Mathematical Programming 12 (1977) 372-391.
North-Holland Publishing Company

COST OPERATOR ALGORITHMS FOR THE TRANSPORTATION
PROBLEM*

V. SRINIVASAN
Stanford University, Stanford, CA, U.S.A.

G.L.. THOMPSON
Camegie—-Mellon University, Pittsburgh, PA, U.S.A.

Received 10 November 1974
Revised manuscript received 22 December 1976

A primal transportation algorithm is devised via post-optimization on the costs of a modified
problem. The procedure involves altering the costs corresponding to the basic cells of the
initial (primal feasible) solution so that it is dual feasible as well. The altered costs are then
successively restored to their true values with appropriate changes in the “optimal” solution
by the application of cell or area cost operators discussed elsewhere. The cell cost operator
algorithm converges to optimum within (2T — 1) steps for primal nondegenerate transportation
problems and [(27 +1) - min (m, n)] — 1 steps for primal degenerate transportation problems,
where T is the sum of the (integer) warehouse availabilities (also the sum of the (integer)
market requirements) and m and n denote the number of warehouses and markets respec-
tively. For the area cost operator algorithm the corresponding bounds on the number of steps
are T and (T + 1) - min (im, n) respectively.

Key words: Transportation Problem, Networks, Cost Operator Algorithm, Post-optimizing,
Primal Network Algorithm.

1. Introduction

One of the interesting results concerning the Ford-Fulkerson method [5, pp.
93-101] for solving transportation problems is the fact that fairly tight upper
bounds on the number of steps the algorithm takes to reach an optimum can be
stated. The Balinski-Gomory primal algorithm [1] which is ‘“dual” to the
Ford-Fulkerson method also has approximately the same upper bound on the
number of steps. In contrast, for primal basic methods such as the stepping-
stone [2] or MODI [3] methods, no tight bounds (other than the maximum
number of feasible bases) have so far been stated.

In the present paper we shall describe two new primal basic methods - the cell
and area cost operator algorithms for solving transportation problems. They are
based on our previous work on an operator theory [8] of parametric program-

*This report was prepared as part of the activities of the Management Sciences Research Group,
Carnegie-Mellon University, under Contract N00014-67-A-0314-0007 NR 047-048 with the U.S. Office
of Naval Research.

372

V. Srinivasan, G.L. Thompson/Cost operator algorithms 373

ming for transportation problems. These methods begin by finding a primal basic
feasible starting solution, then altering the costs corresponding to the basic cells
so that the initial solution is dual feasible, and hence optimal, for the altered
problem. The altered costs are then restored to their original values (with
appropriate changes in the “optimum” solution) by the application of cell or area
cost operators.

Besides providing new algorithms for transportation problems, it turns out that
very strong bounds can be stated for the number of steps needed to obtain an
optimum solution. For primal nondegenerate transportation problems, the upper
bound on the number of steps for the cell cost operator algorithm is much
stronger (by a factor of approximately min (m, n)/2, where m and n are the
number of warehouses and markets respectively) than those for the Ford-
Fulkerson and Balinski-Gomory algorithms. (The typical step for each of these
three algorithms involves approximately the same number of elementary opera-
tions.) However, for primal degenerate problems the cell cost operator algorithm
is slightly weaker (by a factor of approximately 2) compared to these other two
methods. The bounds for the area cost operator method are approximately one
half of the bounds for the cell cost operator method. Since the basic step of the
area cost operator algorithm is more involved than the cell cost operator
algorithm, the area operator bounds are not necessarily stronger than the cell
operator bounds.

The cost operator algorithms are, to the best of our knowledge, the first primal
basic algorithms for the transportation problem to have polynomial bounds. The
reason we are restricting our attention to primal basic methods rather than other
primal methods (such as [1]) is that the former involve less computational
storage requirements (the values for the primal variables need to be stored only
for basic variables, the others are necessarily zero) and the obtained solutions
are more readily suited for parametric programming calculations [8]. But, basic
methods are generally poorer in terms of handling degeneracy. The cell cost
operator algorithm, however, does not have such problems with degeneracy. In
fact, unlike the MODI method, it can be shown to converge without pertur-
bation.

The superiority of the cost operator method compared to the MODI method in
terms of upper bounds on the number of calculations should not be confused
with computational superiority in terms of mean computation times. In fact, our
results in Section 4 show that the MODI method is better than the cell cost
operator method in terms of mean computation times.

The rest of the paper is organized as follows. In Section 2 some preliminary
notation and definitions are given. A description of the cell cost operator
algorithm together with the solution of a small example is given in Section 3,
computational results are given in Section 4, the convergence proof in Section 5
and the derivation of the bounds for the cell operator method are given in
Section 6. A description of the area cost operator algorithm together with the
solution of the same example is given in Section 7 and the area cost operator
bounds are derived in Section 8.

For expositional ease, the algorithms provided in this paper apply only to

374 V. Srinivasan, G.L. Thompson/Cost operator algorithms

uncapacitated transportation problems. These algorithms can be extended to the
capacitated case by referring to [8]. Although this paper is based on our earlier
work [8] it is largely self-contained (except for some of the proofs) and can be
read independently.

2. Notation and definitions

Consider an m X n transportation problem P defined as follows:
Minimize 2 E Ci]-x,-j = Z,
i€l jeJ
subject to 2 x;=a; foriel={1,2,...,m}
jeJ
Dx;=b; forjeJ={1,2,.... n)
iel

=0 fori€landjeEl.

’

We assume without loss of generality (see [2,3,7, 8]):
() Zierai=Zjes by =T
() m=n
(ili) a; and b; are positive integers for i€ I, j&€ J.
Let us define

s = Min

nLcrLycr

Zaerf

i€l jen

(1

where at least one of I, or J, is a proper subset of I or J, respectively. If the
transportation problem P is primal nondegenerate [8] then s = 1; if it is primal
degenerate then s = 0. But by adding 1/m to every supply a; and 1 to one of the
demands b; we can make s=1/m>0. The latter is one of the standard
degeneracy prevention techniques for transportation problems and will be con-
sidered in more detail in Section 6.

The dual problem D, to problem P is:

Maximize E au; + 2, b,
il =
subjectto w,+v;=c¢; fori€landjE]
where u; and v; are the dual variables associated with rows and columns of the
cost matrix.
Next we define p; and g; by

pi=Minc¢; foriel,)
jel
q; = Min (¢; — p;) for jE J. (3

iel

Given these an obvious lower bound L to the optimum objective function Z is

V. Srinivasan, G.L. Thompson/Cost operator algorithms 375

given by

L= pa+ >, ab; 4)

el jeJ

since the objective function Z can be rewritten as

Z= Z 2 (¢ —pi — qj)x; + E pia; + 2 a;b;
i€l jeJ iel jeJ
and (¢; —p;—q;) =0 from (2) and (3).
Let X = {x;} be any primal basic feasible solution with basis B to problem P.
Define

A={(i,j)|(i,j)EB and Cij“‘Pi‘q]'>0}- (5)

If A=0, then X is optimal for problem P since then Z = L and L was a lower
bound for Z.)
Assume A @. Then define the modified transportation problem P with costs

{éii = ¢ for (i, j) € A,
Ci=pi+gq) for(i,j)EA

and the same rim conditions as for problem P. The solution X is primal feasible
and u; = p;, v;= q; is dual feasible, hence these are optimal primal and dual
feasible solutions for problem P.

In order to describe the algorithms we introduce some definitions from [8]. By
a cell (i, j) we mean an ordered index pair with row i € I and column j € J. A line
refers to a row or column.

Definition 1. Let {2 be a set of cells (i, j). Line g is said to be connected to line h
in {2 if and only if there exists a path S of distinct cells in (2,

S ={(i, Joia,)y o - U]k)}
such that

(a) (i}, j,) is the only cell of S in line g and (i,, j,) is the only cell of S in line k;
(b) for each ¢ in 1 <t <k either

() i, =i, and j, = j.,, or

(i) Ji = Jioy and i = iy

A basis B for the problem P (or 13) consists of a set of m +n — 1 cells such that
every line is (uniquely) connected to every other line in B.

Definition. 2. Let B be a basis, (p, ¢) € B and 2 = B — {(p, q)}. Then we define the
sets

I ={p}U{i€I]|iis connected to row p in 2},
Io=1- I

Je={q}U{j€J|j is connected to column q in Q},
Je=J—J.

376 V. Srinivasan, G.L. Thompson/ Cost operator algorithms

The ““scanning routine” described in Remark 9 on p. 218 of [8] can be used to
easily find these sets.

Definition 3. A (plus) cell cost operator [8] 8C,, transforms the optimal solution
({x;}, {w;} and {v;}) of a problem P to that for a transformed problem P* whose
data (i.e., {c;}, {a;} and {b;}) are the same as those of P except for the single cell
(p, q) whose cost is changed from c,, to c,, + 8 (6 =0). The area cost operator
8C, [8] transforms the optimal solution of P to that for a transformed problem
P* whose data are the same as those of P except ¢; is changed to ¢; + 8vy; (6 = 0)
for all i and j.

We now use the operator theory of parametric programming developed in {8]
to parametrically increase the costs ¢&; for (i,j) € A, at the same time making
appropriate changes in the primal and dual feasibility, until they equal the
original costs ¢; for problem P; at this point the current primal and dual
solutions are optimal for P. We shall first discuss the cell cost operator algorithm
in which the costs are changed one cell (i.e., index pair (i, j)) at a time, and then
describe the area cost operator algorithm in which the costs are changed on
several cells simultaneously. ‘

3. The cell cost operator algorithm

The cell cost operator algorithm to be described below directly follows from
the algorithms described in pp. 209-211, pp. 215-221 and pp. 240-248 of [8] for

~

parametrically increasing (one by one) the costs &; to ¢; for (i, J) € A.

(A1) Cell cost operator algorithm

(0) Set up initial tableau with costs ¢; supplies a; and demands b,

(1) Find p; = u; and g; = v; using equations (2) and (3). (This can be done in
two passes through the cost matrix.) Compute L using eq. (4). Set Z=L.

(2) Find a primal basic feasible starting solution X = {x;} with basis B by any
technique. (Several starting techniques are given in [10].)

(3) Find the set A defined in eq. (5).

(4) For each (i,j) in A store the value of c¢; as c}; then replace c; by
pit+q;=u + v

(5) If A =@ the optimum solution has been found; stop. Else choose any cell
(p, q) € A. (In Section 4 the rules for choosing the next cell are discussed.)

(6) Find the sets Ig, I, Jp and J. corresponding to cell (p, g} (Definition 2).

(7) Determine the maximum extent w* of the basis preserving cell cost
operator from the formula

p "= Minimum (c¢; — &; — v;)
Ghev

where ¥ = [I X Jc1—{(p. @)}
Record the entering cell (e, f) at which this minimum is taken on.
(8) Let 8 =Min(u", c¥,—c,,). f §=0 go to (11). Else go to (9).

V. Srinivasan, G.L. Thompson/Cost operator algorithms 377

(9) Change the dual variables as follows: Replace u; by u;+8 for i€ I
Replace v; by v;— 8 for j € Jr

(10) Replace c,, by ¢,, +8 and Z by Z + 6x,,. If ¢,, = ¢y, remove (p, q) from A
and go to (5). Else go to (11).

(11) Bring (e, f) into the basis, determining the leaving cell (r, s) (i.e., deter-
mine the ‘giver’ cell in the cycle created when (e, f) is added to B for which x;; is
a minimum). Whenever possible select (p,q) as (r,s). Change the shipping
amounts x; on the cycle in B +{(e, f)}. Replace B by B —{(r, s)} +{(e, N

(12) If (r, s) € A, replace ¢,, by c¢X and remove (r, s) from A.

If (r,s)=(p, q) go to (5). Else go to (6).

Example 1. Fig. 1 shows the tableau of a 3 x4 nondegenerate transportation
problem with the values of p;, and g; marked on the left and top. Since

43
P, 0 0 0 1 a v,
i 1 j
3 3 6 3 4 80 g 0 -1 0 1
5 6 5 1 1 0 '
1 5 9 3 ©40
1 1 3 10 5 55 30
6 |®
bj 70 60 35 60
111
s=5, L=(3x80)+(5%90)+(1x55)+(1x60)=805
s)+()+{(1x55) +() A=1{(3,3), 3,4))
Figure 1 Figure 4
v,
j
u 0 0 0 1 v
i J
70 10
3 @ 6 3 @ ‘Ul 0 -1 0 1
60 30
5 6 ® ®°° 15 3
5 50
T N o H ¢! 6
1

A={(2,3), 3,3, 3,5}

* - 11 * -1 *
g3 = M €39 = 10, c5, = 5, 2 = 805 A= {(3,4)
Figure 2 Figure 5

v,

j
ug o] -1 0 1 v.

b

3 uy 0 -1 0 1

6

5 |5 . 0% @
s |®° % u 15

Z = 805+(1x30) = 835

Figure 3 Figure 6

378 V. Srinivasan, G.L. Thompson/Cost operator algorithms

Z = 835+(3x15) = 880. Optimum.

Figure 7

60—55=35 it is easy to see that s =5. Also Z= L =805 by the calculation
shown. Fig. 2 shows the modified problem together with a primal basic
feasible starting solution obtained by using the Row Minimum Rule [10], and the
set A. In Fig. 2 the costs in A have been changed as indicated in operation (4) of
the algorithm. We now indicate the solution of the problem using the algorithm.

Operation
number Result
) A#@. Choose (p, q)=(2,3).
(6) I=1{2}, J-={1,3,4}.
) pt=6-5-0=1, (ef)=(2.1).
(8) 5=1.

9),(10) =6, v,=—1, cn=6. Z=805+(1x30)=2835 (Fig. 3).
(11),(12) Shipping amounts altered as shown in Fig. 4. Since
(r, s) = (2, 3) we remove (2,3) from A and set ¢ = 1.

(5) Choose (p, q) =(3,3).

6) I.={1.2,3}, Jo={3}
0 r" =0, (ef)=(13).
8) 8=0.

(11),(12) Shipping amounts altered as shown in Fig. 5. Since
(r, s) = (3,3) we remove (3,3) from A and set

¢33 = 10.
) . =06G,4.
(6) L={3, J.={1,2,3,4}
) nt=0, (&f)=@G.D.
) §=0.
(1) Shipping amounts shown in Fig. 6. (r, s} = (1, 1).
6) I.=1{2,3}, J-={3,4}.
) p'=5 (ef)=(23).
(8) 8 = Min{5,3}=3.
(&) u=9, us=4, v,=-3, v,=—4
(10) =5, Z=835+(3x15)=880, A=0.
5) Optimum solution shown in Fig. 7.

4. Computational experience

The algorithm of the previous section has been programmed in FORTRAN V
and extensive tests have been run on the UNIVAC 1108 computer.

V. Srinivasan, G.L. Thompson/ Cost operator algorithms 379

In programming the algorithm many experiments were carried out with the
choice in operation (5) of the algorithm for the next cell in the set A. Of all the
experiments the only conclusive experimental result obtained was that once cell
(p, q) is chosen then the same choice should be made until (p,) has been driven
out of A. (Any rule that we tried that involved switching to another cell
invariably gave worse results. For the algorithm to converge, it is essential that a
switch to another cell be made only after a strictly positive increase in the cost
of the present cell (p, q).) The statement of the algorithm in Section 3 already
uses this result.

For the choice of the next (p,q) in A the following rules were tested:

(1) Select (p, @) in A such that x,, is maximum.

(2) Select (p, q) in A such that x,, is minimum.

(3) Select, if possible, a cell (p, q) in A such that (p, q) is the only basis cell in
its row or column. If no such cell exists, use Rule (1).

(4) Select, if possible, a cell (p, q) in A such that (p, q) is the only basis cell in
its row or column. If no such cell exists, use Rule (2).

Rule (1) is a steepest ascent rule in the sense that when the cost of cell (p, q) is
increased by 8 the objective function value increases by 8x,, (Theorem 5a, [8]).
Consequently this rule could be expected to require fewer steps in reaching the
optimum objective function value for the original problem. Rule (2), by choosing
X,q as low as possible, increases the probability that (p, g) would be chosen as
(r,) in operation (11) of the algorithm thus driving (p, q) out of A as quickly as
possible. Rules (3) and (4) use the fact that if (p, q) is the only basis cell in row p
(column gq) then the area [I, X J.] is simply all the cells in row p (column gq)
(Remark 8, [8]). Thus the computational effort in identifying the sets Iy, I, Jg,
and J. and determining p* (operations (6) and (7) of the algorithm) is consider-
ably reduced.

In testing each of the above rules, once a cell was selected it was retained until
it had been driven out of A. The result of extensive tests with these four rules
was that there was no significant difference in their performance for trans-
portation problems. However, for assignment problems, Rule (2) performed
significantly better than the other rules. This happens because for assignment
problems with no perturbation the amount x; is 0 or 1. (As will be seen in
Section 5, the cell cost operator algorithm converges even for degenerate
problems, i.e., when the amount s defined in eq. (1) is equal to zero.) Con-
sequently, if a (p, q) is chosen with x,, = 0 it is easily shown that in operation
(11) of the algorithm, the cell (p, q) will be chosen as (r, s) so that (p, q) leaves
the set A in one step. For these reasons our final code made use of Rule (2)
exclusively for both transportation and assignment problems.

The mean solution times for the cell cost operator algorithm were compared
with the authors’ 1971 primal basic transportation code [10] using the MODI
method [3] which is currently one of the fastest existing codes for solving such
problems. The results are shown in Table 1 where mean solution times and
number of pivots are exhibited for randomly generated problems (m = n = 100)
with costs and rim conditions (i.e., a; and b;) chosen as integers distributed
uniformly in the range 0-100. (The effects of changes in these ranges are

380 V. Srinivasan, G.L. Thompson|Cost operator algorithms

Table 1*
Computational performance of the cell cost operator algorithm

(A) 100 x 100 transportation problems

Probability of infeasibility p=0 p=02 p=04 p=06 p=08
Mean pivots 386 395 393 436 442

Primal Mean solution

algorithm [10] time (sec.) 2.093 2.121 2.033 2.149 2,185

Cell cost Mean pivots 337 356 396 398 406

operator Mean solution

algorithm time (sec.) 7.654 7715 8.635 8.622 8.805

(All costs and rims chosen to be integers uniformly distributed between 0 and
100)

(B) 100 x 100 assignment problems

Probability of infeasibility p=0 p=02 p=04 p=06 p=038
Mean pivots 612 609 651 618 658

Primal Mean solution

algorithm [10] time (sec.) 2.090 2.093 2.189 2.057 2.165

Cell cost Mean pivots 177 171 169 180 189

operator Mean solution

algorithm time (sec.) 3.681 3.674 3.541 3.825 3.900

(All costs chosen to be integers uniformly distributed between 0 and 100)

* All computations were performed on UNIVAC 1108 (FORTRAN V); mean
solution times in seconds are exclusive of input and output and are each based on
runs of 21 randomliy generated problems.

considered subsequently.) The term ‘pivots’ refers to the total number of basis
changes needed to reach an optimum. The parameter p at the top of the table
indicates the probability with which some of the cells are chosen to be in-
feasible, i.e., have infinite shipping cost. Note that the solution times increase
only slightly as p increases. Note also that the cost operator algorithm requires
somewhat fewer pivots than the primal algorithm for transportation problems
and many fewer pivots for assignment problems. However, the cost operator
algorithm took longer to solve both kinds of problems although it was still faster
than the computational times for the Ford—Fulkerson algorithm [10, Section 3.1].

Table 2 shows the effect of changing the intervals in which the rim conditions
were chosen. As in the primal algorithm (see [10], Table IV) there are only minor
changes in solution time.

Table 3 shows the effect on solution times for assignment problems of
changing the range in which the costs were chosen. Note that as the range for
the costs increases from 0-10 to 0-100 the solution time increases markedly,
which was also observed with our primal algorithm (see [10], Table IV). In [10]
we called this the Minimum Cost Effect and is explained in more detail there.

V. Srinivasan, G.L. Thompson{Cost operator algorithms 381

Table 2*
Effect of parameter changes on the performance of cell cost operator algorithm
for transportation problems

Mean solution times (sec.) for 100 x 100 transportation problems

Probability of infeasibility p=0 p=02 p=04 p=06 p=08
1-10 6.623 6767 7.290 7.857 8284
Rims 1-100 7654 7715 8635 8.622 8.805
chosen in
Fhe 1-1,000 7.880 7.841 7.351 8.526 9.007
interval
1-10,000 7902 7978 8417 8.821 8.945

*All computations were performed on UNIVAC 1108 (FORTRAN V); mean
solution times in seconds are exclusive of input and output and are each based
on 21 randomly generated problems. The costs were chosen as integers uni-
formly distributed between 0 and 100.

Table 3*
Effect of parameter changes on the performance of cell cost operator
algorithm for assignment problems

Mean solution times (sec.) for 100 x 100 assignment problems (p = 0)

Costs chosen

.. 0-10 0-100 . 0-1,000 0-10,000
in interval

Mean solution time

1.355 3.681 4.278 4.081
(sec.)

* All computations were performed on UNIVAC 1108 (FORTRAN V);
mean solution times in seconds are exclusive of input and output and are
each based on 21 randomly generated problems.

Essentially what happens is that when the costs are chosen in the range 0-10, the’
starting solution is very likely to be optimal or nearly optimal so that the total

solution time is only a little longer than the time to get the initial solution. For

larger cost ranges such as 0-100, 0-1000, or 0-10,000 this is no longer true for -
100 X 100 problems, and many more pivots are needed to obtain the optimal

solution. As in our code for primal algorithm [10, Table IV], the mean com-

putation time for the cell cost operator algorithm increases rapidly at first and

then tends to saturate as the range for ¢; is increased.

5. Convergence of the cell cost operator algorithm

In the case that problem P is nondegenerate, i.e., the quantity s defined by (1)
is strictly positive, the convergence of the cell cost operator is assured by
Theorem 14 of [8]. Let us define a step of the cell cost operator algorithm A1l as

382 V. Srinivasan, G.L. Thompson/Cost operator algorithms

the computational loop consisting of operations (6) through (12) of that al-
gorithm. Then Lemma 6(a) in [8] shows that if x and x%'" denote the
shipments by cell (p, g) at steps k and k + 1 of the algorithm then

k+1) _ (k) _ AR
Xpg = Xpg qu (6)

where A% =5 >0 and s is defined by (1). Hence at most x\u/s steps will suffice
to remove (p, q) from A.

However, even if problem P is degenerate the algorithm will converge without
any perturbation. We prove this by using an elegant proof technique due to W.
Szwarc [11] for proving a related result in his time transportation algorithm.

Theorem 1. The cell cost operator algorithm converges in a finite number of
steps.

Proof. We already know the algorithm converges if P is nondegenerate. Hence
assume P is degenerate (s = 0) and that Algorithm (A1) cycles. In other words,
assume that in applying the operator the algorithm generates a finite sequence of
bases: B, B,,...,B,=B,.

Clearly if this can happen the method will cycle and conversely. We know
that x;) >0 or else using operation (11) of (A1) we would remove (p,) in one
step. Also because xon " < x'" for every h and since xi) = x, it follows from (6)
that AW =0 for h=1,2,...,¢ and hence x{’=x{ for every (i,j) and h=
1,2,...,t

Let us now consider the set

Q=B,NB,N---NB.

If we can show that B, = for h =1,2,...,¢t then we would have proved that
all bases are the same, (i.e., t =1) and hence no cycling is possible. To prove
this, let us consider one such B,. There is a unique path in B, from (p, q) to any
other cell (i, j) in B,. By the distance of (i, j) we shall mean the number of cells
on this path, including (p, q) and (i, j).

We now give an inductive argument that B, = 2. We know (p, q) €). Assume
we have shown that k cells of B, are in £2; we must show that k + 1 cells of B,
are in {2. Let (i, j) be any cell in B, not yet shown to be in £ but such that (i, j)
has a line in common with a cell in £2. (This is always possible since the cells in
B, are connected.) If x; >0, then (i, j) is in 2 because the cells with positive
shipments stay the same and hence cannot leave the basis. If x; =0 and the
distance from (p, q) is even then (i, j) is a getter cell and cannot leave the basis
so (i,)) € 0. (Note that (p, g) is always a giver cell because of eq. (6).) Finally if
x; = 0 and the distance from (p, q) is odd then if (i, j) should leave the basis as a
giver it could never again enter the basis since it would remain a giver because
its distance from (p, g) does not change. Thus in all cases (i, j) € £2 completing
the induction proof that B, = Q.

Since the above proof holds for each h =1,2,...,t it follows that B, = {2 for
h=1,2,...,t and hence no cycling is possible. Since there are only a finite

V. Srinivasan, G.L. Thompson{Cost operator algorithms 383
number of bases and since no basis is repeated the algorithm will converge in a
finite number of steps.

6. Theoretical bounds for the cell cost operator algorithm

Although the finite convergence of the cell cost operator algorithm has now
been established for degenerate problems even without (perturbation, it is neces-
sary to consider the solution of the perturbed problem to derive bounds on the
number of steps to reach the optimum.

Remark 1. Given a degenerate transportation problem P, we define the per-
turbed problem P’ to have the same costs {c;} as P but with a; = a; + 1/m for
i€l bj=b;for1=j<nand b,=b, +1. Then P’ is nondegenerate with s = 1/m
(Dantzig {3, p. 314, Problem 14] and Orden [6]). If P is nondegenerate, however, we
define P'=P.

Remark 2. Let {x}} be a basic feasible solution to the perturbed problem with
basis B. It is well known [7,9] that T =[I U J, B] is a tree with nodes being the
m +n rows and columns of the tableau and edges the m+#n —1 cells of B. A
node of degree 1 of T corresponds to a row or column that contains a unique
cell of B. Since T is a tree it has at least two nodes of degree 1 provided it has at
least one edge (i.e., at least two nodes). We now define a crossing out procedure
to express x;; in terms of the rims a} and b}. Suppose cell (i, j) is unique in row i,
then make the following replacements.

Replace I by I —{i},

Replace B by B —{(i,)},

Replace b} by b’ —ai,
set x; = a} and cross out row i. Because B is assumed to be feasible b}= a;} so
that the new problem with row i omitted is a transportation problem with one
fewer row and a feasible basis. Similarly, suppose cell (i, j) is unique in column
j; then make the following replacements.

Replace J by J —{j},

Replace B by B —{(i,)},

Replace a; by a;— b}, .
set x; = b} and cross out column j. We again obtain a smaller problem with a
feasible basis. Since we reduce B by one element on each step we will find the
feasible solution {x};} in exactly m +n —1 steps.

Remark 3. The preceding crossing out routine also makes each cell of B
correspond to a unique row or column - the one that is crossed out at the time
the cell is removed from B. Since there are m + n rows and columns and m +n — 1
basis cells it is clear that exactly one row or column is left out of this
correspondence. Because as noted above there always are at least two lines
(rows and columns) that contain a unique basis cell we can always select any row
or column we wish to be left out of this correspondence.

384 V. Srinivasan, G.L. Thompson/Cost operator algorithms

Theorem 2 below shows that any basic optimal solution to P’ also defines a basic
optimal solution to P. (This proof is essential to justify substituting the degenerate
problem P by the perturbed problem P’. We have not been able to find a proof for
this important result in the literature.)

Theorem 2. Let X' be a basic optimal solution to P’ with basis B. Then the solution
X corresponding to basis B is optimal to the degenerate transportation problem P.

Proof. As per Remark 3, we can select column n not to be crossed out in the
above routine. It follows from the crossing out procedure (see also Simmonard
[71, p. 242) that we can uniquely write

lJ u(z ah z by)
hel kEI
where §; ==1, I; CI and J; CJ —{n}. Using the definitions for a; and b} in
Remark 1 we have

Xl = l,(E a,+ Ll — > b))

hEl; kel

where |I;| is the number of elements in the set I

In the crossing out procedure of Remark 2 with basis B, if we had used a;, b,
and x; of problem P instead of a}, b}and x}; for problem P’, respectlvely, we would
have gotten

Xij = 5ij(2 a, — 2 bk)-)]
hEl; keEJ;

It is clear that the x;’s so obtained are integers and that they satisfy the first two
sets of constraints of problem P. To show that x; = 0, assume the contrary, i.e.,
that x; = —1 for some i and j. Since the corresponding x}; > 0 (because basis B is
feasible for P’ and P’ is nondegenerate), it follows from (7) and (8) that |I;| > m,
which is a contradiction. Thus, given a feasible basis B for P’ the corresponding
solution x; defined by (8) is feasible for P. Furthermore since the costs have not
been changed in going from P to P’ any dual feasible basis to P’ is also dual
feasible to P. Thus any optimal (i.e., primal and dual feasible) basis to P’ is also
optimal to P. Consequently, to solve problem P we can equivalently solve
problem P’.

In the results to be proved next we assume that we solve the perturbed problem
P’ by Algorithm Al and introduce the following definitions:

=Y aj= b}, ©)

iel ieJ

R’ = Max (max a}, max b}), (10)

iel jer

V. Srinivasan, G.L. Thompson|/Cost operator algorithms 385

that is, T’ is the total amount shipped and R’ is the largest rim entry for the
perturbed problem P’. From the definition of T for problem P and Remark 1, it
follows that

T =T if P is primal nondegenerate, (1)
T'=T+1 ifP is primal degenerate. (12)

Let A be the set of cells defined in step (3) of Algorithm (Al). For any cell
(P, @) € A, let X, be the value of x,, at the moment (p, q) is chosen in step (5) of
the algorithm. (Some (p, g) € A may never be chosen since they may leave A in
step (12) of the algorithm (A1): we will set such £,, = 0.) Thus, unlike {x,,} which
refer to a single tableau, {xX,,} correspond to different tableaus for different
(p, q) € A. (Note that 3y jeaXy may exceed a’. In Example 1 considered earlier,
f23 = 30,)233 =135 and)234 =55 so that)233 + XA34 =90 > as = 55)

Lemma 1. With the notation just described

> £ <2T'—R' (13)

(LDHEA
Proof. Considering the initial basis B carry out the crossing out routine of
Remark 2 but never crossing out the row or column containing the largest rim
entry R’ (if there is more than one row or column containing the maximum rim
entry select any one). The correspondence of Remark 3 between rims and cells
in B now gives for each (p, q) in B the constraint £,, < a, or £,, < b, depending
on whether row p or column g corresponds to cell (p, q). From this it follows
that

D Ep= D K= a,+ X b,—R'=2T'-R

P.)EA (p.9)EB p&l q€J

since A C B.

Denoting as a step the operations (6)-(12) of the cell cost operator algorithm
(Al) we now have the following result.

Lemma 2. The number of steps of the cell cost operator algorithm (A1) is at most
(2T’ — R")]s where s is given by (1).

Proof. At each step of (Al) when (p, q) is the cell on which the cost operator is
applied, the amount x,, shipped by cell (p, q) is reduced by at least s, see (6).
Hence there can be at most %,,/s steps before either (p, q) leaves A or its cost is
restored to its true value. Consequently from Lemma 1 the maximum number of
steps required for the algorithm is

> %Js=QT'—R)s.

(p.g)EA

386 V. Srinivasan, G.L. Thompson/Cost operator algorithms

Theorem 3. A nondegenerate transportation problem can be solved by algorithm
(Al) in at most 2T — 1 steps. A degenerate problem can be solved in at most
mQ@2T +1)—1 steps.

Proof. Since s=1 and R'=1 for a nondegenerate problem the first result
follows directly from Lemma 2 and eq. (11). By Remark 1, after perturbation a
degenerate problem has s = 1/m and R'= 1+ (1/m) so that from Lemma 2 the
bound is 27"~ 1-(1/m)lm = mQT' - 1)—1. Substituting for T' from eq. (12)
the result follows.

Corollary. Algorithm (Al) will solve an n X n assignment problem in at most
n2n+1)—1 steps.

It is interesting to compare the bounds provided by Theorem 3 to the bounds
on the number of labellings of the primal-dual method of Ford-Fulkerson [5, p.
10071 which, using our notation, is given by T + (T — 1)(m + 1) labellings for both
degenerate and nondegenerate transportation problems. The first term in this
expression bounds the number of labellings resulting in ‘breakthrough’; the
second, the number of labellings resulting in ‘non-breakthrough’. The non-
breakthrough labellings are roughly comparable to the steps of the cell cost
operator algorithm (Al). (Both involve the search of a subset of cells {(i, j)}
(labelled rows x unlabelled columns in [5] which is similar to I X J.) to find the
minimum reduced cost (¢; = u; — v;). Our algorithm requires the determination of
a cycle which by using the method provided in [9] is roughly comparable to the
flow-augmentation labelling required by the Ford-Fulkerson method.) Con-
sequently if we disregard the first term in the Ford-Fulkerson bound,: their
method requires (T — 1)(m + 1) comparable steps. Similarly the Balinski-Gomory
[1] primal method requires T - m comparable steps. Thus the bound for the cell
cost operator algorithm is much stronger (by a factor of approximately m/2) than
the Ford-Fulkerson and Balinski-Gomory algorithms for nondegenerate trans-
portation problems. It is slightly weaker (by a factor of approximately 2) than
these other two methods for degenerate transportation problems. For most real
transportation problems the assumption of primal nondegeneracy appears to be a
reasonable one so that in most problems we would expect the cell cost operator
bound to be better. It is to be pointed out, however, that while the assumption of
primal nondegeneracy reduces the upper bound of the cell cost operator al-
gorithm by a factor of m, it does not change the upper bound for the other two
methods. We tried to see whether other realistic assumptions such as dual
nondegeneracy would reduce the Ford—Fulkerson and Balinski-Gomory bounds.
We have been unable to find any such assumption.

Edmonds and Karp [4] have provided a transportation algorithm which
involves T flow augmentations. (Their ‘“scaling” algorithm requires n[2+
log, (T/n)] flow augmentations, assuming m < n.) But each flow augmentation
requires computing (c; —u; —v;) for all the (m X n) cells and then solving a
shortest path problem (from a common source to all other nodes) in a network
for which all arc lengths are nonnegative. Thus their typical flow augmentation
step is much more involved compared to a typical step of the cell cost operator

V. Srinivasan, G.L. Thompson/Cost operator algorithms 387

algorithm. However, for square (n X n) problems, the maximum number of
elementary operations for their flow augmentation step is O(n?), the same as that
for a step of the cell cost operator algorithm. Thus in terms of elementary
operations, the Edmonds—Karp bound is much stronger (by an order of n)
compared to the cell cost operator algorithm for degenerate problems but both
algorithms involve the same order of computations (at the maximum) for the
more realistic primal nondegenerate problems.

It is also interesting to compare the theoretical bounds obtained to the number
of steps in the computational tests for the 100X 100 transportation problems
reported in Table 1. From this table we find the number of steps (pivots) tends to
increase with the probability of infeasibility p. Considering p = 0.8, the average
number of steps was 406 and the maximum cver the 21 randomly generated
problems for p = 0.8 was 521 (this last number is not reported in Table 1). Since
the a; and b; were drawn randomly from 1,2,..., 100, T =100 x (100/2) = 5,000
so that assuming near nondegeneracy (i.e., x; for the basic cells is mostly
nonzero), the bound on the number of steps =27 —1==10,000 which is much
greater than the maximum value of 521 obtained in the computations. One
possible reason may be the good starting basis used in the computations (the
computer program used the “modified row minimum starting Rule” [10] whereas
the computation of the bound assumed nothing about how good the initial basis
is — the set A could in the limit be the entire initial basis B). Consequently, the
same 21 transportation problems of size 100 x 100 with p = 0.8 were solved again
with a random primal feasible initial basis. The average number of steps
increased to 477 while the maximum over the 21 problems increased to 662. Thus
there is clearly a small effect of a good choice of an initial basis, but the
theoretical bound is still much larger than the realized bounds. This is, however,
to be expected since the computation of the bound corresponds to the worst
case, which is most unlikely to happen in any actual problem.

7. Area cost operator algorithm

Here we modify the cell cost operator algorithm of Section 3 to become the
area cost operator algorithm. It directly follows from the algorithms described in
pp. 209-211, pp. 215-221 and pp. 240-248 of [8]. We will need to make use of the
quantities u%, v¥ defined on p. 220 of [8].

(A2) Area cost operator algorithm

(0)—(4) Identical to corresponding steps in Algorithm (Al).

(5) If A =@ the optimum solution has been found; stop. Otherwise set y; = 1
for (i,j)€ A and 0 otherwise and go to (6).

(6) Use the current basis B to solve the equations u®*+ v¥ =y, for (i, j) € B.

(7) Determine the maximum extent u” for the basis preserving area cost
operator from the formula

w? = Minimum i

apen UTHUT— vy

388 V. Srinivasan, G.L. Thompson/Cost operator algorithms

where N ={(i, j)|(y;—u%—v%) <0}. If the set N =@ set u” =w. Record the
entering cell (e, f) at which this minimum is taken on. If #* =0 go to (11). Else
go to (8).

(8) Let p' = Minimumec, (cf — c;). Let 8 = Min (u®,).

(9) Change the dual variables as follows: Replace u; by u; + éu* for i€ I
Replace v; by v;+ 8v* for jE L.

(10) Replace ¢,; by ¢,q+8 for (p,g)EA and Z by Z+85, en X,y If
C,q = Cp, for some (p, g) € A remove each such (p, q) from A and go to (5). Else
go to (11).

(11) Bring (e, f) into the basis determining the leaving cell (r, s). Whenever
possible select (7, s) in A. Change shipping amounts x; on the cycle B +{(e,)}
Replace B by B —{(r, $)}+{(e,)}

(12) If (r, s) € A, replace c¢,; by ¢¥ and remove (r, s) from A. If A is changed,
go to (5). Else go to (6).

Example 2. We now resolve the problem in Fig. 1 using the area cost operator
method starting from the modified problem in Fig. 2 with A ={(2, 3), (3, 3), (3, 4)}.

ug 0 -1 0 0 u 0 0 0 1

15 5 60
e s ©° 0
sls 0% 0%

1 1 @ s 10 5
Figure 8 A= 1@}
Figure 11
v,
J v*
]
ui 0 0 0 ! *
uy 0 -1 0 0
3
5 o [® 0 @) ©
1o © O 0
1
0 @ 0 0 ‘0
A={(2,3), (3,3)) Figure 12
Figure 9 vj
v u, 0 -1 0 1
3 i
*
1 0 15
o 0 0 1 | 6 ®° ®°F
0
0 @ 0 @ 6 a @60 30 15
olo © ©) 0 1 | @ 3 10 5
RIE) 0 @ 0

Z = 805+(1x30) = 835

Figure 10 Figure 13

V. Srinivasan, G.L. Thompson|/Cost operator algorithms 389
*
Vj Vj
u 0 -1 0 1 uy -1 -1 0 0
i i
313 6 ®*® @ 0 0 0 © @
s | ® 15 @60 @15 1s 1 ® ® ©) 0
1 | 3 10 5 N NO) 0 0 0
Figure 14 Figure 15
v,
b
u, -3 -4 [} 1
1
3
9
4
Z = 835+(3x15) = 880
Figure 16
Operation
number Result
(5),(6) The vy, u*, v* are shown in Fig. 8.
(@) Since N ={(2, 1), (2,4), (3, 1)} we see that u* =0 and (e, f) = (3, 1).
(11) Adding (3,1) to B we see that (r, s) = (3,4). New shipping
amounts are given in Fig. 9.
(12) =5 A={2,3),3,3)
(5), (6) The new vy, u*, v¥ are shown in Fig. 10.
@) Now N ={(1, 3)} so that u* =0 and (e, f) = (1, 3).
an Adding (1, 3) to B gives (r, s) =(3,3). New shipping amounts
are given in Fig. 11.
(12) =10, A={2,3).
(5), (6) The new v;, u*, v¥ are shown in Fig. 12.
@) We have N ={(2,1),(2,4)} so that u* =1 and (e, f) = (2, 1).
(8) u' =6 8=1.
(9) u2=6, v,=—1.
(10) ¢ = 6. Result in Fig. 13. Z =805+ (1 X 30) = 835.
an Adding (2,1) to B we see that (r, s) = (1, 1). Result in Fig. 14.
(6) The u*, v¥ appear in Fig. 15.
0] N ={(2,4), (3,3), 3,4} so that u* =3 and (e, f) = (3, 4).
8 pn'=5 8&=3.
9 U, =9, us=4, v,=-3, v,=-4,
(10) ¢ =9, see Fig. 16. Z = 835 +[3 x 15] = 880.
an Adding (3,4) to B gives (r, s) = (2, 3). Shipping amounts are
as shown in Fig. 7.
(12) =11, A=4.
%) Stop. Optimum found.

390 V. Srinivasan, G.L. Thompson/Cost operator algorithms
8. Bounds for the area cost operator algorithm

The convergence of the area cost operator algorithm for nondegenerate
problems is insured by Theorem 14 on p. 247 of [8]. (We have not been able to
prove convergence for the degenerate case; in fact the algorithm may cycle in
this case.) We can use the proof technique of this theorem to derive bounds on
the number of steps needed by the algorithm to solve the perturbed problem P'.
(Recall that for primal nondegenerate problems P’ =P))

Theorem 4. (A) If problem P is nondegenerate, then the area cost operator
algorithm converges in at most T steps.

(B) For a degenerate transportation problem the area cost operator algorithm
converges in at most m(T + 1) steps.

Proof. In the proof of Lemma 6(c) on p. 243 of [8] it can be shown that 4, which
measures the amount given by the minimum giver, satisfies 4 = s. Hence in the
proof of Lemma 6(c) the quantity ¥,c; Zjc; vy = 2, qea X,y decreases by at
least s each time. But

2 X=X xy=T (14)
(P.q)EA @.9)EB
since A C B. Consequently the algorithm would take at most T’/s steps.
(A) For primal nondegenerate problems, s =1 and from eq. (11) T'=T so
that the bound is T'/s = T steps.
(B) For degenerate problems after perturbation, s = 1/m and from eq. (12)
T'=T +1 so that the bound is T'[s =mT’ = m(T + 1) steps.

Acknowledgment

The authors wish to thank Professor M.L. Balinski and the referees for many
valuable comments on an earlier version of this paper.

This report was prepared as part of the activities of the Management Sciences
Research Group, Carnegie-Mellon University, and supported by the U.S. Office
of Naval Research.

References

[1] M.L. Balinski and R.E. Gomory, “A primal method for the assignment and transportation
problems”, Management Science 10 (1964) 578-593.

[2] A. Charnes and W.W. Cooper, Management models and industrial applications of linear
programming, Vols. I and II (Wiley, New York, 1961).

[3] G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, NJ,
1963).

{4] J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for network
flow problems”, Journal of the Association for Computing Machinery 19 (1972) 248-264.

V. Srinivasan, G.L. Thompson/Cost operator algorithms 391

[5]1 L.R. Ford and D.R. Fulkerson, Flows in networks (Princeton University Press, Princeton, NJ,
1962).

[6] A. Orden, “The transshipment problem”, Management Science 2 (1956), 276-285.

[7]1 M. Simmonard, Linear programming (Prentice-Hall, Englewood Cliffs, N.J., 1966).

[8] V. Srinivasan and G.L. Thompson, “An operator theory of parametric programming for the
transportation problem - I and II”°, Naval Research Logistics Quarterly 19 (1972) 205-252.

[9] V. Srinivasan and G.L. Thompson, ‘“Accelerated algorithms for labelling and relabelling of
trees, with applications to distribution problems™, Journal of the Association for Computing
Machinery 19 (1972) 712-726.

[10] V. Srinivasan and G.L. Thompson, “Benefit-cost analysis of coding techniques for the primal
transportation algorithm”, Journal of the Association for Computing Machinery 20 (1973)
194-213.

[11] W. Szwarc, “Some remarks on the time transportation problem”, Naval Research Logistics
Quarterly 18 (1971) 473-485.

