 0.

Here M is the (local) reference configuration relative to which F is taken?). The function
Sar is called the response function of the material relative to M. We assume that § m(F, 0)

is defined for every non-singular tensor F, every positive scalar § and every configuration
M, and is objective in the sense that X

Q Su(F, 6 Q" = Su{Q F, 0)
for every orthogonal tensor Q.
The response functions Sy and Sy relative to two different configurations M and N

are not independent; they are related by
Su(F, 6) = Sy(F G, 6),

where G is the deformation gradient from M to N, Le., N = GM.
The symmetry group Gy of the material relative to the configuration M is the group of

all non-singular tensors H for which the identity
Su(F, 6) = Su(F H, 6)
holds for all F and 0. Thus H belongs to Gy if and only if the response from the confi-
guration N = HM is the same as that from M, i.e.,
SN(F, 6) = Sy(F, 6)
for all F and 6. Also, if M and N are any two configurations and if G is the deformation
gradient from M to N, then
@N =G (Y)M G,
The only restriction?) we place on the group ®;is that it be contained in the unimodular

group U. The material is called a solid if for some M, Gy is a subgroup of the orthogonal
group ©; a fluid if for some (and hence every) M, Gy = U3).

The Phase Symmetry Group By(o, 0)

Let ¢ > 0 and 6 > 0 be given values of the density and temperature. The phase

symmetry group Paule, 0) at (o, 6) relative to a configuration M is the group of all uni-
modular tensors H for which the identity

Su(F, 8) = Su(F H, 6)
holds whenever the configuration F M has density o, i.e., whenever g | det F | = oum, where
e 1s the density in M. Thus a unimodular tensor H belongs to P (e, 6) if and only if
Sn(F, 6) = Sy(F, 6)

whenever N = H M and g [detF | = gy (= gy). Clearly the mapping {0, 0) > Baslo, )
generates the symmetry group Gy by means of the following relation:

G =0 Pulo, 6);
all
23

#) For precise definitions of the concepts used in this section see Truesdell and Noll [19635].
4) Conditions under which this restriction is necessary are discussed by Gurtin and Williams [1966].

®) This classification of materials is due to Noll [1958]. See also Coleman and Noll [1964] and Truesdell
and Noll [1965].
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ie., H belongs to ®y if and only if H belongs to By (e, 6) for every p and . If M and N
are any two configurations and G the deformation gradient from MM to N, then

PBule, 0) = G Pule. 0) GL.

We now utilize the group Py (o, 0) to define as follows the various phases of the material.

(i) The material is in a solid phase at (g, 6) if for some M, Py (p, 6) is a subgroup of O;
in this case the configuration M is called undistorted.

(ii) The material is in the fluid phase at (o, 0) if for some (and hence every) M, Py (o, 0)

(iii) 8) The material is in a mesomorphic (or liquid crystal) phase at (g, 6) if it is neither
in a solid phase nor in the fluid phase at (g, 6).

(iv) The material is in an ésofropic phase at (g, 0) if for some M, O is a subgroup of
PBarlo, 0); in this case M is called undistoried.

Trivially each fluid phase is isotropic. We now list other consequences of the above
definitions, omitting the proofs of those results which are direct counterparts of known
theorems.

{«)7) Every isotropic phase is either a fluid phase or a solid phase.

(8)?) An orthogonal tensor @ belongs to By (g, 0) if and only if

Q Su(F, 0) 0T = Su(Q F Q7. 0)

for every F with g |detF | = gy .

(6)9) If the material is in an isotropic phase at (g, 8), then the residual stress at the
temperature 6 in any undistorted local configuration with density ¢ is a hydrostatic
pressure. (The residual stress in a local configuration M is Su(l, 6).)

() 19) If the material is in an isotropic phase at (g, 8), then for every F satisfying
o | detF | = gy we have R

SyF, 0 =—pI+ uB+vB?,

where B = FFT, and p = p(B, 6), u = u(B, 6) and » = »(B, 6) are scalar functions of the
principal invariants of B. If the material is in the fluid phase 4 = v = 0 and $ = (g, 0).
(p) 1) Any two undistorted configurations of an isotropic phase are connected by a
deformation gradient of the form «Q, where Q is orthogonal, and every such deformation
gradient carries an undistorted configuration into another.
(y)1#) If the material is in the solid phase at (g, 0) and M and N are undistorted con-
figurations, then

Ble, 0) = O Barle, 0) Q7

where Q is the orthogonal tensor corresponding to the polar decomposition of the deform-
ation gradient from M to N. Thus PB(e, 6) and Py (e, 0) are conjugate within the ortho-
gonal group.

A solid phase is called aeolotropic, or anisotyopic, if the corresponding phase symmetry
group, relative to some {and hence every) undistorted configuration, is a proper subgroup
of the orthogonal group ©. By (y) the intrinsic symmetry of an aeolotropic solid phase is
described by an equivalence class of conjugate proper subgroups of ©. Eleven such equi-
valence classes correspond to the crystal classes!®) and may be used to define the various
possible crystalline phases. Another type of acolotropic phase is defined by equivalence
to a group of the form {Q € O { Qv = v or § v = — v} where v is some unit vector; such a
phase is called transversely isotropic.

L)
7

) Cf. Coleman [1965], Wang [1965].
)
8)

)

0

C

Cf. Truesdell and Noll [1965], p. 84.

Cf. Noll [1958], Theorem 5; Coleman and Noll [1964], Proposition 4.
Cf. Coleman and Noll [1964], Proposition 6.

) Cf. Coleman and Noll [1964], Proposition 7; Truesdell and Noll {1965], p. 140.
1) Cf. Coleman and Noll [1964], Proposition 8.
)
)

©

1

oy

12) Cf, Coleman and Noll [1964], pp. 97-98.
13) See, for example, Truesdell and Noll [1965], p. 83.
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The next two results demonstrate the connection between the notion of a material
being a solid or fluid and that of being in the solid or fluid phase.

(¢) If the material is a fluid then every phase is a fluid phase.

() If the material is an isotropic solid then every phase is either a fluid phase or an
isotropic solid phase.

The proof of (:} is immediate: since Gy < Pus(p, 6) < U, Gy = U implies Pyr(p, 6) =U.
To establish (x) we assume Gy = O for some M. Then D = G < Pule, §) < Uwhichimplies
PBaule, ) = O or Bylp, 6) = U for every (p, 8), since the orthogonal group is maximal in
the unimodular group4). .

Remark, VARLEY and Dav ') consider phase transformations in a different manner.
Given an isotropic elastic solid they consider deformations of the material which can occur
at constant temperature and pressure. They find that if for a given hydrostatic pressure
and temperature the Gibbs free energy function has a (possibly constrained) stationary
point then there exist deformations (corresponding to that stationary value) other than
a uniform dilatation which may occur at this pressure and temperature. They then note
that the symmetry group of the material relative to the second configuration is not the
full orthogonal group, i.e., that this configuration is not undistorted; they call such a
configuration a non-isotropic phase of the material.
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Zusammenfassung

Es wird eine Methode beschrieben fiir die Charakterisierung von Stoff-Phasen durch
Angabe der Symmetrie-Gruppe als Funktion der Deformation und Temperatur. Wenn in
einem elastischen Stoff die Phase durch Dichte und Temperatur bestimmt wird, dann gel-
ten die meisten der iiblichen Resultate fiir die Gesamt-Symmetrie-Gruppe auch fiir die
Gruppe, die einer gegebenen Phase entspricht.

1) Brauer [1965], Noll [1965].
15) Varley and Day [1966].



