
Mathematical Programming 12 (1977) 81-96.
North-Holland Publishing Company

AN ALGORITHM FOR DETERMINING ALL EXTREME POINTS OF A
CONVEX POLYTOPE

M.E. D Y E R and L.G. P R O L L
University of Leeds, Leeds, U.K.

Received 10 August 1975
Revised manuscript received 1 March 1976

An algorithm for determining all the extreme points of a convex polytope associated with a
set of linear constraints, via the computation of basic feasible solutions to the constraints, is
presented. The algorithm is based on the product-form revised simplex method and as such
can be readily linked onto standard linear programming codes. Applications of such an
algorithm are reviewed and limited computational experience given.

1. Introduction

The problem of enumerat ing all the ext reme points of the convex polyhedron of
feasible solutions to a finite set of linear inequalities in real n dimensional space
has been discussed by several authors, a brief review of the literature being
given in Section 1.1. below. This problem, together with the closely related one
of ranking the ext reme points in ascending or descending order of the value of a
further linear function defined on the polyhedron, has a number of applications
in mathemat ical programming and related areas. The interest in convex polyhe-
dra undoubtedly arises f rom the ease with which linearly constrained program-
ming problems are handled by the simplex method and its variants.

Applications of methods for determining ext reme points fall into two main
classes. The first class simply utilises t h e dual representat ion of a bounded
polyhedron (polytope) by convex combinations of its ext reme points to describe
the set of solutions to the inequalities. The second class uses the fact that the set
of ex t reme points may often contain as a subset some target set of points which,
although the true objects of interest, are difficult to describe explicitly.

Among the first type of application, the most important is that of determining
all optimal solutions to a linear program. This is discussed, for example, by
Hadley [9]. Related problems are those of determining all optimal strategies to a
matrix game (Motzkin et al. [14]) and of determining all 'near-opt imal ' solutions
to a linear program, the need for which has been remarked upon, for example,
by Koenigsberg [20] and Van de Panne [23]. Van de Panne [23] has also shown
that ext reme point enumerat ion methods can be used to solve certain problems
in mult iparametr ic linear programming. Vajda [22] has described a manpower
planning problem which is also related to ext reme point enumerat ion.

The second type of application usually involves ex t reme point ranking in the
above sense. They were due originally to Murty [15] who applied ext reme point

81

82 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

ranking to the fixed charge problem and later to the travelling salesman problem
[16]. An alternative method has been proposed by Pollatschek and Avi-Itzhak
[17]. They describe its application to zero-one mixed-integer programming.

Other applications are due to Cabot and Francis [4] in the field of nonconvex
quadratic programming and to Kirby, Love and Swarup [10] to a generalised
problem termed extreme point mathematical programming. Burdet [3] considers
applications to general zero-one linear programming and to quadratic pro-
gramming.

1.1. Review o f the problem

While much research has been devoted to convex polytopes (see e.g. Grun-
baum [8]), it appears that in general they have few useful properties which can
be exploited in order to enumerate easily their extreme points.

The earliest published method appears to be that of Motzkin et al. [14]. Their
approach is to add inequalities in a stepwise manner, noting at each step which
"new" extreme points have been created and which "old" ones excluded. This
has certain merits but the chief disadvantage is that, if many of the inequalities
are redundant, much effort may be wasted calculating extreme points which will
later be excluded.

It is well known that the problem of determining all the extreme points
reduces to that of enumerating all the basic feasible solutions for the inequali-
ties. In the nondegenerate case, in which each extreme point of the polytope is
the intersection of exactly n hyperplanes in n dimensions, the correspondence
between the two sets is one to one. In other cases the polytope may be
"per turbed" by standard methods to restore this correspondence. This allows
the use of the simplex tableau to represent the extreme point algebraically.
Unfortunately it is well known [13] that it is not, in general, possible to generate
a complete non-recurrent sequence of basic feasible solutions by simplex pivots.

Balinski [1] was the first to adapt the format of the simplex tableau to the
problem. He devised a flexible search method based on successively relaxing the
inequalities. The "book-keeping" for this algorithm is particularly simple but the
method, like Motzkin's, may be inefficient in the presence of large numbers of
irrelevant constraints since infeasible basic solutions are visited. Manas and
Nedoma [12] also use the simplex tableau but generate only basic feasible
solutions. The "book-keeping" for this algorithm requires a list of the indices of
the basic variables at each basic feasible solution to be held. They attempt to
trace an edge-path on the polytope terminating when each extreme point has
been visited at least once. Silverman [19] has also devised a method along these
lines which he calls the G-Path Method. The essential difference between the
methods of Silverman and Manas and Nedoma is in the use made of this G-path
construct. This is an edge path on the polytope such that each extreme point
either lies on the path or is adjacent to some point on the path. It will be readily
observed that, in order to enumerate all the extreme points of the polytope, it is
sufficient to follow such a path. Silverman also discusses, in general terms, the

M.E. Dyer and L.G. Proll[An algorithm [or extreme points 83

computational requirements of certain other algorithms.
Mattheis [13] adds a further "generalised-slack" variable to the inequalities.

He then views the original polytope as a special facet of a polytope in (n + 1)
dimensions. The search then takes place among the extreme points of the higher
dimensional polytope which do not lie in the special facet. The points of the
original polytope are then generated as "neighbours" of these points. He shows
that redundant inequalities do not affect the process, but the main justification
for the additional complication rests on an unproven conjecture that fewer
points will be explicitly generated than in a search of the original polytope.

Burdet [3] presents an intuitively appealing approach using (basically) re-
peated applications of a Phase I linear programming method to construct a kind
of branch and bound search for basic feasible solutions. This method will
probably need more simplex pivoting operations than its competitors in the
nondegenerate case but could be useful in cases of significant degeneracy.
However , it seems that certain simplifications which he claims may be made
(with respect to two-dimensional and simplicial faces) will have little power in
the scheme proposed, and might well be omitted in a practical scheme. He gives
no example.

Chernikova [6] gives an algorithm for determining the extreme edges of a
convex polyhedral cone. This can be adapted in a straightforward manner to find
the extreme points of a convex polyhedron. The idea is similar in many respects to
that of Motzkin et al. [14] but is presented in a slightly different framework. It is
discussed by Rubin [18], who also gives an application to "cardinality constrained"
linear programming.

Greenberg [7] also presents a method for calculating all edges of a cone. His
development is based on a theorem of Uzawa [21], strengthened by incorporat-
ing certain exclusion tests on candidate edges. The technique again has
similarities with that of Motzkin et al. [14].

Other suggestions have been made by Hadley [9] and Charnes [5].
In general little attention has been paid in the papers referenced above to

computer implementation; indeed several of the methods contain vague or
ill-defined steps. In addition little computational experience has been cited.

The method presented here is based on the simplex method but uses the
format of the product form revised simplex method [9]. Instead of using a single
tableau and following a path on the edges of a polytope, the algorithm constructs
a spanning tree in the graph of the polytope. Section 2 outlines the necessary
concepts. Certain information is associated with each node of the tree, the
nature of which is described in Section 3.1. The structure of the tree is exploited
to compare directly the adjacency of each feasible basis with those previously
found. This comparison occurs at most once between any two bases and allows
us to avoid updating many columns of the simplex tableau in the later stages of
the search. The working of the algorithm is described in Sections 3.2 and 3.3.
The search strategy used to construct the tree is basically breadth-first and the
resultant tree has a certain minimality property which is described in Section 3.4.

In Section 4 an example is presented and some computational experience with
computer implementation of the algorithm is given in Section 5.

84 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

It is felt that the product- form orientation makes the method more easily
compatible with standard linear programming procedures than other methods.
The method can further be readily adapted to rank the ext reme points and hence
is equally useful for both types of application outlined in the previous section.

2. Notation and definitions

We consider the inequalities

~ ai~xj <-- aio (i = 1 m), (1)
j=l

xi->0 (/ = 1 n)
where

ai0->0 (i = 1 m).

It may be noted that any consistent set of linear inequalities can be
manipulated into the form of (1). This is shown in most of the standard linear
programming texts, for example, Hadley [9]. It will be assumed that (1) has a
bounded solution set. This can easily be arranged by adding (if necessary) the
additional inequality

~"~x i ---M for large enough M.
j=l

If (1) has degenerate basic feasible solutions then it will be wise to incorporate
some perturbat ion (implicit or explicit) to the ai0 in order to minimise the number
of repetitions of degenerate ext reme points.

We add slack variables to (1) in the usual way to give the system

~ aiix j + Xn+ i = aio (i = 1 m) (2)
i=1

where xi-->0 (] = 1 m + n) .

The (column) m-vec tor of the coefficients of x i (j = 1 m + n) in (2) will be
referred to as column j and will be denoted by a i (j = 1 n) or ej-n (] =
n + 1 n + m). The right-hand sides of (2) form the vector a0.

A basis B of (2) is a nonsingular m x m matrix of the columns of m basic
variables. The remaining variables are nonbasic. We write dj = B-lai with
obvious extensions to %, a0 etc. A basis is feasible if tii0--> 0 (i = 1 m). The
corresponding solution to (2) is a basic feasible solution. It will be assumed that
the reader is familiar with these ideas and the notions of pivoting which are used
to compute these updated columns, ~i i, in the product - form revised simplex
algorithm. For further information, see Hadley [9]. We also use /3 to denote the
set of indices of basic variables corresponding to B.

In the development of the algorithm we use the concept of a multiset [11] i.e.
an entity like a set but allowed to contain repeated elements. For a given
element, we define N (A) to be the number of occurrences of the element in the

M.E. Dyer and L.G. Proll/ An algorithm for extreme points 85

multiset A. The relations

N (A U+B) = N (A) + N (B) , (3)

N (A - B) = N (A) - min(N(A), N (B)) (4)

then define the operators 'U +' and ' - ' on multisets. Clearly a set may regard as
a multiset. We use [A[to denote the sum of terms N (A) over all elements in the
multiset.

In the discussion below we borrow certain terminology from the theory of
graphs. For an introduction to these concepts the reader should consult a
standard text such as Berge [2]. The graph G of the polytope corresponding to
(2) has a node for each feasible basis and an arc connecting two nodes if the two
bases differ in exactly one column. We call the bases adjacent, or neighbours if
they are connected by an arc of G. The node of G corresponding to basis B0
containing columns (n + 1) (n + m) is called the root node, r, of G. It will be
noted that B0 is an identity matrix. The corresponding basic feasible solution is
xj = 0 (] = 1 n) and x,+l = aio (i = 1 m) .

The algorithm constructs a tree, T, containing r. If t is a node of T, this
orientation defines the (unique) predecessor P (t) of t, and t is a successor of
P (t) . If P (r) is defined to be r, then P can be considered to be a function from
the set of nodes in T into itself, the tree function. The height h(t) of t is the
number of arcs in the (unique) path from r to t in T. In terms of P, we have

h(t) = min{k: p k (t) = r}.

The algorithm terminates when T is a spanning tree of G.

3. The algorithm

3.1. Organizat ion

At a typical stage of the algorithm, the gth, a list of feasible bases B0, Bl B,
to (2) will have been constructed. B0 corresponds to the root node r and hence is
the m x m identity matrix. The nodes of T will be identified with the cor-
responding index of the associated basis in this list. The B~ are not retained
explicitly, however, but sufficient information is stored to allow us to pre-
multiply by their inverses as necessary. This information is, in principle, the

eta-vectors of the product-form revised simplex method. We also list information
on which of these bases are known to be adjacent. The data stored for each node l is
as follows:

(i) p~: The predecessor P (l) of 1 in T. Such numbers determine the structure
of T.

(ii) ql: The index of the pivotal row in the pivotal operation transforming Bn 1
to B~ -1.

(iii) h: The index of the column entering the basis in the above operation.
(iv) s~: The index of the column leaving the basis in the above operation.
(v) y~: A set of indices of columns such that, if j E y~, the list is known to

86 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

contain a basis B containing column] and differing f rom Bt in at most one
column. In particular, 7~ contains the indices of the basis variables in B~.

(vi) al: The (m x 1) pivot column in the operat ion t ransforming Bp~ 1 to B [~. In
fact a~ = B~la,t and is virtually the e ta-vector of the product - form method. This
notation may appear initially confusing but no conflict arises since, for l -< n, at
is identical t o column l of (2). This follows f rom the facts that B0 is an identity
matrix and, for l -- n, r~ = I.

At the start of the algorithm, we will have stored a0, a~ an and we set

p0 (--- O, g ~--- O,

7o~---{n + l , n + 2 n + m}.

3.2. Outline d iscuss ion

In this section the main features of the algorithm are outlined, a detailed
description being given in Section 3.3.

At the start of the gth stage, the nodes of T may be thought of as being
divided into two sets. The set of nodes

C = {0, 1 (g - 1)}

is called the set of considered nodes with the proper ty that the current list
contains all feasible bases adjacent to any basis associated with C. The remain-
ing set of nodes

D = {g, (g + 1) u}

is called the set of unconsidered nodes.
At the gth stage, the first unconsidered node g is selected and becomes

considered. From the information associated with the sequence of nodes

g, p (g), p 2(g) 0

we can construct the basic set /3g of Bg and also deduce the e ta-vector
representat ion of B~ 1. We determine ~i 0, the updated right hand side, using the
forward t ransformations of the product - form method. At this point the ex t reme
point corresponding to Bg has been determined.

Currently 7g contains, in addition to the indices of the basic columns of B e, the
indices of nonbasic columns which would generate a node in C if exchanged for
a column of B r Clearly if 7g contains the indices of all the columns of (2) then
the list contains all feasible bases adjacent to Bg. If this is the case the gth stage
is complete. Otherwise a compar ison for adjacency of node g with the remaining
nodes of D is commenced . For this purpose we use only the sets of numbers Pt,
rt, st. Since any basic feasible solution to (2) can be reached f rom any other basic
feasible solution by a finite number of simplex pivots and since every basic
feasible solution associated with T can be reached f rom node 0 by a sequence of
feasible simplex pivots, it is clear that the path in T f rom g to any node d E D
can be constructed using the p~. The comparison test proceeds by tracing back
the paths in T f rom g to 0 and d to 0 until they meet at a common node, u (say).

M.E. Dyer and L.G. Proll/ An algorithm for extreme points 87

Then

P~(g) = p k (d) = u for some j, k

and the path f rom g to d is

g, p (g) , - - - , p i - l (g) , u, P k - ~ (d) , - - - , P (d), d.

Let

sJ-lz \', Xg = {Sg, S p (g) , - - - , p t g) b

r~ = {r e, rp(g),--- , /p~(g)},

i.e. Xg contains the indices of the variables leaving the successive bases on the
path from u to g, Yg contains similar information on the entering variables. Xd,
Yd can clearly be defined in a similar manner. Note that, in general, Xg, Y~, Xa,
Yd are multi-sets and

/3~ = (/ 3 , , u + YD - x~, (5)

18d = (~ . U + Y~) - Xa. (6)

Consider (5), by (3) and (4)

N (~g) = N (fl,) + N (Yg) - min[N(/3,) + N (Yg), N(Xg)].

Clearly, in order to leave a particular basis, a variable must have either been
present in the initial basis /3~ or have entered a previously encountered basis,
i.e.,

hence

Similarly,

Hence

N (X g) <- N (B .) + N (Y g)

N (tSe) = N (~,) + N (Yg) - N (Xg).

N(jOa) = N (~ ,) + N (Y d) - N(X,D.

N(f lg - /3e) = [N(/3u) + N (Y g) - N(Xg)] - min[N(/3,) + N (Y g) - N (X g) ,

N([3,) + N (Y a) - N(Xd)]. (7)

Subtracting N(/3u) - N (X g) - N (X e) from each term on the right-hand side of (7),
we obtain

N(~g - ~d) = N (Y g) + N(X ,D - min[N(Y~) + N (X a) , N (Y a) + N(Xe)].

Hence

fig - r i d = (Yg U+ X a) - (Y a U+Xg) = p.

By symmetry,

~a - f i g = (Yd U + Xg) - (Y~ U+ Xd) = ~r.

(8)

(9)

88 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

p may be interpreted as the set of indices of variables which enter the basis but
do not leave during the basis exchanges on the path f rom g to d, o- having a
similar interpretation for the path f rom d to g. One method of testing the
adjacency of nodes g and d, therefore, is to construct the sets p and o- and to
test whether Ipl = 1 = Io-]. In principle it is necessary to construct only one of
these sets in order to test adjacency but it is little more work to construct both
and, in the event of g and d being adjacent, p and ~r define the (single) basis
exchange which is necessary to get f rom g to d (and d to g).

The compar ison test detailed in Section 3.3 constructs p and o" f rom (8) and (9)
respect ively in an efficient manner by inspecting arcs f rom the path f rom g to u
and f rom d to u alternately. This allows

(a) u to be recognised as quickly as possible,
(b) the sets X~, Yg, Xd, Yd to be built up element by element and the

cancelation of common elements implied by (8) and (9) to be per formed as
quickly as possible,
thereby minimizing the space required to assemble p and o-. This strategy is
possible because

hence

d E D ~ P (d) @ C

P (d) < - g < d .

It follows f rom Proposi t ion 1 (Section 3.4) that

k - l < ~ j < ~ k ,

i.e., g and d differ by at most one level in the tree.
Conducting the compar ison in this form involves the storage of less in-

format ion than retaining the entire set of indices of basic variables for each node
as do Manas and Nedoma [12]. Fur thermore no more operations will generally
be involved than would be needed to compare two such sets; fewer operat ions
will be needed when g and d are "c lose" in T.

If g and d are found to be adjacent the sets yg and Yd are adjusted by adding
to each the appropriate index. The gth stage will be abandoned should yg include
all indices of columns in (2). If, however , the examinat ion of D is completed
without this condition being fulfilled, new bases are added to the list. For each
] ~ yg, we form

¢B;'aj (j ~< n),
aJ = ~ °l.Bg'ej , (j > n).

and determine the pivotal row, t, and the outgoing column, k, assuming that
column] enters the basis. In each case, a new node l is then added to D with the
following information:

Pt = g, gl = t, rt = j, s t = k ,

"/i = fig U {]}, al = a i. (10)

M.E. Dyer and L.G. Proll/ An algorithm for extreme points 89

The gth stage is then complete and the (g + 1)th commences . The algorithm
terminates when the set of unconsidered nodes, D, is empty , all feasible bases
having been enumerated.

3.3. D e t a i l e d d i s c u s s i o n

In this section the main computat ional steps of a typical stage of the algorithm are
described in more precise fashion. The functional notation P(1) for the number p~
will be used throughout.

First h (g) is determined f rom the condition h (g) = min{k: p k (g) = 0}.
The path in T f rom 0 to g passes through nodes p k (g) for k = h (g) ,

h (g) - 1 0. The set of basic variables for g is then obtained by a repeated
substitution:

(A) B a s i c se t f o r m a t i o n
(0) Initialisation. bi ~ n + i (i = 1 m) , k ~ h (g) .

(1) If k = 0 terminate.
(2) Substitution. k ~ - - k - 1, l ~ - - p k (g) , bq~ ~ rt. Go to (1).

The vector b now contains the indices of the basic variables in " row-order" .
The right-hand side vector do is now calculated. The following routine is used

with j = 0, but is described for a general column] of (2) for later reference.

(B) C o l u m n u p d a t e

(0) Initialisation. If j ~< n, z ~-- aj otherwise z ~-- ei_ n, k ~ - h (g) .
(1) If k = 0, set tij ~ - z and terminate.
(2) Forward t ransformation, k ~-- k - 1, l ~-- p k (g) , Zo~ +__ ZqJatqc For iS qt,

Z i ~" Z i --Zqtali. Go to (1).
The ext reme point is now determined by Xb~ =-tioi (i = 1 m) and xj = 0

(]~/3) . The gth stage is complete if 3'g = { 1 , . . . , m +n}, otherwise the com-
parison for ad jacency with D is begun. It appears best to use an efficient
implementat ion of the following routine for this purpose. The compar ison of g
with a given d E D is described.

(C) C o m p a r i s o n

(0) Initialisation. O, tr <--- IJ. k ~-- g, l <--- d.
(1) If k > l : r~---rk, s "~--sk, k ~---P(k) . Go to (2).

(2)

(3)

If k < l : r ~ - s t , s ~--rt, l ~ - - P (I) . Go to (2).
If k = 1, go to (3).
If r E or, o-~-- t r - { r } , otherwise p ~--p U+{r}.
If s E p, p * - - p - { s } , otherwise tr +--o" U+{s}. Go to (1).
If [p[= 1, g and d are adjacent, otherwise not.
If g, d are found to be adjacent, yg ~ yg U tr, Td ~ Y~ U p.

If the gth stage is still not complete when D is exhausted, the generation of
new feasible bases begins. For each variable index j ~ yg, update column] using
the routine of (B) above. Determine the pivotal row t by the usual ratio method,

90 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

i.e., t is the index at which doi/dji attains its minimum for dj,-> 0 (i = 1 m).
The variable which will leave the basis is k = bt. The information for each new
node is stored as indicated in (10). We set g ~ g + 1 and (provided g ~< u) enter
the next stage of the algorithm.

3.4. Properties of the algorithm

It will be clear f rom the above description that the algorithm will generate all
feasible bases and terminate. It is also easy to see that each pair of ext reme
points will be compared at most once for adjacency. We can further establish
the following:

Proposition 1. If g < l, then h(g) <~ h(l).

Otherwise, suppose g is the lowest numbered node such that there is an l > g
with h(g)> h(l). The structure of T clearly implies that P (g) < g, P (l) < l and
P(g)<-P(l) . But h (P (g)) = h (g) - l , h (P (l)) = h (l) - I and hence h(P(g))>
h(P(l)) . This contradicts the assumption that g was the least such number.

Thus the algorithm numbers the nodes in non-decreasing order of height in T.
This is sometimes called a bot tom-up labelling of T.

Proposition 2. If h ~(g) is the number of arcs in any path from node 0 to node g in
G, then h(g) <~ h ~(g).

Otherwise, suppose there is a path in G f rom node 0 containing a node which
violates the assumption. Let g be the first such node encountered. Clearly g > 0
since hi(0) = h(0) = 0. Suppose l is the node immediately before g on the path,
then hi(1)= h~(g) - 1. But f rom the priority of g, h(I)<~h~(l)= hi(g) - 1 <
h(g) - 1. But h(P(g)) = h(g) - 1, so h(l) < h(P(g)). But then, f rom Proposi t ion 1,
we have I < P (g). But since l is adjacent to g, the way T is constructed implies
1>I P(g), giving a contradiction.

This implies that each feasible basis is generated in the smallest possible
number of basis exchanges given that all intervening bases must be feasible. In
graphical terms T is a tree of "shor tes t routes" f rom node 0 if all edges of G
have unit weight.

The minimality proper ty expressed by Proposi t ion 2 is perhaps useful in a
numerical sense since computat ional errors will tend to grow with the number of
basis exchanges.

It will be noted that both propert ies derive f rom the method used to construct
T.

4. Example

The following problem first appeared in Balinski [1] and was used by Mattheis
[13] as an illustrative example:

M.E. Dyer and L.G. ProU/ An algorithm for extreme points 91

D e t e r m i n e all the e x t r e m e points of the po ly tope r e p r e s e n t e d by the equa t ions

x4 + 3xl + 2 x 2 - x3 = 6,

x5 + 3xl + 2x2 + 4x3 = 16,

x6 + 3xl - 4 x 3 = 3,

X 7 "b 9X 1 + 4X 2 + 3X3 = 17,
X 8+ X 1 + 2 x 2+ X 3= 10.

(all var iab les non-negat ive) .
Since the a lgor i thm is des igned for c o m p u t e r implemen ta t ion , detai led com-

pu ta t ions are not g iven below. Rather , an outl ine of the p rogress of the m e t h o d
on this p r o b l e m will be p resen ted .

Ini t ial ly we have

ao +-- (6, 16, 3, 17, 10), al ~--- (3, 3, 3, 9, 1),

az ~--- (2, 2, 0, 4, 2), a3 ~--- (- 1, 4, - 4 , 3, 1),

p0 ~--- 0, y0"~-- {4, 5, 6, 7, 8}, g ~--- 0, u <-- 0.
Stage 0. h(0) = 0; b ~-- (4, 5, 6, 7, 8), ~i 0 ~-- (6, 16, 3, 17, 10). E x t r e m e point 0 is

de te rmined . Crea te new entr ies for] = 1, 2, 3.

p l y - - 0 , q1~--3, rl~---l , S 1 ~ - - 6 ,

pz ~- O, q2 ~-- 1, r2 ~-- 2, s2 ~--- 4,

p3<---0, q3~--2, r3<--3 , s 3 ~ - 5 ,

g ~--- 1, u *-- 3.

Stage

yl ~--- {1,4, 5, 6, 7, 8}.

y2 ~-- {2, 4, 5, 6, 7, 8}.

y3 +-- {3, 4, 5, 6, 7, 8}.

1. h (1) = 1; b ~--(4,5, 1 ,7 ,8) , ~i0+-- (3, 13, 1,143,9). E x t r e m e point 1 is
de te rmined . The c o m p a r i s o n rout ine gives 1 nonad j acen t with 2 or 3. Thus c rea te
new nodes fo r] = 2, 3.

~ *-- (2, 2, 0, 4, 2), ci3 ~-- (3, 8, - 4, 6, 7),

p4~---1, q4~--1, r4~---2 , $4~---4 , y4 ~--- {1, 2, 4, 5, 7, 8}, a4~---d 2.

ps*- -1 , qs~---1, r5~---3, s5~---4, y5~- -{1 ,3 ,4 ,5 ,7 ,8} , as*--ti3.

g ~--- 2, u ~--- 5.

Stage 2. h (2) = 1; b * - - (2 , 5 , 6 , 7 , 8) , ~i0*--(3 , 10 ,3 ,5 ,4) . The c o m p a r i s o n rou-
t ine gives 2 n o n a d j a c e n t to 3, 5 but ad jacen t to 4. T h e n

yz ~-- {1, 2, 4, 5, 6, 7, 8}, y4*-- {1, 2, 4, 5, 6, 7, 8}.

Crea t e new node fo r] = 3.

g3 ~--- (-½, 5, - 4 , 5, 2),

/36 ~-- 2, q6 ~ 4, F 6 ,~- 3, s 6 *-- 7, Y6 ~ {2, 3, 5, 6, 7, 8}, a6 ~ a3-

g ~--- 3, u ~-- 6.

Stage 3. h (3) = 1; b ~--- (4, 3, 6, 7, 8), a0 ~--- (10,4, 19,5, 6). C o m p a r i s o n gives 3
n o n a d j a c e n t wi th 4, 5, 6. Thus c rea te new nodes fo r] = 1, 2.

92 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

<___l_ 5 ! 5 3 d, ~- @, 3, 6, O, 1), d2 t2, 2, 2, ~, 5),

p7~--3, qT~--1, rT*--1 , s 7 - - 4 , y7 ~-- {1, 3, 4, 6, 7, 8}, a7~---d I.

P8~--3, q8~--4, r8~---2, s8~--7, ~/s ~-- {2, 3, 4, 6, 7, 8}, as~--d2.

g ~--- 4, u ~--- 8.

Stage 4. h(4) = 2; b ~-- (2, 5, 1, 7, 8), do ~-- (3, 10, 1, 83, 6). Compar ison gives
adjacent to 5. Then

y4*-- {1, 2, 3, 4, 5, 6, 7, 8}, 3,5 ~--- {1, 2, 3, 4, 5, 7, 8}.

Abandon stage 4. g ~ 5.

Stage 5. h (5) = 2 ; b~- - (3 ,5 ,1 7,8), d0~---(1 5, 7 ~3 20~ , , 3 , uZ,5-J- Compar ison gives 5
nonadjacent to 6, adjacent to 7. Hence

y5 +-- {1, 2, 3, 4, 5, 6, 7, 8}, 3 ,7---{1,3,4,5,6,7,8}.

Abandon stage 5. g ~ 6.

Stage 6. h(6) = 2; b ~-- (2, 5, 6, 3, 8), do ~-- (7, 5, 7, 1, 2). Compar ison gives 6
nonadjacent to 7, ad jacent to 8.

3,6 = {2, 3, 4, 5, 6, 7, 8},

Create new node for j = 1.

d, ~ (9, ,5 3 l
~ , O, - ~ , - 9 ,

P9~---6, q9~--2, r9~-- 1,

g~--7, u~--9.

Y8 = {2, 3, 4, 5, 6, 7, 8}.

89<---5, T9 ~"- {1, 2, 3, 5, 6, 8}, a9<---d~.

Stage 7. h(7) = 2; b ~ (1, 3, 6, 7, 8),
nonadjacent to 8, ad jacent to 9, so

y7 ~--- {1, 2, 3, 4, 5, 6, 7, 8},

End stage 7, g ~--8.

5 ~6~ Compar ison gives 7 d0 ~-- (8, 2, 3, ,3J.

T9 +--{1, 2, 3, 5, 6,7, 8}.

Stage 8. h(8) = 2; b *--(4, 3, 6, 2, 8),
adjacent to 9 and

3,8 ~-- {1, 2, 3, 4, 5, 6, 7, 8},

End stage 8, g ~ 9.

do ~-- (5, 3, 15, 2, 3). Compar ison gives 8

T9 <--{1, 2, 3, 4, 5, 6,7, 8}.

Stage 9. h (9)= 3; b ~--(2, 1 ,6 ,3 ,8) , g0 ~-- (2, 4, 7, 2, 8).

3~9 = {1, 2, 3,4, 5, 6, 7, 8}.

End stage 9.

M.E. Dyer and L.G. Proll/ An algorithm for extreme points 93

/ / / / /

Fig. 1. Graph of polytope of example.

All nodes have now been considered, thus terminate. The ten feasible bases
and corresponding adjacencies have been computed. The graph G for the
polytope of this example is presented in Figure 1. The tree T constructed by the
algorithm is shown in solid line, other arcs of G in broken line.

5. Computer implementation

As with any algorithm, efficient implementation is essential for practical use. In
this respect the following points may be noted. Firstly the sets Yt can be
conveniently stored in a computer in "packed" binary form, since the only
operations performed on any y~ are the addition of single elements and a
once-for-all "decoding" before the generation of new bases. A simple count of
the number of indices currently in y~ will then suffice for the test of termination
in the comparison phase. Secondly, careful attention should be paid to the
coding of the comparison routine, since this will be used often during the
execution of the algorithm. There are several ways in which the outline routine
(C) of 3.3 can be efficiently programmed. Thirdly, for unbounded polyhedra
there is no real necessity to introduce the additional inequality of Section 2.
Unbounded edges are indicated by a completely negative updated column in the
basis-generation phase. These columns may be simply ignored or, if the
unbounded edges are of interest, output at this point. No new entry is created in
the list. It may be further remarked that for maximum efficiency advantage could
be taken of sparsity in the coefficients of the inequality set. Should storage be a
limitation, the vectors a~ (I > n) could be located in backing store and only those
few brought into central storage which are required at each stage.

This algorithm has been programmed in FORTRAN for an ICL 1905E com-
puter. The program has been tested on a number of manufactured problems.
Table 1 gives some information on the running of the program on six non-
degenerate problems. In this table m and n are as in (1). The number of extreme
points and unbounded edges of the polyhedron for each of the test problems is
indicated together with the execution time on the 1905E. These computing times
are only accurate to about one second either way and are given only as an

94 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

Tab le 1

P r o b l e m s m n

E x e c u t i o n

N u m b e r of N u m b e r of t ime on

e x t r e m e u n b o u n d e d I C L 1905E

po in t s edges (seconds)

1 6 6 54 0 8
2 6 7 78 0 12

3 6 8 111 0 17

4 6 9 134 0 25

5 6 10 247 0 56

6 20 3 12 0 5

7 25 4 25 0 10

8 9 8 170 102 45

9 6 10 130 214 42

indication of the performance of the method as programmed for this particular
machine. In Table 1 Problems 1 to 5 were obtained by taking the first 6, 7, 8, 9,
10 columns respectively of the following set of inequalities:

-- 3X 1 -- 3X 2 + 3X 3 + 4x4 + 2x5 + 3 x 6 + 2x7 + 5 x 8 + l x 9 + 2Xlo ~< 120,

3Xl + 3 x 2 - 3 x 3 - 2 x 4 + 2 x 5 + 3 x 6 + 4 x 7 + 1 x 8 -t- l x 9 - - 5Xlo ~ 121,

3x~ + 3X 2 + 3X 3 + 4X4 -- 4X5 - 3 x 6 + 2x7 + Ox8 + l x 9 + 4X~o ~< 122,

-3x~ + 3 x 2 - 3 x 3 + 4 x 4 + 2x5 + 3 x 6 + 4 x 7 -t- 5 x 8 + l x 9 - 2Xl0 ~ 123,

3X 1 -- 3X 2 + 3X 3 -- 2X 4 + 2x5 + 3 x 6 - 3 x 7 - 2x8 + l x 9 + 0Xl0 ~ 124,

3x~ + 3 x 2 + 3 x 3 - 2 x 4 + 2 x 5 - 3 x 6 - 3 x 7 - 3x8 + l x 9 + l x l 0 ~ 1 2 5 .

(All variables non-negative.)
Problems 6, 7 each contain a large proportion of redundant inequalities (15 and
16 respectively) and Problems 8, 9 are unbounded.

Experience with degenerate problems confirms the recommendations of Sec-
tion 2 as regards perturbing the problem data.

There is little in the literature with which to compare these results. The papers
of Motzkin [14] and Burdet [3] cite no computational experience. Silverman [19]
gives only a count of the number of simplex pivots required by his method to
solve eight degenerate three dimensional problems. Mattheis [13] gives some
times for computing the vertices of n-dimensional simplices and hypercubes for
n = 1 30. These are, however, rather special polytopes for the above (or
any) algorithm. The simplex is simply the case m = 1 in (1), and for the
hypercube problem at is a unit vector for each l so that all the pivoting is trivial.
Also storage is a problem for n beyond about 10. Indeed it is difficult to see how
Mattheis, who also maintains a list structure, could store so many entries.

Balinski [1] and Manas and Nedoma [12] each give a computing time for one
problem. It is impossible to draw any comparisons, however, since neither paper
presents the exact problem solved. In this context it is hoped that the problem

M.E. Dyer and L.G. Proll/ An algorithm for extreme points 95

given above may act as a benchmark to compare the method presented here with
possible alternatives.

6. Conclusions

A description has been given of an algorithm, compat ible with standard linear
programming methods, for the determination of all ex t reme points of a polytope
associated with a set of linear inequalities. Some modifications have been
discussed and limited computat ional exper ience with the algorithm has been
presented. Further work in applying the method is being undertaken.

A main feature of the method is to conduc t compar isons for adjacency
directly rather than to per form unnecessary pivoting. The justification for this is
that these compar isons use only fixed point operat ions on a computer , which are
less costly in time than the floating point operat ions involved in pivoting. A
useful side-benefit of this is that complete information on the graphical structure
of the polytope is available with no additional effort. Informat ion on the
higher-dimensional face-structure (e.g. [3]) would require extra computat ion,
however .

The search strategy we have used is breadth-first. An equivalent algorithm
using a depth-first s trategy can be devised. The advantage of using the product-
form representat ion disappears, however , although the compar ison routine can
be somewhat streamlined. The method of Manas and Nedoma [12], although n o t
expressed in these terms, is similar to a depth-first search.

A mention was made (in 1.1) that the algorithm can be easily adapted for the
extreme-point ranking problem defined in 1.0. For this application the root node
would be the minimum (say) of the linear function. The function value for each
basic feasible solution generated would be stored. The only change required in
the algorithm is that the nodes are not now considered in list order but in
increasing order of the function. In other words the next node to be selected at
each stage is not the first unconsidered node but the unconsidered node having
least value of the linear function. Some work in applying the method (in a
s trengthened form) to the solution of ze ro -one integer programming problems is
currently under way.

References

[1] M.L. Balinski, "An algorithm for finding all vertices of convex polyhedral sets", Journal of the
Society Industrial and Applied Mathematics (1961) 72-88.

[2] C. Berge, The theory of graphs and its applications (Methuen, London, 1962).
[3] C.A. Burdet, "Generating all the faces of a polyhedron", S I A M Journal on Applied

Mathematics, 26 (1974) 479-489.
[4] V.A. Cabot and R.L. Francis, "Solving certain nonconvex quadratic minimization problems by

ranking the extreme points", Operations Research, 18 (1970) 82-86.
[5] A. Charnes, W.W. Cooper and A. Henderson, An introduction to linear programming (Wiley;

New York, 1953).

96 M.E. Dyer and L.G. Proll/ An algorithm for extreme points

[6] N.V. Chernikova, "An algorithm for finding a general formula for non-negative solutions of a
system of linear inequalities", U.S.S.R. Computational Mathematics and Mathematical Physics
5 (1965) 228-233.

[7] H. Greenberg, "An algorithm for determining redundant inequalities and all solutions to
polyhedra", Numerische Mathematik, 24 (1975) 19-26.

[8] B. Grunbaum, Convex polytopes (Wiley, New York, 1967).
[9] G. Hadley, Linear programming (Addison-Wesley, Reading, MA, 1962).

[10] M.J.L. Kirby, H.L. Love and Kanti Swarup, "Extreme point mathematical programming",
Management Science, 18 (1972) 540-549.

[11] D.E. Knuth, The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-
Wesley, Reading, MA, 1968).

[12] M. Manas and J. Nedoma, "Finding all vertices of a convex polyhedron", Numerische
Mathematik, 12 (1968) 226-229.

[13] T.H. Mattheis, "An algorithm for determining irrelevant constraints and all vertices in systems
of linear inequalities", Operations Research 21 (1973) 247-260.

[14] T.S. Motzkin, H. Raiffa, G.L. Thompson and R.M. Thrall, "The double description method", in:
H.W. Kuhn and A.W. Tucker, eds., Contributions to the theory of games, Vol. 2, (Princeton
University Press, Princeton, RI, 1973).

[15] K.G. Murty, "Solving the fixed charge problem by ranking the extreme points", Operations
Research 16 (1968) 268-279.

[16] K.G. Murty, "An algorithm for ranking all the assignments in increasing order of costs",
Operations Research 16 (1969) 682-687.

[17] M.A. Pollatschek and B. Avi-Itshak, "Sorting feasible basic solutions of a linear program",
presented at the 3rd Annual Israel Conference on Operations Research (1969).

[18] D.S. Rubin, "Vertex generation and cardinality constrained linear programs", Operations
Research 23 (1975) 555-564.

[19] G.J. Silverman, "Computational considerations in extreme point enumeration". IBM Los
Angeles Scientific Center, Report G320-2649 (1971).

[20] W.J. Sullivan and E. Koenigsberg, "Mixed integer programming applied to ship allocation", in:
E.M.L. Beale, ed., Applications of mathematical programming techniques, (English Univer-
sities' Press, London, 1970).

[21] H. Uzawa, "A theorem on convex polyhedral cones", in: Arrow, Hurwicz and Uzawa, eds.,
Studies in linear and nonlinear programming, (Standford University Press, Stanford, CA, 1958).

[22] S. Vajda, "Manpower planning and mathematical programming", paper presented at the
Operational Research Society annual conference, Brighton (1974).

[23] C. Van De Panne, "A node method for multiparametric linear programming", Management
Science 21 (1975) 1014-1020.

