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1. Introduction 

The problem of the steady rotation of a sphere in an infinite expanse of fluid 
has received considerable attention for Newtonian and non-Newtonian liquids 
[1-4]. The use of this theory has been successful in the design of experimental 
viscometers [5]. The effect of boundary proximity upon the flow has been treated 
by several authors [6-10], and in particular by Brenner [10], who has examined 
theoretically the slow rotation of an axisymmetric body rotating symmetrically 
about the axis of a circular cylinder filled to a finite depth with viscous fluid. In the 
present paper an experimental arrangement is described in which a circular cylinder 
of finite dimensions is made to rotate around a sphere fixed in the centre of the 
cylinder. The couple on the sphere is measured over a wide range of rotational 
speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids 
a comparison of the experimental results is made with Collins' [4] expansion of the 
couple as a series in even powers of the angular Reynolds number. The effect of the 
boundaries upon the torque is estimated following a procedure very close to the one 
suggested by Brenner [10] for low Reynolds numbers. The region of validity appears 
to be extended by correcting the angular velocity instead of the torque. The shape 
of the streamlines in the secondary flow is made visible. 

For non-Newtonian liquids the apparatus proves to be extremely useful for 
an accurate determination of the zero shear rate viscosity using only a small amount 
of fluid. 

2. Theory 

The couple Too required to maintain the steady rotation of a sphere of radius a 
with an angular velocity f2 in an infinite expanse of fluid of viscosity/~ is: 

Too =8~pa3(2.  (2.1) 

ff the sphere rotates about an axis of symmetry in the proximity of a boundary, the 
relation between the couple necessary to maintain the steady rotation in an un- 
bounded media (T~o) and the effective couple in the bounded media (T) is of the 
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form [2]: 

r K t- O (2.2) 
8~#130 

where l is a characteristic distance from the sphere to the boundary, a is the sphere 
radius and K is a dimensionless constant of order unity, which depends only on the 
container geometry. 

Equation (2.2) may be inverted in order to correct the angular velocity rather 
than the couple 1), i.e. : 

T 
f2~ = ( 2 + K  w---s~,~ + O(Re 3 1-2 In l) (2.3) 

~ rc# t -  

where ~2~o is the angular velocity corresponding to a torque T in an unbounded 
media and s is the angular velocity corresponding to a torque T~ in the bounded 
media. 

Brenner [103 solved the problem of a sphere rotating about the longitudinal 
axis of a vertical cylinder of radius R o filled to a depth h with viscous fluid. Replacing 
the sphere by a point couple and using the method of reflections he obtained: 

T ~ = I _ K  h T~ +O ~ - ,  ' ~ 2  
T ' R o groWN, f2 1 ' 

(2.4) 

bl, and b 2 are, respectively, distances measured from the sphere centre to the free 
(bl 

surface and to the bottom of the cylinder. The function K \ h ' R0 ] is conveniently 
tabulated in [10]. 

Following these results, Mena Ell] considered the case when the cylinder is 
closed at both ends. When the appropriate limits of Brenner's solution were taken 
the value of the container constant K was obtained for the experimental arrangement 
to be described below. With this value, (2.3) is now: 

T 
f2~ =0+0 .8062  73 # / ~ O  oTC_ r.J3 ~-O[Re 3 Ro 5 In R01. (2.5) 

1) It can be shown that the velocity field in the unbounded case may be expressed for finite Reynolds 
numbers  and for non-Newtonian stresses as an equation of the form: 

r x r  
V= ~-O(r -2) 

g~#0  r3 

where #0 is the zero shear viscosity and r is the position vector. 
The initial interaction with the container walls comes from the term of lowest order in r. However 
such term satisfies the linear Stokes equations;  therefore the proof that (2.3) is valid for finite 
Reynolds numbers  and for non-Newtonian stresses is based on the above properties (Caswell, 
private communication).  
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3. ExPerimental Apparatus 

Figure l is a schematic description of the experimental arrangement. The 
facilities consist of a glass cylinder of 7.6 cm in diameter and 15.2 cm in height. 
The cylinder is supported from the bottom by a flat stainless steel plate. An alu- 
minium plate is located at the top with a removable cover to permit the entrance of 

Figure 1 
Schematic Description of the experimental apparatus. 

11i 

I 

or 

Motor 1 

the sphere. The plates are bolted together; the structure is supported by a small 
bearing assembly, and connected to a synchronous motor by means of a suitable 
gear box. The rotational speed may be varied from 0.0037 sec -~ to 18.8 sec -1 with 
twelve different intermediate positions, and rotates in both clockwise and anti- 
clockwise directions. The sphere is totally immersed in this rotating cylindrical bath 
and it is supported by a shaft secured to Plate A by a set screw. Three very thin 
wires, symmetrically located; join Plate A with Plate B which is fixed on a micro- 
scope slide and is axially aligned with the bottom plate. Plate A has a level which 
can be adjusted by means of a screw system C to secure the vertical plane. The 
distance between both plates may be varied. 

An outer plexiglass cylinder houses a temperature controlled bath for the 
viscoelastic experiments. The variation in temperature is restricted to +0.1 ~ 

The system employed to measure the couple is similar to that used in ballistic 
galvanometers. The torque induced by rotation produces an angular displacement 
of the sphere which is measured optically using a mirror and a telescope. Since the 
direction of rotation is reversible the angular displacement is amplified four times. 
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From static and trigonometric considerations, the torque is given by: 

T -  Wrl r2 sin 0 
[h 2 - 2 r 1 r 2 (1 - cos 0)] 4 

where W is the net vertical force on the sphere (weight minus buoyancy force), 
r~ and r 2 are the radial positions of the chords on Plates A and B respectively, h is 
the distance between the plates and 0 is the observed deflection angle. This measured 
torque was corrected for two effects, the couple induced by the shaft and the couple 
due to the supporting wires. The former was estimated as the couple on a circular 
cylinder rotating with constant angular velocity f2~, i.e.: 

2 I~2~ T=4~z#a s 

where a S is the shaft radius and l the wetted length. The second correction was due 
to the torsional resistance of the supporting wires; this resistance was determined 
from torsional pendulum frequency measurements [123. 

4. Experiments 

a) Newtonian Fluids 
Silicone oils (Dow Corning 200) with viscosities of 0.15, 0.25, 0.498 and 1.85 

poise, and Cetane (0.0304 poise) were used. 

b) Non-Newtonian Fluids 
Dilute solutions (0.05 %, 0.15 % and 5 %) Polyisobutylene in Cetane. Densities 

were measured with calibrated pycnometers and viscosity measurements were 
verified using a Couette viscometer, a rotoviscometer and a falling-sphere visco- 
meter, all temperature-controlled. 

c) Spheres 
Nylon spheres with radii 1;27 cm, 1.905 cm and 2.255 cm, tested for sphericity 

and density were used for all Newtonian and more dilute solutions and a brass 
sphere of 1.746 cm radius was employed for the 5 % solution and for the more viscous 
oils. 

Stainless steel shafts of 0.079 cm and 0.158 cm radii were used to examine 
the influence upon the viscosity measurements. In our range of values for the 
viscosity and angular velocity the torque due to the shaft never exceeded 2% of 
the total torque (this last figure being for the 5 % solution, 118 poise) but other 
experimentalists are advised to consider shaft effects particularly for higher values 
of the Reynolds number, since it may not only affect the torque but it may also 
cause a lift force directed along the symmetry axis due to the lack of fore-and-aft 
Symmetry [8]. 
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5. Experimental Results 

a) Newtonian Liquids 

For low values of the angular velocity, i.e. g2 < 1 no correction for wall effects 
was necessary and the data for all spheres and fluids obeyed Stokes formula with 
no observed scattering. However, for increasing velocity, the effect of the boundaries 

Figure 2 
Experimental values of the torque for low 
Reynolds numbers. �9 Newtonian; [] 0.05 % 
solution; o 0.15 % solution. 
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upon the torque became appreciable. Figure 2 shows a comparison between the 
experimental values and Collins' [4] expansion for the couple as a series in even 
powers of the angular Reynolds number 

Re 2 
T=8~z#aaO~ 1-~ 1200 

where 

R e -  (2~~ a2 p 

- - -  - 7.542 • 10- 7 Re 4 + O (Re) 6] (5.1) 

In the region of validity of this expansion (Re< 20) excellent agreement was found 
with experiments; scattering in all cases being less than 2 %. 

Due to the availability of data beyond the range of Collins' expansion, an 
extension formula was obtained using a non-linear transformation of the type 
suggested by Shanks [-13]. Under certain conditions this accelerates the convergence 
(or divergence) of a slowly convergent (or divergent) series which is of the 'nearly 

(5.2) 
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geometric' type. The ' improved' equation is: 

1 Re2 
_ _  )200 (5.3) Tp = Re Jr Re 2 
87"C /~2 a 1 + ~  (1.086)+ O(Re) 6 

Although (5.3) does not attempt to explain analytically the behaviour of the couple 
for higher Reynolds. number, i.e., where inertial effects should be considered, it 
does illustrate a region where these effects are negligible and the perturbation 
theory for low Reynolds numbers is still applicable even for finite Reynolds numbers 
and for a rotating frame of reference. That this is true in the case of a sphere in an 
infinite expanse of fluid has been shown by Caswell (unpublished). However for 
a rotating frame of reference the proof is not simple. Figures 2 and 3 show a plot 
of the dimensionless torque versus the Reynolds number illustrating the region 
for (5.3) and the behaviour of the experimental points in the region where inertial 
effects are undoubtedly important (Re > 50). 

Figure 3 
Experimental values of the torque for intermediate 
Reynolds numbers. �9 Newtonian; [] 0.05 % solution; 
o 0.15 % solution. 
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b) Non-Newtonian Liquids 

The use of a rotating sphere to determine the zero shear rate viscosity of non- 
Newtonian solutions is not new; Walters and Savins [5] designed a viscometer 
consisting of a sphere rotating in a rather large expanse of elastico-viscous fluid 
and were able to obtain very good qualitative as well as quantitative results. The 
limiting viscosity was determined by couple measurements and a parameter relating 
the second order normal stress differences to rate of shear was estimated by ob- 
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A B 

Plate I 
Secondary flow around a sphere at low Reynolds number A (Re = 5); B (Re = 2). 

serving the streamline patterns [2,3]. They concluded that a sphere:bath ratio 
of 1:5 was necessary to give an accurate value for the zero shear rate viscosity and 
1:12 for observing the streamline patterns. In the experiments described in this 
paper no attempt was made to observe the streamlines for non-Newtonian fluids 
although they were observed in the Newtonian case (PlateI). Concerning the 
determination of the zero shear viscosity no limit in the sphere: bath ratio is necessary 
since the effect of the boundaries upon the torque is taken into account. Therefore 
only a small amount of elastico-viscous liquid is necessary. Figure 4 shows a typical 
plot of T / 8 n a  3 for the 5% P.I.B. solution. The behaviour is linear in the region 
considered, as expected. The slope gives the value of the zero shear rate viscosity. 
A comparison of this value with that obtained by using Caswell's [9] extrapolation 
procedure in a falling-sphere viscometer showed a difference of 2 %. 

v Q5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 

Figure 4 Q ~• 10-z sec-1 

Experimental values of T/8 n a 3 vs. Qo~ for 5 % P. I. B. solution. The slope gives the zero shear rate viscosity. 
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5. Conclusions 

1. The performance of the experimental apparatus as a viscometer is found 
to be very satisfactory, particularly for low rotational speeds. The viscosity of 
Newtonian fluids may be determined very accurately and a similar accuracy appears 
to be true in determining the limiting viscosity of viscoelastic fluids. 

2. In the experimental arrangement described in this paper there is no size 
limitation for the sphere:bath ratio as found by some other authors [5], therefore 
a minimum amount of elastico-viscous fluid is necessary in determining the flow 
parameters for non-Newtonian fluids. 

3. The experimental values for the couple acting on the sphere agree remarkably 
well with Collins' [4] expansion formula for the torque on a rotating sphere as 
a series in even powers of the angular Reynolds number. 

4. It appears, from the experiments, that an extension of the results to higher 
Reynolds number is possible and by 'stretching' Collins' expansion by means of 
Shanks [13] transformation close agreement with experiments is obtained. 

5. Observation of wall effects and boundary proximity upon the flow is made 
possible and Brenner's [10] technique proves to be very satisfactory in evaluating 
such effects. 
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Summary 

The couple on a sphere in the centre of a finite rotating circular cylinder is measured over a wide 
range of Reynolds numbers for both Newtonian and non-Newtonian fluids. Wall effects are calculated. 
Experimental results are compared with Collins' analysis. Secondary flow is made visible. 

For non-Newtonian fluids the apparatus deteimines accurately the zero shear rate viscosity. 

R~sum~ 

Le couple sur une sph6re dans un cylindre circulaire rotatoire est mesur~ pour des divers nombres 
de Reynolds et pour des fluides Newtoniens et non-Newtoniens. L'effet des parois sur le couple est 
calcul6. Les resultats obtenus sont compar6s avec l'analyse de Collins. 

Pour les fluides non-Newtoniens l'appareil determine la viscosit6 de z6ro cisaillement. 
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