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Abstract 

The Fermat-Weber location problem requires finding a point in ~ N  that minimizes the sum of 
weighted Euclidean distances to m given points. A one-point iterative method was first introduced 
by Weiszfeld in 1937 to solve this problem. Since then several research articles have been 
published on the method and generalizations thereof. Global convergence of Weiszfeld's algo- 
rithm was proven in a seminal paper by Kuhn in 1973. However, since the m given points are 
singular points of the iteration functions, convergence is conditional on none of the iterates 
coinciding with one of the given points. In addressing this problem, Kuhn concluded that 
whenever the m given points are not collinear, Weiszfeld's algorithm will converge to the unique 
optimal solution except for a denumerable set of starting points. As late as 1989, Chandrasekaran 
and Tamir demonstrated with counter-examples that convergence may not occur for continuous 
sets of starting points when the given points are contained in an affine subspace of R u. We 
resolve this open question by proving that Weiszfeld's algorithm converges to the unique optimal 
solution for all but a denumerable set of starting points if, and only if, the convex hull of the given 
points is of dimension N. 
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1. Introduction 

The Fermat-Weber  problem requires finding a point in ~ N  which minimizes the sum 

of weighted Euclidean distances to m given (or fixed) points. In a practical setting, the 

fixed points represent customers or demands, the new point denotes the unknown 

location of a new facility, and the weighted Euclidean distances are cost components 

associated with the interactions or flows between the new facility and its customers. The 

resulting minisum problem can be formulated as follows: 

minimize W ( x )  = f i  w i II X - -  a i 11, (1) 
i = 1  
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where a i = (a i l  . . . . .  aiN )T is the known position of the ith demand point, i = 1 , . . . ,  m; 
x = (x  1 . . . . .  XN)  T is the unknown position of the new facility; w i is a positive weighting 
constant which converts the distance between the new facility and demand point i into a 
cost, i = 1 . . . . .  m; and distance is measured by the Euclidean norm: 

i~ ]1/2 II x -  a i II = ( x t - air)  2 , V x  E ~ N  (2)  t=l 
The Fermat -Weber  problem is one of the basic models in continuous location theory. 

An iterative solution technique was first proposed by Weiszfeld [11], and rediscovered 
several years later independently by Miehle [9], Kuhn and Kuenne [8], and Cooper [4]. 
The algorithm is based on the first-order necessary conditions for a stationary point of  
the objective function which provide the following mapping of ~Jv to ~N: 

S ' m l w i a i / l l x - a i l [  if x f ~ { a  1, am} , 
in ' " " " ' 

T ( x )  = El= l w Y  II x -- a i II (3) 
~ a  i if x = a i for some i = 1 . . . . .  m .  

The mapping of the fixed points onto themselves ( T ( a  i) = ai, V i )  is required in order to 
have T defined and continuous for all x ~ ~N. Weiszfeld 's  algorithm then consists of  

the following one-point iterative scheme: 

X q + l  = T ( x q ) ,  q = O, 1, 2 . . . . .  (4)  

Global convergence of Weiszfeld 's  algorithm was proven by Kuhn [7] under the 
proviso that none of the iterates in the sequence generated by (4) coincides with a fixed 
point. Kuhn also concluded that whenever the fixed points, a l , . . . ,  am, are noncollinear, 
the sequence { x  q, q = 0, 1, 2 . . . .  } will converge to the unique optimal solution except 
for a denumerable set of starting points x °. This result is based on the hypothesis that 
for each ai, i = 1 . . . .  , m, the algebraic system T ( x )  = a i has a finite number of roots. 

In the local convergence study of Katz [6], it is shown that Weiszfeld 's  algorithm has 
a linear convergence rate when the optimal solution x * does not occur at a fixed point. 
Furthermore, for location in the plane ( N  = 2), the upper asymptotic convergence bound 
takes on a value in the interval [½, 1). If x* coincides with a fixed point, the 
convergence rate is usually linear, but may be quadratic or sublinear under special 
conditions. This last result is of  theoretical interest only since the optimality criteria of  
Juel and Love [5] allow us to verify in O(m 2) time if an optimal solution occurs at one 
of the fixed points. The global and local convergence properties of  Weiszfeld 's  
algorithm are extended to a generalized iterative procedure for lp distances in [1,2]. 

A flaw in the main convergence result of Kuhn [7] was pointed out recently by 
Chandrasekaran and Tamir [3]. In this paper two counter-examples are given which 
demonstrate that the system T ( x ) =  a i may have a continuum set of solutions even 
when the fixed points a l , . . . ,  ain are not collinear. Thus, for the noncollinear case, the 
set of " b a d "  starting points which will terminate the algorithm at a nonoptimal vertex 
a i may not be denumerable as originally believed. We are therefore left wondering about 
the validity of Weiszfeld 's  algorithm. 
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The objective of this paper is to resolve the important question on convergence 
identified above. Fortunately, the validity of Weiszfeld's algorithm remains intact. We 
prove that a necessary and sufficient condition for the set of " b a d "  starting points to be 
denumerable is that the convex hull of the fixed points be of full dimension (N). In 
other words, the noncollinearity condition originally proposed by Kuhn is replaced by 
the slightly more stringent requirement conjectured by Chandrasekaran and Tamir, that 
the set a 1 . . . . .  a m not be contained in an affine subspace of ~N. 

2. Analysis 

Referring to (3), we see that the iteration functions in the Weiszfeld procedure are 
given for each coordinate by 

E'~= lwiaiJll x - a i II 
L ( x )  = , t = 1 , . . . ,  Jr .  ( s )  

Era= 1Wi/11 X -- a i [1 

These functions are defined and infinitely differentiable Vx ~ ~ N \ { a  1 . . . .  , am}. For 
purposes of the analysis, it is necessary to calculate the first-order partial derivatives of 

L:  

0 f , ( x )  

axj 

1 { 0 EiYi(X) air O 
S(X) ~i OXZ [yi(X)]ait  ~ iYi (X)  ~i OX~ [yi(X)] ' 

j = l  . . . . .  N, t = l , . . . , N ,  (6) 

where 

W i 
y~(x )= [ I x - a , [ [ '  i = 1  . . . .  ,m,  (7) 

s(x) = E y i ( x ) ,  (8) 
i 

and the summations are understood to be over the index set {1 . . . . .  m}. Using (5) and 
noting that 

Oyi(x) - -w i (x j - -a i j )  

Oxj II x - ai II 3 
, Vi,  j, 

the first-order derivatives in (6) simplify to 

Of,(x) = 1 ~ w i ( x j - a i j ) ( f , ( x )  -a i r )  Vj, t. (9) 

Oxj s ( x )  ~=~ II x - a ,  II ~ ' 
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Consider the N × N Jacobian matrix 

f ' ( x )  = 

ok 
• o ° 

~X 1 OX N 

• • • 

OX 1 OX N 

We obtain the following preliminary results. 

(lo) 

L e m m a  1. If  the set of fixed points { a  I . . . . .  am) is contained in an affine subspace of 
A N, the matrix f ' (x)  is singular Vx ~ A N \ {a~ , . . . ,  am}. 

Proof .  Since the set {a I . . . .  , a,~} lies in an affine subspace of A N, a vector c with at 

least one nonzero element and a scalar c o can be found such that 

N 

cTai = Z cjaej = c 0 ,  Vi = 1 . . . . .  m .  (11) 
j = l  

Furthermore, for any point y in the convex hull of  the fixed points ( y  ~ ch{a 1 . . . . .  am}), 
we also have cTy = C o. From (5) it is readily seen that [ f ( x ) ]  T = ( f~(x) , . . . ,  fN(x)) is a 

convex combination of  the ai, so that f ( x )  ~ ch{a 1 . . . . .  am}. Hence, 

c T f ( x ) = c 0 ,  V x ~ N \ { a  1 . . . . .  am}. (12) 

Consider the j th  element of  the row vector cTf'(x): 

[ c T ' ( x ) ] ,  = ' 

N [ 1 ~., w i ( x j - - a i j ) ( ~ ( x ) - - a i ,  ) 

1 ~ We(Xj-aij) u 
- s (x )  i=, ,-iE ai,) 
= 0 ,  V j = I  . . . .  , N ,  (13) 

where the last equality follows directly from (11) and (12). We conclude that the rows of 

f ' ( x )  do not form a basis in A N, and hence f ' ( x )  is singular Vx ~ [~N\{a 1 . . . . .  am}. 
[] 

L e m m a  2. If  ch{a a . . . . .  am} has full dimension N, the matrix f ' ( x )  is invertible 
everywhere except at a subset of points of  measure zero in A N. 

Proof .  Since f ( x )  ~ ch{a 1 . . . . .  a m} and the set {a l . . . .  , am} is not contained in an affine 

subspace of A s, it follows that a basis of A N can be selected by taking N independent 



J. Brimberg / Mathematical Programming 71 (1995) 71-76 75 

weighted sums of the vectors ( f ( x )  - ai) , i = 1 . . . . .  m. (Note that this is not true when 

{a I . . . . .  a m} is contained in an affine subspace of  ~N as in the preceding lemma.) 

The jth column of f ' ( x )  is given by 

j =  1 . . . . .  N,  (14) 

j =  1 . . . . .  N. (15) 

1 m 

[ I ' (x) ] j -  s(x) iE, g ' j ( x ) ( i ( x )  - a,), 

where 

w i ( x j - - a i j )  ' v ' i  = 1 . . . . .  m, 
g i j ( X )  - -  II x -  a i  II 3 ' 

We see that for all j ~ {1 . . . . .  N}, [ f ' ( x ) ] j  is a weighted sum of the vectors ( f ( x )  - ai), 
i = 1 . . . . .  m, where each weight has a unique functional form. It readily follows that 

imposing a linear dependence on the columns of  f ' ( x )  of the form 

N 

Y'~ c j ( x ) [ f ' ( x ) ] j  = 0 (16) 
j = l  

must result in a nontrivial functional relationship on the coordinates x. Hence, the set of 

points where f ' ( x )  is singular (the columns of  f ' ( x )  do not form a basis) has measure 
zero in ~N. [] 

To illustrate the preceding results, let us consider the location problem in the plane 

(N  = 2). The determinant of f ' ( x )  is given by 

d e t [ f ' ( x ) ]  

_ _ _ 1  [ ~  Wi(Xl--ai l ) ( f l (X ) --a/1 ) =~ wk(x2--al, z ) ( f : ( x  ) --ak2 ) 
s ~ ( x )  [ i=1  II x -  a i II 3 ~=1 II x -  a k II 3 

_ 

First suppose that the fixed points are all collinear, and without loss of generality, let the 

slope of the line be given by the nonzero finite value r. Then, 

f 2 ( x ) - - a i 2 = r ( f l ( x ) - a n ) ,  V x ~ N N \ { a ,  . . . .  ,am} , i = 1  . . . . .  m. 

It immediately follows that de t [ f ' (x ) ]  = 0, and hence, f ' ( x )  is singular Vx ~ N N \  

{a I . . . . .  am}. On the other hand, if the fixed points are not collinear, the equation 

de t [ f ' (x) ]  = 0 gives a nontrivial functional relationship on the coordinates x. We 

therefore conclude that the set of points where f ' ( x )  is singular has measure zero in NN. 

The principal result of the paper follows directly from Lemmas 1 and 2. 

Theorem.  The set of  starting points {x °} which will terminate the sequence generated 
by the Weiszfeld algorithm at some fixed point a i after a finite number of  iterations is 
denumerable, if and only if the ch{a 1 . . . . .  a m} has full dimension N. 
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Proof, By the fundamental inverse function theorem of calculus (e.g., see [10, p. 354]), 

it follows that at any point x where f ' ( x )  is invertible, there exist neighbourhoods U 

and V of x and f ( x ) ,  respectively, such that the restriction of f to U is a one-to-one 

mapping of U onto V. Now by Lemma 2 we know that if ch{a l , . . . ,  am} has dimension 

N, then f ' ( x )  is invertible everywhere except at a subset of points of measure zero in 

~N. Hence, a neighbourhood U can be constructed around any point x ~  ~ N ~  

{a 1 . . . . .  a m} such that f ( x )  provides a one-to-one mapping Vx ~ U. We conclude that 

the set { x l f ( x )  = b} must be denumerable for any b ~ ~u .  Using the same reasoning 

as in [7], it follows that the set of starting points {x °} which will terminate the sequence 

generated by T ( x )  at some a i after a finite number of iterations is also denumerable. 

On the other hand, if ch{a a . . . . .  a m} is contained in an affine subspace of ~U, then by 

Lemma 1, f ' ( x )  is singular everywhere. We conclude that the set {x °} defined above is 

no longer denumerable. [] 

The preceding theorem confirms an important property of the Weiszfeld algorithm. It 

now follows that when ch{a 1 . . . . .  a m} has full dimension N, the Weiszfeld algorithm 

will converge to the optimal solution for all but a denumerable set of starting points. The 

preceding results are readily extended to provide the following conclusion. 

Corollary 1. The iterative sequence generated by the Weiszfeld algorithm will converge 

to an optimal solution for all but a denumerable set o f  starting points {x °} whenever x ° 
is restricted to the smallest affine subspace containing {a l , . . .  , am}. 
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