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A primal transportation algorithm is devised via post-optimization on the costs of a modified 
problem. The procedure involves altering the costs corresponding to the basic cells of the 
initial (primal feasible) solution so that it is dual feasible as well. The altered costs are then 
successively restored to their true values with appropriate changes in the "optimal" solution 
by the application of cell or area cost operators discussed elsewhere. The cell cost operator 
algorithm converges to optimum within (2T - 1) steps for primal nondegenerate transportation 
problems and [(2T + 1) • min (m, n)] - 1 steps for primal degenerate transportation problems, 
where T is the sum of the (integer) warehouse availabilities (also the sum of the (integer) 
market requirements) and m and n denote the number of warehouses and markets respec- 
tively. For the area cost operator algorithm the corresponding bounds on the number of steps 
are T and (T + 1) - min (m, n) respectively. 

Key words: Transportation Problem, Networks, Cost Operator Algorithm, Post-optimizing, 
Primal Network Algorithm. 

1. Introduction 

One  of the in te res t ing  resul ts  c o n c e r n i n g  the F o r d - F u l k e r s o n  me thod  [5, pp. 

93-101] for solving t r anspor t a t ion  p rob lems  is the fac t  that  fair ly tight upper  

b o u n d s  on the n u m b e r  of steps the a lgor i thm takes to reach an op t i mum can  be 

stated. The  B a l i n s k i - G o m o r y  pr imal  a lgor i thm [1] which  is "dua l "  to the 

F o r d - F u l k e r s o n  me thod  also has approx ima te ly  the same upper  b o u n d  on the 
n u m b e r  of steps. In  cont ras t ,  for pr imal  basic  methods  such as the s teppmg-  
s tone  [2] or M O D I  [3] methods ,  no tight b o u n d s  (other than  the m a x i m u m  

n u m b e r  of feasible  bases)  have  so far b e e n  stated.  
In  the p re sen t  paper  we shall descr ibe  two new  pr imal  basic  methods  - the cell 

and area cost  opera tor  a lgori thms for solving t r anspor t a t ion  problems.  They  are 

based  on  our p rev ious  work  on  an opera tor  theory  [8] of paramet r ic  program-  

*This report was prepared as part of the activities of the Management Sciences Research Group, 
Carnegie-Mellon University, under Contract N00014-67-A-0314-0007 NR 047-048 with the U.S. Office 
of Naval Research. 
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ming for transportation problems. These methods begin by finding a primal basic 
feasible starting solution, then altering the costs corresponding to the basic cells 
so that the initial solution is dual feasible, and hence optimal, for the altered 
problem. The altered costs are then restored to their original values (with 
appropriate changes in the "optimum" solution) by the application of cell or area 
cost operators. 

Besides providing new algorithms for transportation problems, it turns out that 
very strong bounds can be stated for the number of steps needed to obtain an 
optimum solution. For primal nondegenerate transportation problems, the upper 
bound on the number of steps for the cell cost operator algorithm is much 
stronger (by a factor of approximately min (m, n)/2, where m and n are the 
number of warehouses and markets respectively) than those for the Ford- 
Fulkerson and Balinski-Gomory algorithms. (The typical step for each of these 
three algorithms involves approximately the same number of elementary opera- 
tions.) However, for primal degenerate problems the cell cost operator algorithm 
is slightly weaker (by a factor of approximately 2) compared to these other two 
methods. The bounds for the area cost operator method are approximately one 
half of the bounds for the cell cost operator method. Since the basic step of the 
area cost operator algorithm is more involved than the cell cost operator 
algorithm, the area operator bounds are not necessarily stronger than the cell 
operator bounds. 

The cost operator algorithms are, to the best of our knowledge, the first primal 
basic algorithms for the transportation problem to have polynomial bounds. The 
reason we are restricting our attention to primal basic methods rather than other 
primal methods (such as [1]) is that the former involve less computational 
storage requirements (the values for the primal variables need to be stored only 
for basic variables, the others are necessarily zero) and the obtained solutions 
are more readily suited for parametric programming calculations [8]. But, basic 
methods are generally poorer in terms of handling degeneracy. The cell cost 
operator algorithm, however, does not have such problems with degeneracy. In 
fact, unlike the MODI method, it can be shown to converge without pertur- 
bation. 

The superiority of the cost operator method compared to the MODI method in 
terms of upper bounds on the number of calculations should not be confused 
with computational superiority in terms of mean computation times. In fact, our 
results in Section 4 show that the MODI method is better than the cell cost 
operator method in terms of mean computation times. 

The rest of the paper is organized as follows. In Section 2 some preliminary 
notation and definitions are given. A description of the cell cost operator 
algorithm together with the solution of a small example is given in Section 3, 
computational results are given in Section 4, the convergence proof in Section 5 
and the derivation of the bounds for the cell operator method are given in 
Section 6. A description of the area cost operator algorithm together with the 
solution of the same example is given in Section 7 and the area cost operator 
bounds are derived in Section 8. 

For expositional ease, the algorithms provided in this paper apply only to 
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uncapaci tated transportat ion problems.  These algorithms can be extended to the 
capaci tated case by referring to [8]. Although this paper  is based on our earlier 
work [8] it is largely self-contained (except for some of the proofs)  and can be 
read independently.  

2. Notation and definitions 

Consider an m x n transportat ion problem P defined as follows: 

2 2 Ci]Xi] = Z ,  
i~1 jEJ 

Minimize 

subject  to ~ xij = ai f o r i ~ I = { 1 , 2  . . . . .  m}, 

for j E J = { 1 , 2  . . . . .  n}, 

jEJ 

~ ,  xij = bj 

xij >- O for i E I and j E J. 

We assume without loss of generality (see [2, 3, 7, 8]): 

(i) Eie  I a i = E i e  I bi = T 
(ii) m -< n 

(iii) ai and b i are positive integers for i E L J ~ J. 
Let  us define 

s =  Man IEa;-Eb,[ (,) 
IICLjIGj t iEll jEjI i 1  

where at least one of I1 or J1 is a proper subset  of I or J, respectively.  If the 
t ransportat ion problem P is primal nondegenerate [8] then s -> 1; if it is primal 
degenerate then s = 0. But by adding 1/m to every supply a~ and 1 to one of the 
demands  b~ we can make s >-1/m > 0 .  The latter is one of the standard 
degeneracy prevent ion techniques for t ransportat ion problems and will be con- 
sidered in more detail in Section 6. 

The dual problem D, to problem P is: 

Maximize ~ aiui + ~ biv j, 
iEI j~J 

subject to u~+v i---cij f o r i E I a n d j E J  

where u~ and vj are the dual variables associated with rows and columns of the 
cost matrix. 

Next  we define p~ and qi by 

p i = M i n c i i  for i E L  (2) 

qi = Min (cij - Pi) for j ~ J. (3) 
i~l 

Given these an obvious lower bound L to the opt imum object ive function Z is 



V. Srinivasan, G.L. Thompson~Cost operator algorithms 375 

g iven  by  

L = ~ Piai + ~ qibi 
i E l  j ~ J  

since the ob j ec t i ve  func t ion  Z can be rewr i t t en  as 

(4) 

Z : E E (eij -- P i -  qj)Xij + E p ia i  -}- E qibj  
i E I  j E J  i E I  ]EJ  

and ( c i j -  P i -  qj) >- 0 f r o m  (2) and (3). 
L e t  X = (xij} be any  pr imal  basic  feas ib le  solut ion with basis  B to p r o b l e m  P.  

Define 

A = {(i, j) [ (i, j) E B and cij - -  P i  - -  qj > 0}. (5) 

I f  A = 0, then  X is op t imal  fo r  p r o b l e m  P since then Z = L and L was  a lower  
bound  fo r  Z. 

A s s u m e  A S  0. Then  define the modif ied transportat ion problem 15 with cos t s  

{ Cii = Cij fo r  (i, j )  E A, 

cij ( P i + q i )  f o r ( i , j )  E A  

and the same  r im condi t ions  as for  p r o b l e m  P .  The  solut ion X i s pr imal  feas ib le  
and ui = Pi, vj = q i  is dual  feas ib le ,  hence  these  are op t imal  pr imal  and dual 
feas ib le  solut ions  fo r  p r o b l e m  15 . 

In o rder  to desc r ibe  the a lgor i thms we in t roduce  s o m e  defini t ions f r o m  [8]. By  
a cell (i, j)  we m e a n  an o rde red  index pair  wi th  row i E I and co lumn  j E J. A line 
re fe rs  to a r o w  or co lumn.  

Definition 1. L e t  g2 be a set  of  cells (i, j). L ine  g is said to be  connected to line h 
in ~ if and only  if there  exis ts  a path  S of  dis t inct  cells in $2, 

S = {(il, ]1),(i2, J2) . . . . .  (ig, lk)} 

such that  

(a) (i~, ]~) is the on ly  cell of  S in line g and (ik, lk) is the only  cell of  S in line h;  
(b) for  each  t in I < t < k  ei ther  

(i) i t = i t _  1 and .~ = .~+1, or  
(ii) Jt = J,-i and it = it+l. 

A basis  B for  the p r o b l e m  P (or 15) cons is t s  of  a set  of  m + n - 1 cells such that  
e v e r y  line is (uniquely)  c o n n e c t e d  to e v e r y  o the r  line in B. 

Definition 2. L e t  B be a basis ,  (p, q) E B and O = B - {(p, q)}. Then  we define the 
sets 

IR = {p} tO {i E I ] i is c o n n e c t e d  to row p in S2}, 
I c =  I -  I,,, 
Jc = {q} U {j E J I J is connec t ed  to co lumn  q in S2}, 
JR = J - 1 c .  



376 V. Srinivasan, G.L. Thompson/Cost operator algorithms 

The "scanning routine" described in Remark 9 on p. 218 of [8] can be used to 
easily find these sets. 

Definit ion 3. A (plus) cell cost  operator [8] 3C~q transforms the optimal solution 
({xo}, {ui} and {vj}) of a problem P to that for a t ransformed problem P+ whose 
data (i.e., {cii}, {aj} and {bj}) are the same as those of P except  for the single cell 
(p, q) whose cost is changed from cpq to cpq + 3 (3 --- 0). The area cost operator 
3CA [8] transforms the optimal solution of P to that for a t ransformed problem 
pa whose data are the same as those of P except  c~j is changed to cij + 3y~j (3 -> 0) 
for all i and j. 

We now use the operator theory of parametric programming developed in [8] 
to parametrically increase the costs t 0 for (i, j ) ~  A, at the same time making 
appropriate changes in the primal and dual feasibility, until they equal the 
original costs c~j for problem P; at this point the current primal and dual 
solutions are optimal for P. We shall first discuss the cell cost  operator algorithm 
in which the costs are changed one cell (i.e., index pair (i, j)) at a time, and then 
describe the area cost operator algorithm in which the costs are changed on 
several cells simultaneously. 

3. The cell cost operator a lgor i thm 

The cell cost operator algorithm to be described below directly follows from 
the algorithms described in pp. 209-211, pp. 215-221 and pp. 240-248 of [8] for 
parametrically increasing (one by one) the costs cij to c 0 for  (i, j ) ~  A. 

(A1) Cell cost operator algorithm 
(0) Set up initial tableau with costs cii, supplies a~ and demands bj. 
(1) Find p~ = u/ and qj = v i using equations (2) and (3). (This can be done in 

two passes through the cost matrix.) Compute L using eq. (4). Set Z = L. 
(2) Find a primal basic feasible starting solution X = {xii } with basis B by any 

technique. (Several starting techniques are given in [10].) 
(3) Find the set A defined in eq. (5). 
(4) For each (i,j) in A store the value of c~j as c~*; then replace cii by 

P~ + qi = u~ + vJ. 
(5) If A = 0 the optimum solution has been found; stop. Else choose any cell 

(p, q) E A. (In Section 4 the rules for choosing the next cell are discussed.) 
(6) Find the sets 1R, lC, JR and Jc corresponding to cell (p, q) (Definition 2). 
(7) Determine the maximum extent  tx + of the basis preserving cell cost 

operator from the formula 

/x + = M i n i m u m  ( c i j  - u i  - vj) 
(i, j ) ~ q  ~ 

where ~ = [1R × Jc] - {(P, q)}. 
Record the entering cell (e, f )  at which this minimum is taken on. 

* cpq). If 6 = 0 go to (11). Else go to (9). (8) Let  6 = Min (/z +, cpq- 
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(9) Change the dual variables as follows: Replace ui by u i + 6  for iEIR .  

Replace v i by v j -  6 for i E JR. 
(10) Replace cpq by cpq + 6 and Z by Z + 6Xpq. If cpq = cpq remove (p, q) from A 

and go to (5). Else go to (11). 
(11) Bring ( e , f )  into the basis, determining the leaving cell (r, s) (i.e., deter- 

mine the 'giver' cell in the cycle created when (e, f )  is added to B for which x# is 
a minimum). Whenever possible select (p, q) as (r, s). Change the shipping 
amounts xij on the cycle in B + {(e, f)}. Replace B by B -  {(r, s ) }+  {(e, f)}. 

(12) If (r, s) ~ A, replace % by c* and remove (r, s) from A. 
If (r, s) = (p, q) go to (5). Else go to (6). 

Example 1. Fig. 1 shows the tableau of a 3 x 4 nondegenerate transportation 
problem with the values of Pi and qj marked on the left and top. Since 

0 0 0 1 a i vj 

15[ 3 6 3 4 80 
6 5 ii 15 90 3 

1 3 i0 5 55 
-- 6 

b. 70 60 35 60 
3 i 

s=5, L=(3x80)+(5x90)+(ix55)+(ix60)=805 

Figure 1 

0 -i 0 1 

@40 6 ~ 4 0  

(~)30 (~)60 15 

i 3 20 

A = { (3,3), 3,4)} 

Figure 4 

u .  0 0 0 1 

(~)70 6 3 (~10 
6 ~)60 (~)30 i5 

i 3 ~)5 @50 

c23 

u. 

3 

6 

I 

A = {(2,3), (3,3), (3,4)} 

= Ii, c33 = i0, c34 = 5, Z = 805 

Figure 2 

0 -i 0 1 

"~ 6 3 ~i0 

Z = 805+(ix30) = 835 

V 
3 

6 

1 

0 -i 0 1 

3~ 6 ~)35 ~5 

M 

3 W - - -q@ 

A = { (3,4)} 

Figure 5 

0 -i 0 1 

3 6 @35 @45 

@30 @60 ii 15 

@40 3 i0 @15 

Figure 3 Figure 6 
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-3 -4 0 1 

6 @35 @48 

®30 ®60 ii 15 

Q40 3 i0 QI5 

g = 835+(3x15) = 880. Optimum. 

Figure 7 

6 0 - - 5 5  = 5 it is e a s y  to  s ee  tha t  s = 5. A l s o  Z = L = 805 by  the  c a l c u l a t i o n  

s h o w n .  Fig .  2 s h o w s  the  m o d i f i e d  p r o b l e m  t o g e t h e r  w i t h  a p r i m a l  b a s i c  

f e a s i b l e  s t a r t i ng  s o l u t i o n  o b t a i n e d  by  u s i n g  the  R o w  M i n i m u m  R u l e  [10], and  the  

se t  A.  In  Fig .  2 t h e  c o s t s  in A h a v e  b e e n  c h a n g e d  as i n d i c a t e d  in o p e r a t i o n  (4) o f  

t h e  a l g o r i t h m .  W e  n o w  i n d i c a t e  t he  s o l u t i o n  of  t he  p r o b l e m  us ing  t h e  a l g o r i t h m .  

Operation 
number Result 

(5) A#  9. Choose (p, q) = (2, 3). 
(6) I R={2}, Jc={1,3,4}- 
(7) / x + = 6 - 5 - 0 =  1, (e,f) = (2, 1). 
(8) 6 = 1. 
(9),(10) uz=6, v 2 = - l ,  c23=6. Z = 8 0 5 + ( l x 3 0 ) = 8 3 5  (Fig. 3). 

(11),(12) Shipping amounts altered as shown in Fig. 4. Since 
(r, s) = (2, 3) we remove (2,3) from A and set c23 = 11. 

(5) Choose (p, q) = (3, 3). 
(6) IR = {1,2, 3}, Jc = {3}. 
(7) ~ * = 0 ,  (e,f) = (1, 3). 
(8) a = O. 
(ll),  (12) Shipping amounts altered as shown in Fig. 5. Since 

(r, s )=  (3, 3) we remove (3, 3) from A and set 
c33 = 10. 

(5) (p, q) = (3, 4). 
(6) I ,  = {3}, Jc = {1,2, 3,4}. 
(7) /x +=0, (e, f) = (3,1). 
(8) a = 0. 
( 1 1 )  Shipping amounts shown in Fig. 6. (r, s)=(1,  1). 
(6) I~ = {2, 3}, J~ = {3, 4}. 
(7) /z + = 5, (e, f) = (2, 3). 
(8) 8 = Min {5, 3} = 3. 
(9) u2=9, u3=4, v , = - 3 ,  v 2 = - 4 .  
(10) c34=5, Z = 8 3 5 + ( 3 x 1 5 ) = 8 8 0 ,  A=~i, 
(5) Optimum solution shown in Fig. 7. 

4 .  C o m p u t a t i o n a l  e x p e r i e n c e  

T h e  a l g o r i t h m  o f  t h e  p r e v i o u s  s e c t i o n  has  b e e n  p r o g r a m m e d  in F O R T R A N  V 

and  e x t e n s i v e  t e s t s  h a v e  b e e n  r u n  on  the  U N I V A C  1108 c o m p u t e r .  
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In programming the algorithm many experiments were carried out with the 
choice in operation (5) of the algorithm for the next  cell in the set A. Of all the 
experiments the only conclusive experimental  result obtained was that once cell 
(p, q) is chosen then the samecho ice  should be made until (p, q) has been driven 
out of A. (Any rule that we tried that involved switching to another cell 
invariably gave worse results. For the algorithm to converge,  it is essential that a 
switch to another cell be made only after a strictly positive increase in the cost 
of the present  cell (p, q).) The statement of the algorithm in Section 3 already 
uses this result. 

For  the choice of the next  (p, q) in A the following rules were tested: 
(1) Select (p, q) in A such that xpq is maximum. 
(2) Select (p, q) in A such that xpq is minimum. 
(3) Select, if possible, a cell (p, q) in A such that (p, q) is the only basis cell in 

its row or column. If no such cell exists, use Rule (1). 
(4) Select, if possible, a cell (p, q) in A such that (p, q) is the only basis cell in 

its row or column. If no such cell exists, use Rule (2). 
Rule (1) is a steepest ascent rule in the sense that when the cost of cell (p, q) is 

increased by 3 the objective function value increases by 3x~q (Theorem 5a, [8]). 
Consequently this rule could be expected to require fewer  steps in reaching the 
optimum objective function value for the original problem. Rule (2), by choosing 
xpq as low as possible, increases the probability that (p, q) would be chosen as 
(r, s) in operation (11) of the algorithm thus driving (p, q) out of A as quickly as 
possible. Rules (3) and (4) use the fact that if (p, q) is the only basis cell in row p 
(column q) then the area [I R × Jc] is simply all the cells in row p (column q) 
(Remark 8, [8]). Thus the computational effort in identifying the sets IR, Ic, JR, 
and Jc and determining ~+ (operations (6) and (7) of the algorithm) is consider- 
ably reduced. 

In testing each of the above rules, once a cell was selected it was retained until 
it had been driven out of A. The result of extensive tests with these four rules 
was that there was no significant difference in their performance for trans- 
portation problems. However ,  for assignment problems, Rule (2) performed 
significantly better than the other rules. This happens because for assignment 
problems with no perturbation the amount  xli is 0 or 1. (As will be seen in 
Section 5, the cell cost operator  algorithm converges even for degenerate 
problems, i.e., when the amount  s defined in eq. (1) is equal to zero.) Con- 
sequently, if a (p, q) is chosen with xp~ = 0 it is easily shown that in operation 
(11) of the algorithm, the cell (p, q) will be chosen as (r, s) so that (p, q) leaves 
the set A in one step. For  these reasons our final code made use of Rule (2) 
exclusively for both transportation and assignment problems. 

The mean solution times for the cell cost operator  algorithm were compared 
with the authors '  1971 primal basic transportation code [10] using the MODI 
method [3] which is currently one of the fastest  existing codes for solving such 
problems. The results are shown in Table 1 where mean solution times and 
number of pivots are exhibited for randomly generated problems (m = n = 100) 
with costs and rim conditions (i.e., ai and bi) chosen as integers distributed 
uniformly in the range 0-100. (The effects of changes in these ranges are 
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Table 1 a 
Computational performance of the cell cost operator algorithm 

(A) 100 × 100 transportation problems 

Probability of infeasibility p = 0  p = 0 . 2  p = 0 . 4  p = 0 . 6  p = 0 . 8  

Mean pivots 386 395 393 436 442 
Primal Mean solution 
algorithm [10] time (sec.) 2.093 2 . 1 2 1  2 . 0 3 3  2.149 2.185 

Cell cost Mean pivots 337 356 396 398 406 
operator Mean solution 
algorithm time (sec.) 7.654 7 . 7 1 5  8 . 6 3 5  8 . 6 2 2  8.805 

(All costs and rims chosen to be integers uniformly distributed between 0 and 
100) 

(B) 100 × 100 assignment problems 

Probability of infeasibility p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 

Mean pivots 612 609 651 618 658 
Primal Mean solution 
algorithm [10] time (sec.) 2.090 2 . 0 9 3  2 . 1 8 9  2.057 2.165 

Cell cost Mean pivots 177 171 169 180 189 
operator Mean solution 
algorithm time (sec.) 3.681 3 . 6 7 4  3 . 5 4 1  3 . 8 2 5  3.900 

(All costs chosen to be integers uniformly distributed between 0 and 100) 
All computations were performed on UNIVAC 1108 (FORTRAN V); mean 

solution times in seconds are exclusive of input and output and are each based on 
runs of 21 randomly generated problems. 

considered subsequently.) The term 'pivots'  refers to the total number of basis 
changes needed to reach an optimum. The parameter  p at the top of the table 
indicates the probability with which some of the cells are chosen to be in- 
feasible, i.e., have infinite shipping cost. Note  that the solution times increase 
only slightly as p increases. Note also that the cost operator algorithm requires 
somewhat fewer pivots than the primal algorithm for transportation problems 
and many fewer pivots for assignment problems. However ,  the cost operator 
algorithm took longer to solve both kinds of problems although it was still faster 
than the computational times for the Ford-Fulkerson  algorithm [10, Section 3.1]. 

Table 2 shows the effect of changing the intervals in which the rim conditions 
were chosen. As in the primal algorithm (see [10], Table IV) there are only minor 
changes in solution time. 

Table 3 shows the effect on solution times for assignment problems of 
changing the range in which the costs were chosen. Note that as the range for 
the costs increases from 0-10 to 0-100 the solution time increases markedly, 
which was also observed with our primal algorithm (see [10], Table IV). In [10] 
we called this the Minimum Cost Effect and is explained in more detail there. 



V. Srinivasan, G.L. Thompson/Cost operator algorithms 

Table 2 a 
Effect of parameter changes on the performance of cell cost operator algorithm 
for transportation problems 

Mean solution times (sec.) for 100 × 100 transportation problems 

381 

Probability of infeasibility p = 0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 

1-10 6.623 6 .767  7 .290  7 .857  8.284 

Rims 
1-100 7.654 7 .715  8 .635  8 .622  8.805 

chosen in 
the 
interval 1-1,000 7.880 7 .841  7 .351  8 .526  9.007 

1-10,000 7.902 7 .978  8 .417  8 .821 8.945 

"All computations were performed on UNIVAC 1108 (FORTRAN V); mean 
solution times in seconds are exclusive of input and output and are each based 
on 21 randomly generated problems. The costs were chosen as integers uni- 
formly distributed between 0 and 100. 

Table 3" 
Effect of parameter changes on the performance of cell cost operator 
algorithm for assignment problems 

Mean solution times (sec.) for 100 x 100 assignment problems (p = 0) 

Costs chosen 
0-10 0-100 0-1,000 0-10,000 

in interval 

Mean solution time 
1.355 3.681 4.278 4.081 

(see.) 

a All computations were performed on UNIVAC 1108 (FORTRAN V); 
mean solution times in seconds are exclusive of input and output and are 
each based on 21 randomly generated problems. 

Essen t i a l ly  wha t  happens  is that  w h e n  the cos ts  are c h o s e n  in the range 0-10, the ~ 

s tar t ing so lu t ion  is v e r y  l ikely to be op t imal  or  near ly  op t imal  so that  the total  

so lu t ion  t ime is on ly  a little longer  than the t ime to get  the initial solut ion.  Fo r  

larger  cos t  ranges  such  as 0-100,  0-1000, or  0-10,000 this is no longer  t rue  for  

100 x 100 p rob lems ,  and m a n y  m o r e  p ivo t s  are n e e d e d  to obta in  the op t imal  

solut ion.  As in our  c o d e  for  pr imal  a lgor i thm [10, Tab le  IV/,  the m e a n  com-  

pu ta t ion  t ime fo r  the cell  cos t  ope ra to r  a lgor i thm inc reases  rap id ly  at first and 

then  tends  to sa tura te  as the range  for  c o is increased .  

5. Convergence of the cell cost operator algorithm 

In the case  tha t  p r o b l e m  P is n o n d e g e n e r a t e ,  i.e., the  quan t i ty  s def ined by (1) 

is s t r ic t ly  pos i t ive ,  the c o n v e r g e n c e  of  the cell  cos t  o p e r a t o r  is a ssured  by 

T h e o r e m  14 of  [8]. L e t  us def ine  a step of the cell  cos t  ope ra to r  a lgor i thm A1 as 
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the compu ta t i ona l  loop consis t ing of opera t ions  (6) through (12) of  that  al- 
gor i thm.  Then  L e m m a  6(a) in [8] shows  tha t  if ~pq(k) and Xpq(~+l) deno te  the 
sh ipments  by  cell (p, q) at s teps  k and k + 1 of  the a lgor i thm then 

x(k+ l )  . (k) z~(k) 
p q  = - Y £ p q  - -  - - p q  (6) 

(l)t whe re  _pqA (k)-> s > 0 and s is defined by (1). H e n c e  at mos t  XoqlS s teps  will suffice 
to r e m o v e  (p, q) f r o m  A. 

H o w e v e r ,  even  if p rob l em P is degene ra t e  the a lgor i thm will conve rge  without  
any per turba t ion .  W e  p r o v e  this by  using an e legant  p roo f  t echn ique  due to W. 
Szwarc  [11] for  p rov ing  a re la ted resul t  in his t ime t r anspor ta t ion  algori thm. 

Theo rem 1. The cell cost  operator  algorithm converges in a finite n u m b e r  o f  
steps. 

Proof. We a l ready  know the a lgor i thm conve rges  if P is nondegenera te .  H e n c e  
a s s u m e  P is degene ra t e  (s = 0) and that  Algor i thm (A1) cycles .  In o ther  words ,  
a s sume  that  in apply ing  the ope ra to r  the a lgor i thm genera tes  a finite s equence  of 
bases :  B~,B 2 . . . . .  Bt = B~. 

Clear ly  if this can happen  the me thod  will cycle  and converse ly .  We  k n o w  
that  -(11 ~ 0  or else using opera t ion  (11) of  (A1) we would  r e m o v e  (p, q) in one X p q  

(*) - (~) it fo l lows  f r o m  (6) (h+~)< (h) fo r  e v e r y  h and since X,q - Ji, p q  step. Also because  Xpq -Xpq 
that d (h) 0 for  h 1,2,  t and hence  .(h) .(~) = = Xi~ = Jtii for  eve ry  (i, j) and h = - - p q  • • , 

1 , 2 , . . .  , t .  
Le t  us now cons ider  the set  

12 = B1A B2N"  • • A B ,  

If  we  can show that  B h = 12 for  h = 1,2 . . . . .  t, then we would  have  p roved  that  
all bases  are the same ,  (i.e., t = 1) and hence  no cycl ing is poss ible .  To  p r o v e  
this, let us cons ider  one such Bh. There  is a unique pa th  in Bh f r o m  (p, q) to any 
o ther  cell (i, j) in B h. By the distance of (i, j) we shall mean  the n u m b e r  of  cells 
on this path ,  including (p, q) and (i, j). 

W e  now give an induct ive  a rgumen t  that  Bh = 12. We  know (p, q) E 12. A s s u m e  
we have  shown  that  k cells of  B h a r e  in 12 ; we  mus t  show that  k + 1 cells of  B h 

are in 12. L e t  (i, j) be any  cell in B h not  ye t  shown  to be  in g2 but  such that  (i, ]) 
has a line in c o m m o n  with a cell in 12. (This is a lways  poss ib le  since the cells in 
B h a r e  connec ted . )  If  xii > 0, then  (i, j) is in 12 because  the cells with pos i t ive  
sh ipments  s tay the s ame  and hence  canno t  leave  the basis.  If  xl i = 0 and the 
d is tance  f r o m  (p, q) is even  then (i, ]) is a get ter  cell and canno t  leave  the basis  
so (i, j) ~ 12. (Note  tha t  (p, q) is a lways  a giver  cell b e c a u s e  of eq. (6).) Final ly if 
x~j = 0 and the  d i s tance  f r o m  (p, q) is odd  then  if (i, j) should leave  the basis  as a 
giver  it could neve r  again enter  the basis  s ince it would  r ema in  a giver  because  
its d i s tance  f r o m  (p, q) does  not  change.  Thus  in all cases  (i, j ) E  12 comple t ing  
the induct ion p roo f  tha t  Bh = g2. 

Since the a b o v e  p roo f  holds  for  each  h = 1, 2 . . . . .  t it fo l lows  tha t  B h = 12 fo r  
h = 1,2 . . . . .  t and hence  no cycl ing is poss ible .  Since there  are only  a finite 
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n u m b e r  of  bases  and since no basis  is r epea t ed  the a lgor i thm will conve rge  in a 
finite n u m b e r  of  s teps.  

6. Theoretical bounds for the cell cost operator algorithm 

Although  the finite c o n v e r g e n c e  of  the cell cos t  ope ra to r  a lgor i thm has n o w  
been  es tab l i shed  for  degene ra t e  p r o b l e m s  even  wi thout  per tu rba t ion ,  it is neces-  
sary  to cons ider  the solut ion of the p e r t u r b e d  p r o b l e m  to der ive  bounds  on the 
n u m b e r  of  s teps  to ' reach  the op t imum.  

R e m a r k  1. G iven  a degene ra t e  t r anspor t a t ion  p r o b l e m  P,  we  define the per-  
tu rbed  p r o b l e m  P '  to have  the s ame  cos ts  {c~j} as P but  with a} = a~ + 1/m fo r  
i ~ L b} = bj for  1 ---j < n and b" = b, + 1. Then  P '  is n o n d e g e n e r a t e  wi th  s >- 1/m 
(Dantz ig  [3, p. 314, P r o b l e m  14] and Orden  [6]). I f  P is nondegenerate, however, we 

define P ' =  P.  

R e m a r k  2. L e t  {x'0} be  a bas ic  feas ib le  solut ion to the pe r tu rbed  p r o b l e m  with 
basis  B. It  is well  k n o w n  [7, 9] that  T = [1 U J, B] is a t ree with nodes  being the 
m + n rows  and co lumns  of  the tab leau  and edges  the m + n - 1  cells of  B. A 
node  of  degree  1 of  T c o r r e s p o n d s  to a row or co lumn  that  conta ins  a unique 
cell of  B. Since T is a t ree  it has at leas t  two nodes  of  degree  1 p rov ided  it has at 
least  one edge (i.e., at  least  two nodes) .  W e  now define a crossing out procedure 
to exp re s s  x'~ i in t e rms  of the r ims a'~ and b}. S u p p o s e  cell (i, j) is unique in row i; 
then  m a k e  the fo l lowing r ep l acemen t s .  

Rep lace  I by  I - { i } ,  
Rep lace  B by  B - {(i, ])}, 
Rep lace  b} by  b}-a '~ ,  

set  x'ij = a'~ and c ross  out  row i. Because  B is a s s u m e d  to be  feas ib le  b } _  > a'i so 
tha t  the new p rob l em with row i omi t t ed  is a t r anspor t a t ion  p rob l em with one 
f ewer  row and a feas ib le  basis .  Similar ly,  suppose  cell (i, ]) is unique  in co lumn  
j;  then  m a k e  the fo l lowing r ep l acemen t s .  

Rep lace  J by  J -  {j}, 
Rep lace  B by  B -  {(i, ])}, 
Rep lace  a'i by a ' i - b ~ ,  

set  x'~j = b~ and c ross  out  co lumn j. We  again obta in  a smal ler  p r o b l e m  with a 
feas ib le  basis .  Since we r educe  B by  one e l emen t  on each  step we  will find the 
feas ib le  solut ion {x';j} in exac t ly  m + n - 1 steps.  

R e m a r k  3. The  p reced ing  c ross ing  out  rout ine  also m a k e s  each  cell of  B 
c o r r e s p o n d  to a unique row or c o l u m n - t h e  one  tha t  is c rossed  out  at the t ime 
the cell is r e m o v e d  f r o m  B. Since there  are m + n rows  and co lumns  and m + n - 1 
basis  cells it is c lear  that  exac t ly  one  row or co lumn  is lef t  out  of  this 
c o r r e s p o n d e n c e .  B e c a u s e  as noted  a b o v e  there  always are at least  two lines 
( rows and co lumns)  tha t  conta in  a unique basis  cell we  can always select any row 
or column we wish to be  left  out  of  this c o r r e s p o n d e n c e .  
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Theorem 2 below shows that any basic optimal solution to P' also defines a basic 
optimal solution to P. (This proof  is essential to justify substituting the degenerate 
problem P by the perturbed problem P'. We have not been able to find a proof  for  
this important result in the literature.) 

Theorem 2. Let X '  be a basic optimal solution to P' with basis B. Then the solution 
X corresponding to basis B is optimal to the degenerate transportation problem P. 

Proof. As per Remark 3, we can select column n not to be crossed out in the 
above routine. It follows from the crossing out procedure (see also Simmonard 
[7], p. 242) that we can uniquely write 

Xh~Iii kEJi] 

where g/j=__l, IijC_I and JijC_J-{n}.  Using the definitions for a'i and b~ in 
Remark 1 we have 

Xh~Ii] kEJij ! 

where Iliil is the number of elements in the set Iii. 
In the crossing out procedure of Remark 2 with basis B, if we had used a/, b~, 

and xij of problem P instead of a'i, b) and x~ for problem P', respectively, we would 
have gotten 

\h~Iij kE.ll i 

It is clear that the xi[s so obtained are integers and that they satisfy the first two 
sets of constraints of problem P. To show that xij - 0, assume the contrary,  i.e., 
that xij -< - 1 for some i and j. Since the corresponding x';i > 0 (because basis B is 
feasible for P'  and P'  is nondegenerate),  it follows from (7) and (8) that [Iij[ > m, 
which is a contradiction. Thus, given a feasible basis B for P' the corresponding 
solution xij defined by (8) is feasible for P. Furthermore since the costs have not 
been changed in going from P to P' any dual feasible basis to P' is also dual 
feasible to P. Thus any optimal (i.e., primal and dual feasible) basis to P'  is also 
optimal to P. Consequently,  to solve problem P we can equivalently solve 
problem P'. 

In the results to be proved next  we assume that we solve the perturbed problem 
P' by Algorithm A1 and introduce the following definitions: 

T ' =  £ a~= £ b;, (9) 
iEl j~J 

R' = Max (max a'i, max b~), (10) 
iEI ]EJ 
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that is, T' is the total amount  shipped and R'  is the largest rim entry for the 
perturbed problem P'. From the definition of T for problem P and Remark 1, it 
follows that 

T ' =  T if P is primal nondegenerate,  (11) 

T' = T + 1 if P is primal degenerate.  (12) 

Let  A be the set of cells defined in step (3) of Algorithm (A1). For  any cell 
(p, q) E A, let Xpq be the value of Xpq at the moment  (p, q) is chosen in step (5) of 
the algorithm. (Some (p, q) E A may never be chosen since they may leave A in 
step (12) of the algorithm (A1): we will set such 2oq = 0.) Thus, unlike {Xpq} which 
refer to a single tableau, {2pq} correspond to different tableaus for  different 
(p, q) E A. (Note that ~j~JI(i,j)EAYCij may exceed a}. In Example 1 considered earlier, 
223 = 3 0 ,  233 = 35 and 234 = 55 so that 233 -1- 234 = 90 > a3 = 5 5 . )  

Lemma 1. With the notation just described 

~2 20 -< 2 T ' -  R'. (13) 
(i,j)EA 

Proof. Considering the initial basis B carry out the crossing out routine of 
Remark 2 but never crossing out the row or column containing the largest rim 
entry R'  (if there is more than one row or column containing the maximum rim 
entry select any one). The correspondence of Remark 3 between rims and cells 
in B now gives for  each (p, q) in B the constraint 2~q -< a'p or 2,q <- b'q depending 
on whether  row p or column q corresponds to cell (p, q). From this it follows 
that 

2pq <<- E 2vo<-Ea'p+Eb'q - R ' = 2 T ' - R '  
(p,q)EA (p,q)EB p E1 q~J 

since A C_ B. 

Denoting as a step the operations (6)-(12) of the cell cost operator  algorithm 
(A1) we now have the following result. 

Lemma 2. The number of  steps of  the cell cost operator algorithm (A1) is at most  
( 2 T ' - R ' ) / s  where s is given by (1). 

Proof. At each step of (A1) when (p, q) is the cell on which the cost operator  is 
applied, the amount  x'pq shipped by cell (p, q) is reduced by at least s, see (6). 
Hence  there can be at most 2pq/s steps before either (p, q) leaves A or its cost is 
restored to its true value. Consequently f rom Lemma 1 the maximum number of 
steps required for the algorithm is 

.¢pq/S <-- (2T'  - R')/s. 
(p,q)EA 
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Theorem 3. A nondegenerate transportation problem can be solved by algorithm 
(A1) in at most 2 T - 1  steps. A degenerate problem can be solved in at most 
m ( 2 T  + 1 ) -  1 steps. 

Proof. Since s .> - 1 and R ' - t  for  a nondegenerate problem the first result 
follows directly from Lemma 2 and eq. (11). By Remark  1, after perturbation a 
degenerate problem has s >- 1/m and R'--- 1 + ( l /m)  so that from Lemma 2 the 
bound is [ 2 T ' - 1 - ( 1 / m ) ] m  = m ( 2 T ' - 1 ) - 1 .  Substituting for T' from eq. (12) 
the result follows. 

Corollary. Algorithm (A1) will solve an n x n assignment problem in at most  
n(2n + 1 ) -  1 steps. 

It is interesting to compare the bounds provided by Theorem 3 to the bounds 
on the number of labellings of the primal-dual method of Ford-Fulkerson  [5, p. 
100] which, using our notation, is given by T + (T - 1)(m + 1) labellings for both 
degenerate and nondegenerate transportation problems. The first term in this 
expression bounds the number of labellings resulting in 'breakthrough' ;  the 
second, the number of labellings resulting in 'non-breakthrough' .  The non- 
breakthrough labellings are roughly comparable to the steps of the cell cost 
operator algorithm (A1). (Both involve the search of a subset of cells {(i,j)} 
(labelled rows x unlabelled columns in [5] which is similar to IR X Jc) to find the 
minimum reduced cost (cij - u i -  vi). Our algorithm requires the determination of 
a cycle which by using the method provided in [9] is roughly comparable to the 
flow-augmentation labelling required by the Ford-Fulkerson  method.) Con- 
sequently if we disregard the first term in the Ford-Fulkerson  bound ,  their 
method requires (T  - 1)(m + 1) comparable steps. Similarly the Bal inski-Gomory 
[1] primal method requires T • m comparable steps. Thus the bound for the cell 
cost operator  algorithm is much stronger (by a factor of approximately m/2) than 
the Ford-Fulkerson  and Bal inski-Gomory algorithms for nondegenerate trans- 
portation problems. It is slightly weaker (by a factor of approximately 2) than 
these other two methods for degenerate transportation problems. For most real 
transportation problems the assumption of primal nondegeneracy appears to be a 
reasonable one so that in most problems we would expect  the cell cost operator 
bound to be better. It is to be pointed out, however,  that while the assumption of 
primal nondegeneracy reduces the upper bound of the cell cost operator al- 
gorithm by a factor of m, it does not change the upper bound for the other two 
methods. We tried to see whether other realistic assumptions such as dual 
nondegeneracy would reduce the Ford-Fulkerson  and Balinski-Gomory bounds. 
We have been unable to find any such assumption. 

Edmonds and Karp [4] have provided a transportation algorithm which 
involves T flow augmentations. (Their "scaling" algorithm requires n [2+  
logz(T]n)] flow augmentations, assuming m---n.) But each flow augmentation 
requires computing ( c i i - u i - v j )  for all the (m x n) cells and then solving a 
shortest path problem (from a common source to all other nodes) in a network 
for which all arc lengths are nonnegative. Thus their typical flow augmentation 
step is much more involved compared to a typical step of the cell cost operator 



v. Srinivasan, G.L. Thompson~Cost operator algorithms 387 

algorithm. However ,  for  square (n x n) problems, the maximum number of 
elementary operations for their flow augmentation step is O(n2), the same as that 
for a step of the cell cost operator  algorithm. Thus in terms of elementary 
operations, the Edmonds-Karp  bound is much stronger (by an order of n) 
compared to the cell cost operator  algorithm for degenerate problems but both 
algorithms involve the same order of computations (at the maximum) for the 
more realistic primal nondegenerate problems. 

It is also interesting to compare the theoretical bounds obtained to the number 
of steps in the computational tests for the 100x 100 transportation problems 
reported in Table 1. From this table we find the number of steps (pivots) tends to 
increase with the probability of infeasibility p. Considering p = 0.8, the average 
number of steps was 406 and the maximum over the 21 randomly generated 
problems for p = 0.8 was 521 (this last number is not reported in Table 1). Since 
the a; and bj were drawn randomly from 1, 2 . . . . .  100, T -~ 100 x (100/2) = 5,000 
so that assuming near nondegeneracy (i.e., x~j for the basic cells is mostly 
nonzero),  the bound on the number of steps = 2 T - 1  = 10,000 which is much 
greater than the maximum value of 521 obtained in the computations. One 
possible reason may be the good starting basis used in the computations (the 
computer  program used the "modified row minimum starting Rule'.' [10] whereas 
the computation of the bound assumed nothing about how good the initial basis 
i s - t h e  set A could in the limit be the entire initial basis B). Consequently,  the 
same 21 transportation problems of size 100 x 100 with p = 0.8 were solved again 
with a random primal feasible initial basis. The average number of steps 
increased to 477 while the maximum over the 21 problems increased to 662. Thus 
there is clearly a small effect of a good choice of an initial basis, but the 
theoretical bound is still much larger than the realized bounds. This is, however,  
to be expected since the computation of the bound corresponds to the worst 
case, which is most unlikely to happen in any actual problem. 

7. Area cost operator algorithm 

Here we modify the cell cost operator  algorithm of Section 3 to become the 
area cost operator  algorithm. It directly follows from the algorithms described in 
pp. 209-211, pp. 215-221 and pp. 240-248 of [8]. We will need to make use of the 
quantities u*, v* defined on p. 220 of [8]. 

(A2) Area cost operator algorithm 
(0)-(4) Identical to corresponding steps in Algorithm (A1). 
(5) If A = 0 the optimum solution has been found; stop. Otherwise set y, = 1 

for (i, j ) ~  A and 0 otherwise and go to (6). 
(6) Use the current  basis B to solve the equations u * +  v* = Yij for ( i , ] ) E B .  
(7) Determine the maximum e x t e n t  /.L a for the basis preserving area cost 

operator  from the formula 
A C i j  - -  U i - -  U] 

/~ = Minimum 
,j)~N u * + v * - 3 , ,  
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where N = { ( i , / ) l ( 3 , , j - u * - v * ) < 0 } .  If the set N = 0  s e t  /t A= OO. Record the 
entering cell (e, f) at which this minimum is taken on. If /x A = 0 go to (11). Else 
go to (8). 

• " : t ¢  (8) Let /x' = Mmlmum(u)e A (cij - cij). Let ~ -- Min 0x A,/x'). 
(9) Change the dual variables as follows: Replace ui by uz + 8u* for i E I. 

Replace vj by vj- + gv* for j E J. 
(10) Replace C,q by Cpq+8 for ( p , q ) E A  and Z by Z÷SE(p4)cAXpq. If 

- - - -  * for some (p, q) E A remove each such (p, q) from A and go to (5). Else Cpq Cpq 
go to (11). 

(11) Bring (e, f) into the basis determining the leaving cell (r, s). Whenever 
possible select (r, s) in A. Change shipping amounts x,-~ on the cycle B + {(e, f)}. 
Replace B by B - { ( r ,  s)}+{(e,f)}. 

• and remove (r, s) from A. If A is changed, (12) If (r, s) ~ A, replace crs by Crs 
go to (5). Else go to (6). 

Example 2. We now resolve the problem in Fig. 1 using the area cost operator 
method starting from the modified problem in Fig. 2 with A = {(2, 3), (3, 3), (3, 4)}. 
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Operation 
number Result 

(5), (6) 
(7) 
(11) 

(12) 

(5), (6) 
(7) 
(11) 

(12) 
(5), (6) 
(7) 
(8) 
(9) 
(lO) 
( l l )  
(6) 
(7) 
(8) 
(9) 
(to) 

(11) 

(12) 
(5) 

The Y~i, u*, v* are shown in Fig. 8. 
Since N ={(2, 1), (2,4), (3, 1)} we see that /.~A = 0  and (e , f )  = (3, 1). 
Adding (3, 1) to B we see that (r, s) = (3, 4). New shipping 
amounts are given in Fig. 9. 
c3, = 5, A = {(2, 3), (3, 3)}. 
The new y~, u*, v* are shown in Fig. 10. 
Now N = {(1, 3)} so that tz a =  0 and (e , f )= (1, 3). 
Adding (1, 3) to B gives (r, s) = (3, 3). New shipping amounts 
are given in Fig. 11. 
c3,=10,  A={(2,3)}.  
The new y**, u*, v* are shown in Fig. 12. 
We have N ={{2, 1),(2,4)} so t h a t / , a  = 1 and (e , f )  = (2, 1). 
~ ' = 6 ,  6 =  1. 
u2=6, v 2 = - l .  
cz3 = 6. Result in Fig. 13. Z = 805 + (1 × 30) = 835. 
Adding (2, 1) to B we see that (r, s) = (1, 1). Result in Fig. 14. 
The u*, v* appear in Fig. 15. 
N = {(2, 4), (3, 3), (3, 4)} so that / x " =  3 and (e, f ) =  (3, 4). 
tz' = 5, 6 = 3 .  
U2=9, u3=4,  v , = - 3 ,  v 2 = - 4 .  
c23 = 9, see Fig. 16. Z = 835 + [3 x 15] = 880. 

Adding (3, 4) to B gives (r, s) = (2, 3). Shipping amounts are 
as shown in Fig. 7. 
cz3 =11, A = ~ .  
Stop. Optimum found. 
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8. Bounds for the area cost operator algorithm 

The convergence of the area cost operator algorithm for nondegenerate 
problems is insured by Theorem 14 on p. 247 of [8]. (We have not been able to 
prove convergence for the degenerate case; in fact the algorithm may cycle in 
this case.) We can use the proof technique of this theorem to derive bounds on 
the number of steps needed by the algorithm to solve the perturbed problem P'. 
(Recall that for primal nondegenerate problems P ' =  P.) 

Theorem 4. (A) I f  problem P is nondegenerate, then the area cost operator 
algorithm converges in at most  T steps. 

(B) For a degenerate transportation problem the area cost operator algorithm 
converges in at most  m ( T  + 1) steps. 

Proof. In the proof of Lemma 6(c) on p. 243 of [8] it can be Shown that A which 
measures the amount  given by the minimum giver, satisfies A _> s. Hence in the 
proof of Lemma 6(c) the quantity Y~ici Zj~jT~jx'ij = Z(p,q~EAX'pq decreases by at 
least s each time. But 

Z ' <~ Z ' = T '  X,q xil (14) 
(p,q)~A (p,q)@B 

since A C_ B. Consequently the algorithm would take at most T'/s  steps. 
(A) For  primal nondegenerate problems, s - 1 and from eq. (11) T ' =  T so 

that the bound is T'/s  <- T steps. 
(B) For degenerate problems after perturbation, s >-l[m and from eq. (12) 

T' = T + 1 so that the bound is T'/s  <- m T '  = m ( T  + 1) steps. 

Acknowledgment 

The authors wish to thank Professor  M.L. Balinski and the referees for many 
valuable comments on an earlier version of this paper. 

This report  was prepared as part of the activities of the Management Sciences 
Research Group, Carnegie-Mellon University,  and supported by the U.S. Office 
of Naval Research. 

References 

[1] M.L. Balinski and R.E. Gomory, "A primal method for the assignment and transportation 
problems", Management Science 10 (1964) 578-593. 

[2] A. Charnes and W.W. Cooper, Management models and industrial applications of linear 
programming, Vols. I and II (Wiley, New York, 1961). 

[3] G.B. Dantzig, Linear programming and extensions (Princeton University Press, Princeton, N J, 
1963). 

[4] J. Edmonds and R.M. Karp, "Theoretical improvements in algorithmic efficiency for network 
flow problems", Journal of the Association for Computing Machinery 19 (1972) 248-264. 



V. Srinivasan, G.L. Thompson/Cost operator algorithms 391 

[5] L.R. Ford and D.R. Fulkerson, Flows in networks (Princeton University Press, Princeton, N J, 
1962). 

[6] A. Orden, "The transshipment problem", Management Science 2 (1956), 276-285. 
[7] M. Simmonard, Linear programming (Prentice-Hall, Englewood Cliffs, N.J., 1966). 
[8] V. Srinivasan and G.L. Thompson, "An operator theory of parametric programming for the 

transportation problem-I  and II", Naval Research Logistics Quarterly 19 (1972) 205-252. 
[9] V. Srinivasan and G.L. Thompson, "Accelerated algorithms for labelling and relabelling of 

trees, with applications to distribution problems", Journal of the Association for Computing 
Machinery 19 (1972) 712-726. 

[10] V. Srinivasan and G.L. Thompson, "Benefit-cost analysis of coding techniques for the primal 
transportation algorithm", Journal of the Association ]:or Computing Machinery 20 (1973) 
194--213. 

[11] W. Szwarc, "Some remarks on the time transportation problem", Naval Research Logistics 
Quarterly 18 (1971) 473--485. 


