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An algorithm for determining all the extreme points of a convex polytope associated with a 
set of linear constraints, via the computation of basic feasible solutions to the constraints, is 
presented. The algorithm is based on the product-form revised simplex method and as such 
can be readily linked onto standard linear programming codes. Applications of such an 
algorithm are reviewed and limited computational experience given. 

1. Introduction 

The problem of enumerat ing all the ext reme points of the convex polyhedron of 
feasible solutions to a finite set of linear inequalities in real n dimensional space 
has been discussed by several  authors,  a brief review of the literature being 
given in Section 1.1. below. This problem, together with the closely related one 
of ranking the ext reme points in ascending or descending order of the value of a 
further  linear function defined on the polyhedron,  has a number  of applications 
in mathemat ical  programming and related areas. The interest in convex  polyhe- 
dra undoubtedly arises f rom the ease with which linearly constrained program- 
ming problems are handled by the simplex method and its variants. 

Applications of methods for determining ext reme points fall into two main 
classes. The first class simply utilises t h e  dual representat ion of a bounded 
polyhedron (polytope) by convex  combinations of its ext reme points to describe 
the set of solutions to the inequalities. The second class uses the fact  that the set 
of ex t reme points may  often contain as a subset  some target  set of points which, 
although the true objects  of  interest,  are difficult to describe explicitly. 

Among the first type of application, the most  important  is that of determining 
all optimal solutions to a linear program. This is discussed, for example,  by 
Hadley  [9]. Related problems are those of determining all optimal strategies to a 
matrix game (Motzkin et al. [14]) and of determining all 'near-opt imal '  solutions 
to a linear program,  the need for which has been remarked upon, for example,  
by Koenigsberg [20] and Van de Panne  [23]. Van de Panne  [23] has also shown 
that  ext reme point enumerat ion methods can be used to solve certain problems 
in mult iparametr ic  linear programming.  Vajda [22] has described a manpower  
planning problem which is also related to ext reme point enumerat ion.  

The second type of application usually involves ex t reme point ranking in the 
above sense. They were due originally to Murty [15] who applied ext reme point 
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ranking to the fixed charge problem and later to the travelling salesman problem 
[16]. An alternative method has been proposed by Pollatschek and Avi-Itzhak 
[17]. They describe its application to zero-one mixed-integer programming. 

Other applications are due to Cabot and Francis [4] in the field of nonconvex 
quadratic programming and to Kirby, Love and Swarup [10] to a generalised 
problem termed extreme point mathematical programming. Burdet [3] considers 
applications to general zero-one linear programming and to quadratic pro- 
gramming. 

1.1. Review o f  the problem 

While much research has been devoted to convex polytopes (see e.g. Grun- 
baum [8]), it appears that in general they have few useful properties which can 
be exploited in order to enumerate easily their extreme points. 

The earliest published method appears to be that of Motzkin et al. [14]. Their 
approach is to add inequalities in a stepwise manner, noting at each step which 
"new"  extreme points have been created and which "old"  ones excluded. This 
has certain merits but the chief disadvantage is that, if many of the inequalities 
are redundant,  much effort may be wasted calculating extreme points which will 
later be excluded. 

It is well known that the problem of determining all the extreme points 
reduces to that of enumerating all the basic feasible solutions for the inequali- 
ties. In the nondegenerate case, in which each extreme point of the polytope is 
the intersection of exactly n hyperplanes in n dimensions, the correspondence 
between the two sets is one to one. In other cases the polytope may be 
"per turbed"  by standard methods to restore this correspondence.  This allows 
the use of the simplex tableau to represent the extreme point algebraically. 
Unfortunately it is well known [13] that it is not, in general, possible to generate 
a complete non-recurrent  sequence of basic feasible solutions by simplex pivots. 

Balinski [1] was the first to adapt the format of the simplex tableau to the 
problem. He devised a flexible search method based on successively relaxing the 
inequalities. The "book-keeping" for this algorithm is particularly simple but the 
method, like Motzkin's,  may be inefficient in the presence of large numbers of 
irrelevant constraints since infeasible basic solutions are visited. Manas and 
Nedoma [12] also use the simplex tableau but generate only basic feasible 
solutions. The "book-keeping" for this algorithm requires a list of the indices of 
the basic variables at each basic feasible solution to be held. They attempt to 
trace an edge-path on the polytope terminating when each extreme point has 
been visited at least once. Silverman [19] has also devised a method along these 
lines which he calls the G-Path Method. The essential difference between the 
methods of Silverman and Manas and Nedoma is in the use made of this G-path 
construct. This is an edge path on the polytope such that each extreme point 
either lies on the path or is adjacent to some point on the path. It will be readily 
observed that, in order to enumerate all the extreme points of the polytope, it is 
sufficient to follow such a path. Silverman also discusses, in general terms, the 
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computational requirements of certain other algorithms. 
Mattheis [13] adds a further "generalised-slack" variable to the inequalities. 

He then views the original polytope as a special facet  of a polytope in (n + 1) 
dimensions. The search then takes place among the extreme points of the higher 
dimensional polytope which do not lie in the special facet. The points of the 
original polytope are then generated as "neighbours"  of these points. He shows 
that redundant  inequalities do not affect the process,  but the main justification 
for the additional complication rests on an unproven conjecture that fewer  
points will be explicitly generated than in a search of the original polytope. 

Burdet  [3] presents an intuitively appealing approach using (basically) re- 
peated applications of a Phase  I linear programming method to construct  a kind 
of branch and bound search for basic feasible solutions. This method will 
probably need more simplex pivoting operations than its competitors in the 
nondegenerate case but could be useful in cases of significant degeneracy.  
However ,  it seems that certain simplifications which he claims may be made 
(with respect  to two-dimensional and simplicial faces) will have little power in 
the scheme proposed,  and might well be omitted in a practical scheme. He gives 
no example. 

Chernikova [6] gives an algorithm for determining the extreme edges of a 
convex polyhedral  cone. This can be adapted in a straightforward manner to find 
the extreme points of a convex polyhedron.  The idea is similar in many respects to 
that of Motzkin et al. [14] but is presented in a slightly different framework.  It is 
discussed by Rubin [18], who also gives an application to "cardinality constrained" 
linear programming. 

Greenberg [7] also presents a method for calculating all edges of a cone. His 
development  is based on a theorem of Uzawa [21], strengthened by incorporat- 
ing certain exclusion tests on candidate edges. The technique again has 
similarities with that of Motzkin et al. [14]. 

Other suggestions have been made by Hadley [9] and Charnes [5]. 
In general little attention has been paid in the papers referenced above to 

computer  implementation; indeed several of the methods contain vague or 
ill-defined steps. In addition little computational experience has been cited. 

The method presented here is based on the simplex method but uses the 
format  of the product  form revised simplex method [9]. Instead of using a single 
tableau and following a path on the edges of a polytope, the algorithm constructs 
a spanning tree in the graph of the polytope. Section 2 outlines the necessary 
concepts.  Certain information is associated with each node of the tree, the 
nature of which is described in Section 3.1. The structure of the tree is exploited 
to compare directly the adjacency of each feasible basis with those previously 
found. This comparison occurs at most once between any two bases and allows 
us to avoid updating many columns of the simplex tableau in the later stages of 
the search. The working of the algorithm is described in Sections 3.2 and 3.3. 
The search strategy used to construct  the tree is basically breadth-first and the 
resultant tree has a certain minimality property which is described in Section 3.4. 

In Section 4 an example is presented and some computational experience with 
computer  implementation of the algorithm is given in Section 5. 
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It is felt that the product- form orientation makes  the method more easily 
compatible  with standard linear programming procedures  than other methods.  
The method can further  be readily adapted to rank the ext reme points and hence 
is equally useful for  both types of application outlined in the previous section. 

2. Notation and definitions 

We consider the inequalities 

~ ai~xj <-- aio (i = 1 . . . . . .  m), (1) 
j=l 

xi->0 ( / = 1  . . . . . .  n) 
where 

ai0->0 (i = 1 . . . . . .  m). 

It  may be noted that any consistent  set of linear inequalities can be 
manipulated into the form of (1). This is shown in most  of the standard linear 
programming texts, for example,  Hadley [9]. It will be assumed that (1) has a 
bounded solution set. This can easily be arranged by adding (if necessary)  the 
additional inequality 

~"~x i ---M for large enough M. 
j=l 

If  (1) has degenerate basic feasible solutions then it will be wise to incorporate 
some perturbat ion (implicit or explicit) to the ai0 in order to minimise the number  
of repetitions of degenerate ext reme points. 

We add slack variables to (1) in the usual way to give the system 

~ aiix j + Xn+ i = aio (i = 1 . . . . .  m)  (2) 
i=1 

where xi-->0 ( ] = 1  . . . . . .  m + n ) .  

The (column) m-vec tor  of the coefficients of x i (j = 1 . . . . .  m + n) in (2) will be 
referred to as column j and will be denoted by a i (j = 1 . . . . .  n) or ej-n (] = 
n + 1 . . . . .  n + m). The right-hand sides of (2) form the vector  a0. 

A basis B of (2) is a nonsingular m x m matrix of the columns of m basic 
variables. The remaining variables are nonbasic. We write dj = B-lai with 
obvious extensions to %, a0 etc. A basis is feasible if tii0--> 0 (i = 1 . . . . .  m). The 
corresponding solution to (2) is a basic feasible solution. It will be assumed that 
the reader is familiar with these ideas and the notions of pivoting which are used 
to compute  these updated columns, ~i i, in the product - form revised simplex 
algorithm. For further information, see Hadley [9]. We also use /3 to denote the 
set of indices of basic variables corresponding to B. 

In the development  of the algorithm we use the concept  of a multiset [11] i.e. 
an entity like a set but allowed to contain repeated elements.  For  a given 
element,  we define N ( A )  to be the number  of occurrences  of the element  in the 
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multiset A. The relations 

N ( A  U+B) = N ( A )  + N ( B ) ,  (3) 

N ( A  - B )  = N ( A )  - min(N(A),  N ( B ) )  (4) 

then define the operators 'U +' and ' - '  on multisets. Clearly a set may regard as 
a multiset. We use [A[ to denote the sum of terms N ( A )  over all elements in the 
multiset. 

In the discussion below we borrow certain terminology from the theory of 
graphs. For an introduction to these concepts the reader should consult a 
standard text such as Berge [2]. The graph G of the polytope corresponding to 
(2) has a node for each feasible basis and an arc connecting two nodes if the two 
bases differ in exactly one column. We call the bases adjacent, or neighbours if 
they are connected by an arc of G. The node of G corresponding to basis B0 
containing columns (n + 1) . . . . .  (n + m) is called the root node, r, of G. It will be 
noted that B0 is an identity matrix. The corresponding basic feasible solution is 
xj = 0 (] = 1 . . . . .  n) and x,+l = aio (i = 1 . . . . .  m) .  

The algorithm constructs a tree, T, containing r. If t is a node of T, this 
orientation defines the (unique) predecessor P ( t )  of t, and t is a successor of 
P ( t ) .  If P ( r )  is defined to be r, then P can be considered to be a function from 
the set of nodes in T into itself, the tree function. The height h( t )  of t is the 
number of arcs in the (unique) path from r to t in T. In terms of P, we have 

h( t )  = min{k: p k ( t )  = r}. 

The algorithm terminates when T is a spanning tree of G. 

3. The algorithm 

3.1. Organizat ion  

At a typical stage of the algorithm, the gth, a list of feasible bases B0, Bl . . . . .  B, 
to (2) will have been constructed. B0 corresponds to the root node r and hence is 
the m x m identity matrix. The nodes of T will be identified with the cor- 
responding index  of the associated basis in this list. The B~ are not retained 
explicitly, however,  but sufficient information is stored to allow us to pre- 
multiply by their inverses as necessary. This information is, in principle, the 

eta-vectors of the product-form revised simplex method. We also list information 
on which of these bases are known to be adjacent. The data stored for each node l is 
as follows: 

(i) p~: The predecessor P ( l )  of 1 in T. Such numbers determine the structure 
of T. 

(ii) ql: The index of the pivotal row in the pivotal operation transforming Bn 1 
to B~ -1. 

(iii) h: The index of the column entering the basis in the above operation. 
(iv) s~: The index of the column leaving the basis in the above operation. 
(v) y~: A set of indices of columns such that, if j E y~, the list is known to 
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contain a basis B containing column ] and differing f rom Bt in at most  one 
column. In particular, 7~ contains the indices of the basis variables in B~. 

(vi) al: The ( m x  1) pivot  column in the operat ion t ransforming Bp~ 1 to B [  ~. In 
fact  a~ = B~la,t and is virtually the e ta-vector  of the product - form method.  This 
notation may  appear  initially confusing but no conflict arises since, for l -< n, at 
is identical t o  column l of (2). This follows f rom the facts that B0 is an identity 
matrix and, for  l -- n, r~ = I. 

At the start of the algorithm, we will have stored a0, a~ . . . . .  an and we set 

p0 (--- O, g ~--- O, 

7o~---{n + l , n  + 2 . . . . .  n + m}. 

3.2. Outline d iscuss ion 

In this section the main features of the algorithm are outlined, a detailed 
description being given in Section 3.3. 

At the start  of the gth stage, the nodes of T may be thought of as being 
divided into two sets. The set of nodes 

C = {0, 1 . . . . .  (g - 1)} 

is called the set of considered nodes with the proper ty  that the current  list 
contains all feasible bases adjacent  to any basis associated with C. The remain- 
ing set of nodes 

D = {g, (g + 1) . . . . .  u} 

is called the set of unconsidered nodes. 
At the gth stage, the first unconsidered node g is selected and becomes  

considered. From the information associated with the sequence of nodes 

g, p (g), p 2(g) . . . . .  0 

we can construct  the basic set /3g of Bg and also deduce the e ta-vector  
representat ion of B~ 1. We determine ~i 0, the updated right hand side, using the 
forward t ransformations of the product - form method. At this point the ex t reme 
point corresponding to Bg has been determined. 

Currently 7g contains, in addition to the indices of the basic columns of B e, the 
indices of nonbasic columns which would generate a node in C if exchanged for  
a column of B r Clearly if 7g contains the indices of all the columns of (2) then 
the list contains all feasible bases adjacent  to Bg. If this is the case the gth stage 
is complete.  Otherwise a compar ison for adjacency of node g with the remaining 
nodes of D is commenced .  For this purpose we use only the sets of numbers  Pt, 
rt, st. Since any basic feasible solution to (2) can be reached f rom any other basic 
feasible solution by a finite number  of simplex pivots and since every basic 
feasible solution associated with T can be reached f rom node 0 by a sequence of 
feasible simplex pivots,  it is clear that the path in T f rom g to any node d E D 
can be constructed using the p~. The comparison test  proceeds  by tracing back 
the paths in T f rom g to 0 and d to 0 until they meet  at a common  node, u (say). 
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Then 

P~(g) = p k ( d )  = u for some j, k 

and the path f rom g to d is 

g, p ( g ) , - - - ,  p i - l (g ) ,  u, P k - ~ ( d ) , - - - ,  P (d),  d. 

Let  

sJ-lz \', Xg = {Sg, S p ( g ) , - - - ,  p t g ) b  

r~ = {r e, rp(g),--- , /p~(g)}, 

i.e. Xg contains the indices of the variables leaving the successive bases on the 
path from u to g, Yg contains similar information on the entering variables. Xd, 
Yd can clearly be defined in a similar manner. Note  that, in general, Xg, Y~, Xa, 
Yd are multi-sets and 

/3~ = ( / 3 , ,  u + YD - x~, (5) 

18d = (~ .  U + Y~) - Xa. (6) 

Consider (5), by (3) and (4) 

N (~g ) = N (fl,) + N ( Yg ) - min[N(/3,) + N ( Yg ), N(Xg)]. 

Clearly, in order to leave a particular basis, a variable must have either been 
present  in the initial basis /3~ or have entered a previously encountered basis, 
i.e., 

hence 

Similarly, 

Hence  

N ( X g )  <- N ( B . )  + N ( Y g )  

N (tSe) = N (~, )  + N ( Yg) - N (Xg). 

N(jOa) = N ( ~ , ) +  N ( Y d ) -  N(X,D.  

N(f lg - /3e)  = [N(/3u) + N ( Y g )  - N(Xg)] - min[N(/3,) + N ( Y g )  - N ( X g ) ,  

N([3,)  + N ( Y a )  - N(Xd)]. (7) 

Subtracting N(/3u) - N ( X g )  - N ( X e )  from each term on the right-hand side of (7), 
we obtain 

N(~g  - ~d) = N ( Y g )  + N(X ,D  - min[N(Y~) + N ( X a ) ,  N ( Y a )  + N(Xe)]. 

Hence 

fig - r i d  = ( Yg U+ X a ) - ( Y a  U+Xg) = p. 

By symmetry,  

~a - f i g  = ( Yd U + Xg)  - ( Y~ U+ Xd)  = ~r. 

(8) 

(9) 
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p may be interpreted as the set of indices of variables which enter the basis but 
do not leave during the basis exchanges on the path f rom g to d, o- having a 
similar interpretation for the path f rom d to g. One method of testing the 
adjacency of nodes g and d, therefore,  is to construct  the sets p and o- and to 
test whether  Ipl = 1 = Io-]. In principle it is necessary to construct  only one of 
these sets in order to test  adjacency but it is little more work to construct  both 
and, in the event  of g and d being adjacent,  p and ~r define the (single) basis 
exchange which is necessary  to get f rom g to d (and d to g). 

The compar ison test  detailed in Section 3.3 constructs  p and o" f rom (8) and (9) 
respect ively in an efficient manner  by inspecting arcs f rom the path f rom g to u 
and f rom d to u alternately. This allows 

(a) u to be recognised as quickly as possible, 
(b) the sets X~, Yg, Xd, Yd to be built up element  by element  and the 

cancelation of common elements implied by (8) and (9) to be per formed as 
quickly as possible, 
thereby minimizing the space required to assemble p and o-. This strategy is 
possible because 

hence 

d E D ~  P ( d ) @ C  

P ( d ) < - g  < d .  

It follows f rom Proposi t ion 1 (Section 3.4) that 

k - l < ~ j < ~ k ,  

i.e., g and d differ by at most  one level in the tree. 
Conducting the compar ison in this form involves the storage of less in- 

format ion than retaining the entire set of indices of basic variables for each node 
as do Manas and Nedoma  [12]. Fur thermore  no more operations will generally 
be involved than would be needed to compare  two such sets; fewer  operat ions 
will be needed when g and d are "c lose"  in T. 

If g and d are found to be adjacent  the sets yg and Yd are adjusted by adding 
to each the appropriate  index. The gth stage will be abandoned should yg include 
all indices of columns in (2). If, however ,  the examinat ion of D is completed 
without this condition being fulfilled, new bases are added to the list. For  each 
] ~  yg, we form 

¢B;'aj (j ~< n), 
aJ = ~ °l.Bg'ej , (j > n). 

and determine the pivotal  row, t, and the outgoing column, k, assuming that 
column ] enters the basis. In each case, a new node l is then added to D with the 
following information: 

Pt = g, gl = t, rt = j, s t = k ,  

"/i = fig U {]}, al = a i. (10) 



M.E. Dyer and L.G. Proll/ An  algorithm for  extreme points 89 

The gth stage is then complete  and the (g + 1)th commences .  The algorithm 
terminates  when the set of unconsidered nodes,  D, is empty ,  all feasible bases 
having been enumerated.  

3.3. D e t a i l e d  d i s c u s s i o n  

In this section the main computat ional  steps of a typical stage of the algorithm are 
described in more precise fashion. The functional notation P(1)  for the number  p~ 
will be used throughout.  

First h ( g )  is determined f rom the condition h ( g )  = min{k: p k ( g )  = 0}. 
The path in T f rom 0 to g passes  through nodes p k ( g )  for  k = h ( g ) ,  

h ( g ) -  1 . . . . .  0. The set of basic variables for  g is then obtained by a repeated 
substitution: 

(A) B a s i c  se t  f o r m a t i o n  
(0) Initialisation. bi ~ n + i (i = 1 . . . . .  m ) ,  k ~ h (g ) .  

(1) If  k = 0 terminate.  
(2) Substitution. k ~ - - k -  1, l ~ - - p k ( g ) ,  bq~ ~ rt. Go to (1). 

The vector  b now contains the indices of the basic variables in " row-order" .  
The right-hand side vector  do is now calculated. The following routine is used 

with j = 0, but is described for  a general column ] of (2) for  later reference.  

(B) C o l u m n  u p d a t e  

(0) Initialisation. If  j ~< n, z ~-- aj otherwise z ~-- ei_ n, k ~ -  h (g ) .  
(1) If  k = 0, set tij ~ - z  and terminate.  
(2) Forward  t ransformation,  k ~-- k -  1, l ~-- p k ( g ) ,  Zo~ +__ ZqJatqc For  iS  qt, 

Z i ~"  Z i --Zqtali. Go to (1). 
The ext reme point is now determined by Xb~ =-tioi (i = 1 . . . . .  m) and xj = 0 

(]~/3) .  The gth stage is complete  if 3'g = { 1 , . . . , m  +n},  otherwise the com- 
parison for ad jacency with D is begun. It appears  best  to use an efficient 
implementat ion of the following routine for  this purpose.  The compar ison of g 
with a given d E D is described. 

(C) C o m p a r i s o n  

(0) Initialisation. O, tr <--- IJ. k ~-- g, l <--- d. 
(1) If  k > l :  r~---rk, s "~--sk, k ~---P(k) .  Go to (2). 

(2) 

(3) 

If k < l :  r ~ - s t ,  s ~--rt, l ~ - - P ( I ) .  Go to (2). 
If  k = 1, go to (3). 
If  r E  or, o-~-- t r - { r } ,  otherwise p ~--p U+{r}. 
If  s E p, p * - - p - { s } ,  otherwise tr +--o" U+{s}. Go to (1). 
If  [p[ = 1, g and d are adjacent,  otherwise not. 
If  g, d are found to be adjacent,  yg ~ yg U tr, Td ~ Y~ U p. 

If  the gth stage is still not complete  when D is exhausted,  the generation of 
new feasible bases begins. For  each variable index j ~  yg, update column ] using 
the routine of (B) above.  Determine the pivotal  row t by the usual ratio method,  
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i.e., t is the index at which doi/dji attains its minimum for  dj,-> 0 (i = 1 . . . . .  m). 
The variable which will leave the basis is k = bt. The information for each new 
node is stored as indicated in (10). We set g ~ g + 1 and (provided g ~< u) enter 
the next  stage of the algorithm. 

3.4. Properties of the algorithm 

It will be clear f rom the above description that the algorithm will generate all 
feasible bases and terminate.  It is also easy to see that each pair of ext reme 
points will be compared  at most  once for  adjacency.  We can further  establish 
the following: 

Proposition 1. If g < l, then h(g) <~ h(l). 

Otherwise,  suppose g is the lowest  numbered node such that there is an l > g 
with h(g)> h(l). The structure of T clearly implies that P ( g ) <  g, P ( l ) < l  and 
P(g)<-P( l ) .  But h ( P ( g ) ) = h ( g ) - l ,  h ( P ( l ) ) = h ( l ) - I  and hence h(P(g) )>  
h(P(l)) .  This contradicts the assumption that g was the least such number.  

Thus the algorithm numbers  the nodes in non-decreasing order of height in T. 
This is sometimes called a bot tom-up labelling of T. 

Proposition 2. If  h ~(g) is the number of arcs in any path from node 0 to node g in 
G, then h(g) <~ h ~(g). 

Otherwise,  suppose there is a path in G f rom node 0 containing a node which 
violates the assumption.  Let  g be the first such node encountered.  Clearly g > 0 
since hi(0) = h(0) = 0. Suppose l is the node immediately before g on the path, 
then hi(1)= h~(g) - 1. But f rom the priority of g, h(I)<~h~(l)= hi(g) - 1 < 
h(g) - 1. But h(P(g))  = h(g) - 1, so h(l) < h(P(g)).  But then, f rom Proposi t ion 1, 
we have I < P (g). But since l is adjacent  to g, the way T is constructed implies 
1>I P(g),  giving a contradiction. 

This implies that each feasible basis is generated in the smallest  possible 
number  of basis exchanges given that all intervening bases must  be feasible. In 
graphical terms T is a tree of "shor tes t  routes"  f rom node 0 if all edges of G 
have unit weight. 

The minimality proper ty  expressed by Proposi t ion 2 is perhaps useful in a 
numerical  sense since computat ional  errors will tend to grow with the number  of 
basis exchanges.  

It  will be noted that both propert ies derive f rom the method used to construct  
T. 

4. Example 

The following problem first appeared in Balinski [1] and was used by Mattheis 
[13] as an illustrative example:  
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D e t e r m i n e  all the e x t r e m e  points  of  the po ly tope  r e p r e s e n t e d  by the equa t ions  

x4 + 3xl + 2 x 2 -  x3 = 6, 

x5 + 3xl + 2x2 + 4x3 = 16, 

x6 + 3xl - 4 x  3 = 3, 

X 7 "b 9X 1 + 4X 2 + 3X3 = 17, 
X 8+ X 1 + 2 x  2+ X 3= 10. 

(all var iab les  non-negat ive) .  
Since the a lgor i thm is des igned for  c o m p u t e r  implemen ta t ion ,  detai led com-  

pu ta t ions  are not  g iven below.  Rather ,  an outl ine of  the p rogress  of  the m e t h o d  
on this p r o b l e m  will be  p resen ted .  

Ini t ial ly  we have  

ao +-- (6, 16, 3, 17, 10), al ~--- (3, 3, 3, 9, 1), 

az ~--- (2, 2, 0, 4, 2), a3 ~--- ( -  1, 4, - 4 ,  3, 1), 

p0 ~--- 0, y0"~-- {4, 5, 6, 7, 8}, g ~--- 0, u <-- 0. 
Stage  0. h(0) = 0; b ~-- (4, 5, 6, 7, 8), ~i 0 ~-- (6, 16, 3, 17, 10). E x t r e m e  point  0 is 

de te rmined .  Crea te  new entr ies  for  ] = 1, 2, 3. 

p l y - - 0 ,  q1~--3, rl~---l ,  S 1 ~ - - 6 ,  

pz ~-  O, q2 ~-- 1, r2 ~-- 2, s2 ~--- 4, 

p3<---0, q3~--2, r3<--3 , s 3 ~ - 5 ,  

g ~--- 1, u *-- 3. 

Stage  

yl ~--- {1,4, 5, 6, 7, 8}. 

y2 ~-- {2, 4, 5, 6, 7, 8}. 

y3 +-- {3, 4, 5, 6, 7, 8}. 

1. h ( 1 ) =  1; b ~--(4,5,  1 ,7 ,8) ,  ~i0+-- (3, 13, 1,143,9). E x t r e m e  point  1 is 
de te rmined .  The  c o m p a r i s o n  rout ine  gives 1 nonad j acen t  with 2 or 3. Thus  c rea te  
new nodes  fo r  ] = 2, 3. 

~ *-- (2, 2, 0, 4, 2), ci3 ~-- (3, 8, - 4, 6, 7), 

p4~---1, q4~--1, r4~---2 , $4~---4 , y4 ~--- {1, 2, 4, 5, 7, 8}, a4~---d 2. 

ps*- -1 ,  qs~---1, r5~---3, s5~---4, y5~- -{1 ,3 ,4 ,5 ,7 ,8} ,  as*--ti3. 

g ~--- 2, u ~--- 5. 

Stage  2. h ( 2 ) =  1; b * - - ( 2 , 5 , 6 , 7 , 8 ) ,  ~i0*--(3 , 10 ,3 ,5 ,4 ) .  The  c o m p a r i s o n  rou-  
t ine gives 2 n o n a d j a c e n t  to 3, 5 but  ad jacen t  to 4. T h e n  

yz ~-- {1, 2, 4, 5, 6, 7, 8}, y4*-- {1, 2, 4, 5, 6, 7, 8}. 

Crea t e  new node  fo r  ] = 3. 

g3 ~--- (-½, 5, - 4 ,  5, 2), 

/36 ~-- 2, q6 ~ 4, F 6 ,~- 3, s 6 *-- 7, Y6 ~ {2, 3, 5, 6, 7, 8}, a6 ~ a3-  

g ~--- 3, u ~-- 6. 

Stage  3. h ( 3 ) =  1; b ~--- (4, 3, 6, 7, 8), a0 ~--- (10,4,  19,5, 6). C o m p a r i s o n  gives 3 
n o n a d j a c e n t  wi th  4, 5, 6. Thus  c rea te  new nodes  fo r  ] = 1, 2. 
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<___l_ 5 ! 5 3 d, ~- @, 3, 6, O, 1), d2 t2, 2, 2, ~, 5), 

p7~--3, qT~--1, rT*--1 , s 7 - - 4  , y7 ~-- {1, 3, 4, 6, 7, 8}, a7~---d I. 

P8~--3, q8~--4, r8~---2, s8~--7, ~/s ~-- {2, 3, 4, 6, 7, 8}, as~--d2. 

g ~--- 4, u ~--- 8. 

Stage 4. h(4) = 2; b ~-- (2, 5, 1, 7, 8), do ~-- (3, 10, 1, 83, 6). Compar ison  gives 
adjacent  to 5. Then 

y4*-- {1, 2, 3, 4, 5, 6, 7, 8}, 3,5 ~--- {1, 2, 3, 4, 5, 7, 8}. 

Abandon stage 4. g ~ 5. 

Stage 5. h ( 5 ) = 2 ;  b~- - (3 ,5 ,1  7,8),  d0~---(1 5, 7 ~3 20~ , , 3 ,  uZ,5-J- Compar ison  gives 5 
nonadjacent  to 6, adjacent  to 7. Hence  

y5 +-- {1, 2, 3, 4, 5, 6, 7, 8}, 3 ,7---{1,3,4,5,6,7,8}.  

Abandon stage 5. g ~ 6. 

Stage 6. h(6) = 2; b ~-- (2, 5, 6, 3, 8), do ~-- (7, 5, 7, 1, 2). Compar ison  gives 6 
nonadjacent  to 7, ad jacent  to 8. 

3,6 = {2, 3, 4, 5, 6, 7, 8}, 

Create new node for j = 1. 

d ,  ~ (9, ,5 3 l 
~ ,  O, - ~ ,  - 9 ,  

P9~---6, q9~--2, r9~-- 1, 

g~--7, u~--9. 

Y8 = {2, 3, 4, 5, 6, 7, 8}. 

89<---5, T9 ~"- {1, 2, 3, 5, 6, 8}, a9<---d~. 

Stage 7. h(7) = 2; b ~ (1, 3, 6, 7, 8), 
nonadjacent  to 8, ad jacent  to 9, so 

y7 ~--- {1, 2, 3, 4, 5, 6, 7, 8}, 

End stage 7, g ~--8. 

5 ~6~ Compar ison  gives 7 d0 ~-- (8, 2, 3, ,3J. 

T9 +--{1, 2, 3, 5, 6,7,  8}. 

Stage 8. h(8) = 2; b *--(4, 3, 6, 2, 8), 
adjacent  to 9 and 

3,8 ~-- {1, 2, 3, 4, 5, 6, 7, 8}, 

End stage 8, g ~ 9. 

do ~-- (5, 3, 15, 2, 3). Compar ison  gives 8 

T9 <--{1, 2, 3, 4, 5, 6,7,  8}. 

Stage 9. h (9 )=  3; b ~--(2, 1 ,6 ,3 ,8) ,  g0 ~-- (2, 4, 7, 2, 8). 

3~9 = {1, 2, 3,4,  5, 6, 7, 8}. 

End stage 9. 
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/ / / / /  

Fig. 1. Graph of polytope of example. 

All nodes have now been considered, thus terminate. The ten feasible bases 
and corresponding adjacencies have been computed. The graph G for the 
polytope of this example is presented in Figure 1. The tree T constructed by the 
algorithm is shown in solid line, other arcs of G in broken line. 

5. Computer implementation 

As with any algorithm, efficient implementation is essential for  practical use. In 
this respect  the following points may be noted. Firstly the sets Yt can be 
conveniently stored in a computer  in "packed"  binary form, since the only 
operations performed on any y~ are the addition of single elements and a 
once-for-all "decoding"  before the generation of new bases. A simple count of 
the number of indices currently in y~ will then suffice for  the test of termination 
in the comparison phase. Secondly,  careful attention should be paid to the 
coding of the comparison routine, since this will be used often during the 
execution of the algorithm. There are several ways in which the outline routine 
(C) of 3.3 can be efficiently programmed. Thirdly, for unbounded polyhedra 
there is no real necessity to introduce the additional inequality of Section 2. 
Unbounded edges are indicated by a completely negative updated column in the 
basis-generation phase. These columns may be simply ignored or, if the 
unbounded edges are of interest, output at this point. No new entry is created in 
the list. It may be further remarked that for maximum efficiency advantage could 
be taken of sparsity in the coefficients of the inequality set. Should storage be a 
limitation, the vectors a~ (I > n) could be located in backing store and only those 
few brought into central storage which are required at each stage. 

This algorithm has been programmed in FORTRAN for an ICL 1905E com- 
puter. The program has been tested on a number of manufactured problems. 
Table 1 gives some information on the running of the program on six non- 
degenerate problems. In this table m and n are as in (1). The number of extreme 
points and unbounded edges of the polyhedron for each of the test problems is 
indicated together with the execution time on the 1905E. These computing times 
are only accurate to about one second either way and are given only as an 



94 M.E. Dyer and L.G. Proll/ An algorithm for extreme points 

Tab le  1 

P r o b l e m s  m n 

E x e c u t i o n  

N u m b e r  of N u m b e r  of t ime  on  

e x t r e m e  u n b o u n d e d  I C L  1905E 

po in t s  edges  ( seconds )  

1 6 6 54 0 8 
2 6 7 78 0 12 

3 6 8 111 0 17 

4 6 9 134 0 25 

5 6 10 247 0 56 

6 20 3 12 0 5 

7 25 4 25 0 10 

8 9 8 170 102 45 

9 6 10 130 214 42 

indication of the performance of the method as programmed for this particular 
machine. In Table 1 Problems 1 to 5 were obtained by taking the first 6, 7, 8, 9, 
10 columns respectively of the following set of inequalities: 

-- 3X 1 --  3X 2 + 3X 3 + 4x4 + 2x5 + 3 x 6  + 2x7  + 5 x  8 + l x  9 + 2Xlo ~< 120, 

3Xl + 3 x  2 - 3 x  3 - 2 x  4 + 2 x  5 + 3 x  6 + 4 x  7 + 1 x  8 -t- l x  9 - -  5Xlo ~ 121, 

3x~ + 3X 2 + 3X 3 + 4X4 -- 4X5 - 3 x  6 + 2x7 + Ox8 + l x  9 + 4X~o ~< 122, 

-3x~ + 3 x  2 - 3 x  3 + 4 x  4 + 2x5 + 3 x  6 + 4 x  7 -t- 5 x  8 + l x  9 - 2Xl0 ~ 123, 

3X 1 --  3X 2 + 3X 3 --  2X 4 + 2x5 + 3 x  6 - 3 x  7 - 2x8 + l x  9 + 0Xl0 ~ 124, 

3x~ + 3 x  2 + 3 x  3 - 2 x  4 + 2 x  5 - 3 x  6 - 3 x  7 - 3x8 + l x 9  + l x l  0 ~ 1 2 5 .  

(All variables non-negative.) 
Problems 6, 7 each contain a large proportion of redundant inequalities (15 and 
16 respectively) and Problems 8, 9 are unbounded. 

Experience with degenerate problems confirms the recommendations of Sec- 
tion 2 as regards perturbing the problem data. 

There is little in the literature with which to compare these results. The papers 
of Motzkin [14] and Burdet [3] cite no computational experience. Silverman [19] 
gives only a count of the number of simplex pivots required by his method to 
solve eight degenerate three dimensional problems. Mattheis [13] gives some 
times for computing the vertices of n-dimensional simplices and hypercubes for 
n = 1 . . . . .  30. These are, however,  rather special polytopes for the above (or 
any) algorithm. The simplex is simply the case m = 1 in (1), and for the 
hypercube problem at is a unit vector for each l so that all the pivoting is trivial. 
Also storage is a problem for n beyond about 10. Indeed it is difficult to see how 
Mattheis, who also maintains a list structure, could store so many entries. 

Balinski [1] and Manas and Nedoma [12] each give a computing time for one 
problem. It is impossible to draw any comparisons, however,  since neither paper 
presents the exact problem solved. In this context it is hoped that the problem 



M.E. Dyer and L.G. Proll/ An algorithm for  extreme points 95 

given above may act as a benchmark  to compare  the method presented here with 
possible alternatives.  

6. Conclusions 

A description has been given of an algorithm, compat ible  with standard linear 
programming methods,  for  the determination of all ex t reme points of a polytope 
associated with a set of linear inequalities. Some modifications have been 
discussed and limited computat ional  exper ience with the algorithm has been 
presented.  Further  work in applying the method is being undertaken.  

A main feature  of the method is to conduc t  compar isons  for  adjacency 
directly rather  than to per form unnecessary  pivoting. The justification for this is 
that these compar isons  use only fixed point operat ions on a computer ,  which are 
less costly in time than the floating point operat ions involved in pivoting. A 
useful side-benefit of this is that complete  information on the graphical structure 
of the polytope is available with no additional effort. Informat ion  on the 
higher-dimensional face-structure  (e.g. [3]) would require extra  computat ion,  
however .  

The search strategy we have used is breadth-first.  An equivalent  algorithm 
using a depth-first s trategy can be devised. The advantage of using the product-  
form representat ion disappears,  however ,  although the compar ison routine can 
be somewhat  streamlined. The method of Manas and Nedoma  [12], although n o t  
expressed in these terms,  is similar to a depth-first search. 

A mention was made (in 1.1) that the algorithm can be easily adapted for the 
extreme-point  ranking problem defined in 1.0. For  this application the root node 
would be the minimum (say) of the linear function. The function value for each 
basic feasible solution generated would be stored. The only change required in 
the algorithm is that the nodes are not now considered in list order but in 
increasing order of the function. In other words the next  node to be selected at 
each stage is not the first unconsidered node but the unconsidered node having 
least value of the linear function. Some work  in applying the method (in a 
s trengthened form) to the solution of ze ro -one  integer programming problems is 
currently under way. 
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