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Résumé

L’étude porte sur la théorie de I’écoulement non permanent d’un fluide visqueux
incompressible dans de canaux rectangulaires d’allongement divers, sous l'influence d’un
gradient de pression arbitraire, dépendant du temps. Des solutions ont été obtenues dans
4 cas particuliers: 1. gradient de pression impulsif, 2. gradient de pression constant et
établi brusquement, 3. gradient de pression en fonction harmonique du temps, 4. gradient
de pression 4 une composante constante et une composante harmonique. On donne les
répartitions de vitesse, les coefficients de frottement et la dissipation d’énergie par unité
de longueur.
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Nozzle Flow of a Fully Ionized Plasma Based
on Two Fluid Theory")

By S. I. Par1, Institute for Fluid Dynamics and Appl. Mathematics, and C. K. Tsao,
Aeronautical Eng. Dpt., University of Maryland, College Park, Maryland, USA

I. Introduction

Most of the investigation of magneto-gasdynamic channel flow is based on ‘classical’
single fluid theory in which the generalized OuM’s law is used instead of the exact
differential equation of electrical current density and the difference of temperatures
of ions and electrons is ignored. One way to improve the results of classical magneto-
gasdynamics is to use multi-fluid theory in which the effect of various forces — both
gasdynamic and electromagnetic — on the electric current density has been treated
exactly from the macroscopic point of view and the behaviors of electrons and ions
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No. AFOSR 141-64. A part of this paper was submitted to University of Maryland as the M. S. thesis of the
Junior author.
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are treated separately. In this paper, we study the one dimensional steady channel
flow of a fully ionized plasma by two-fluid theory and compare the results with those
of classical single fluid theory.

There are two types of one dimensional channel flow based on the classical single
fluid theory [1]2) the approximate one dimensional flow and the strict one-dimensional
flow, which are based on different approximations on MAXWELL’s equations. In this
paper we consider only the strict one-dimensional flow in which all quantities are
functions of the longitudinal coordinate x and strictly independent of the transverse
coordinate v and z and MAXWELL’s equations must be obeyed.

Most of the calculations of magneto-gasdynamic channel flow were carried out
under the special restrictions [2] 3] such as constant velocity channel, constant cross-
sectional area channel, constant temperature, etc. This means that the flow configura-
tions will be very special. We shall follow the analysis of ordinary gasdynamic by
considering the flow in a nozzle of given shape under various flow rates and applied
electromagnetic fields. In this manner, the similarity and deviations between the
results of single fluid theory and two fluid theory can be clearly observed.

We consider a fully ionized plasma consisting of electrons and singly charged ions
flowing in a nozzle of slowly varying cross-section 4 (x) which is a given function of the
longitudinal coordinate x. There is a constant transverse externally applied magnetic
field H, in the y-direction and a constant transverse externally applied electric field
E, in the z-direction. For simplicity, we may consider that the nozzle is of rectangular
cross-section and that the walls perpendicular to the y-axis are insulated walls and
those perpendicular to the z-axis are perfectly conducting walls. We shall assume that
the Reynolds number of the flow is high so that both viscosity and heat-conduction
are negligible. However, we shall assume that the electrical conductivity of the plasma
is finite so that the friction coefficient is finite.

II. Basic Assumptions and Fundamental Equations

The variable in the two-fluid theory are as follows:

q, = T, (%) + ] v,(x) + Ew,(x),
pa®) 5 w25 Tx),

E—=iE(x)+7]E,x) +kE.(x),

H=1H(x)+7H,x) + kH,(x),

where o = 1 or 2 and the subscript 1 refers to the values for ions and the subscript 2
refers to the values for electrons. The flow velocity vector g, for each species has the
components #,, v, and w, in the x-, y- and z-axis respectively; p, is the partial pressure
of a-species, », is the number density of a-species, and T, is the temperature of
a-species. The electric field strength E has the components E, E,, and E, while the
magnetic field strength H has components H,, H,, and H, along the x-, y-, and z-axis
respectively. The unit vectors along x-, y-, and z-axis are 7, §, and & respectively.

2) Numbers in brackets refer to References, page 369.
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The fundamental equations which govern the 18 variables of Equation (1) are

[4] [5] [7]:

1. Equation of state for a-species is
ﬁcx = RA Va ]:z ’ (2)

where R, is the universal gas constant.
2. Equation of conservation of mass of a-species is

v, u, A = Q, = constant , (3)
where the mass source term is zero because we consider only the fully ionized plasma.
3. Equation of motion of -species is

A9x _ _ . dpa
* dx ax

mavocu +eaqu+eocvauue (anH)_l_“lz (qzx—qﬂ)r (4)
where m, is the mass of a particle of a-species and m; > m,; ¢, is the electrical charge
on a particle of a-species and ¢; = —e, = ¢ where ¢ is the absolute electric charge;
4, is the magnetic permeability; B=pu, H (i.e. B, = u, H, etc.) is the magnetic
induction, and e, is the friction coefficient.

4. Energy Equation of a-species is

3 dpy 5 pouy d 3 m
oy e e S (L~ 1) — (@, — 1 )

2““ ax

where the ratio of specific heats of each species is 5/3 in our problem and J, =, ¢, g,
is the electric current density of a-species, and m, = m, + m -
Equations (2) to (5) are the twelve gasdynamic equations of two fluid theory.
5. Electromagnetic equations.
The first MAXWELL’s equation of electromagnetic field ’x E = 0 gives in our
problem
E, = constant and E, = constant. (6)

The conservation of electrical charge gives

1 dAE, e
Ty )

where ¢ is the inductive capacity.
The second Maxwell equation V'x H = J gives

Jo=e(mm —uyv) =0, (8a)
dH,
= e — v = — ], (8b)
aH.
_d;’ =e(wy v — wyvy) = J, . (8¢)

The divergence of magnetic field gives

A H_ = constant. {9
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Equations (6), (7), (8b), (8¢) and (9) give the relations of the electromagnetic
fields and the gasdynamic variables. It should be noticed that Equation (9) is not an
independent relation. We may use either Equation (8a) or (9) as a basic equation.

We should solve the 18 variables of Equations (1) from the 18 Equations (2), (3),
(4), (5), (6), (7), (8Db), (8c), and (9) for a given nozzle A(x) and given initial and final
conditions at the two ends of the nozzles.

ITI. Comparison Between Single Fluid Equations and Two Fluid Equations

In the single fluid theory we deal with the gross variables of the plasma as a
whole which are related to the partial variables of Equation (1) by the following
relations:

Y=v1+ Vo, Q=MV=mV + MyVy=0;+ 0s, (10)
p=tD1+t, vI=mLh+nT, e94=0¢%+0:94,

where the quantities without subscript refer to those of the plasma as a whole.

The equations of state and of continuity for the single fluid theory are obtained
exactly by the summation of the corresponding equations of partial variables.
However, some approximations have usually been made in the equations of motion,
of electrical current and of energy for the single fluid theory so that these equations
are not exactly in comparison with the two fluid theory. We shall point out the
difference between the two theories in the following sections.

IV. Some Simple Solutions of the Two Fluid Theory

The general solution of the two fluid theory is usually very complicated, particu-
larly when the number densities of electrons and ions are not the same. Preliminary
computation shows that if », is not equal to v,, the interaction force between ions and
electrons is so large that all the other forces are negligible. Hence the plasma has the
tendency to be neutral. Hence we shall only consider the case for

vy=vy. (11)

It should be noticed that Equation (11) means no charged separation which is usually
made in the single fluid theory.
From Equations (11) and (8a), we have

Uy = Ug = U . (12)
From Equation (11} and (7), we have
A E_ = constant . (13)
For simplicity, we shall assume
H =0, H=0, E=0, E=0. (14)

The values H, and H, are the »- and z-induced magnetic field components. Since
we do not have the externally applied magnetic field components in both x and z
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direction, the induced magnetic field may be neglected for engineering problems in
which the magnetic Reynolds number is small. The x- and y-components of electric
field are assumed to be zero and they are also assumed in single fluid theory analysis
in literature.

From Equations (8b), (10), (11) and (14), we have

1 =v,=v=0,

because for one dimensional flow v = 0.

Under the assumptions (11) and (13), we need to solve simultaneously the seven
variables u, w,, wy, p;, Pa, 1, and H,. If we have p,, p,, and »,, we may calculate the
temperatures T; and T, from equations of state (2). From Equations (3) to (8), we
obtain the following simplified equations for our seven variables.

mlylu%= —dp—l—evlwlB (15a)
mzvlu%=—%+evlw2B {(15b)
mlvlu%zev1E2+ev1uBy+oc12(wl—w2), (15¢)
mzvlu%z~ev1Ez—6v1uBy+oc12(w2—wl), (154d)

%%%{;—1 + 5 b, 'g“Ib;lu%=%(7’1*7§2)#%0‘12(w1—w2% (15e)
Sutes g e I 2By ) — M, (- ), (150
ddzy:evl (g — w,) , (15g)

where B, = u, H, and E_ = constant, my, = m, + m,.
The initial conditions of our problem are at far upstream, say x = x,

G=9:=0, pi=pa=py, Lh=T=1T, vnn=v=v, B,=DB,. (16)

Some simple relations may be deduced from Equation (15).
From Equations (15c) and (15d), we have

My Wy + My wy = constant =mw =0, (17

because there is no mass flow in the z-direction and the initial condition (16) shows
that the constant in Equation (17) must be zero.

Eliminating dp,/dx from Equations {15a) and (15e) and dp,/dx from Equations
(15b) and (15f), we have respectively the followings equations

du 5 u d4
my vy (af — uP) d;z—?%z*‘g‘g”lwlB“‘*‘ 1(?51_1%)
2 m, (18a)
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My vy (a3 — u?) Gy S T3 A dr T th szy”“‘ g ¥, (Pr— P2)
(18b)
2 my 2
—?—'“12(”}1*”’2) )
0
where
1/2 1/2
a, = (i —P#) ”_ ion sound speed; a,= (i —;bL) # _ electron sound speed.
3 myv, 3 myv

Now multiplying (18a) by m, and (18b) by m, and subtracting the resultant equations,
we have

o d u dA
[(m3 @ — w3 ) — (3 — m) ) T = — L (i af — myad) G | 19a)
+ 2R (G- T |
1
Equations (19a) may be written as follows:
du _ —(ualld) (d4]dx) 1 (2v[0) (e/m)* K (Ty — T)) (191)
E; - ai —_ MZ >
where
a, = [m‘;:; — :Zz %] Ve = effective sound speed of a fully ionized plasma, (20)
- 2
2 2
o= — v;e = electrical conductivity of the plasma . (21)
12

A similar expression for the single fluid has been obtained for infinite conductivity
case by the senior author [5].

o T A=) dr (22)
where
H2\1j2
a, = (w+ 1) (23)

For ¢ = 0o, Equation (19b) reduces to a similar form as Equation (22) but with a
quite different value of critical speed. The case of infinite conductivity is not important
in engineering problems. We shall not discuss it any more.

For finite electric conductivity, Equation (19b) shows that at subsonic speed, the
maximum value of # will not occur at the neck dA/dx. We shall discuss this point
further in our numerical example section.

Another formula for du/dx may be obtained by adding Equations (18a) and (18b)
and using Equations (15¢) and (15d) to eliminate (w,; — w,), we have

du 1

dv (1 - M?)

_u a4 myu dw,\ (2 2 myu dw, l
g (e e ) (s § T )

(24)

where M = uja = Mach number of the plasma as a whole and

a= I 1122 sound speed of the plasma .
p P

3 mgyv
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If the inertial terms with dw,/dx are neglected, Equation (24) reduces to the
formula of single fluid theory obtained by SEARrs and RESLER. In our numerical
example, we find that these inertial terms are indeed negligible. Hence the results on
the x-wise velocity # given by the single fluid will be the same as that given by the
two fluid theory. However, the main difference lies in the results of temperature as we
shall see more clearly in the following numerical example.

V. Numerical Example

No simple close form solution has been found for Equations (15) because these
equations are non-linear. In order to illustrate some features of the results of these
equations, the following numerical example has been calculated by the high speed
computing machine IBM 7090 at the Computer Science Center of the University of
Maryland.

The cross-section area of the nozzle is assumed to be given by the formula

— 1 2 L

where x in meters is measured from an arbitrary initial section x = 0 and 4, = 0.0008
m? at which the gas is assumed to be fully ionized with the following properties

1 = ps = 1013 Newton/m?
T, = T, = 20000° K .

The externally applied electric and magnetic fields are

E, = 10 volt/m
B,y = 10 x 10-2 weber/m? .

Since the plasma is fully ionized, we use SPITZER’s formula for the electrical con-
ductivity [6]

. 3 73/2
7—%20 i mholm, (26)

o =
Where
3k 1 k1 1/2

268

ol (27)
and T should be the kinetic temperature of the electrons. In single fluid theory, the
gross temperature of the plasma as a whole is used. From the value of the electrica.
conductivity ¢, we may calculate the friction coefficient a,, from the Equation (21)1
It is evident that if the electron temperature T, is different from the plasma tempera-
ture T, different values of electrical conductivity and friction coefficient will be
obtained. As a result, the flow variables given by the two fluid theory would be
different from that by the single fluid theory.

Our results of numerical examples are given in figures 1 to 5.

The axial velocity distributions in a nozzle at various rates of discharge @ are
shown in Figure 1 where @ is ions or electrons per cubic meter per second. When the
rate of discharge is low, say Q < 3 x 10 ions or electrons per cubic meter per second,
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Pressure distributions along the nozzle at various rates of discharge Q.

smooth flow occurs in the whole nozzle. Both the single fluid theory and the two fluid
theory give the same velocity distribution at low speed. One of the effects due to
electromagnetic field on the x-component of velocity is that the maximum velocity
occur at a position down stream from the neck of the nozzle i.e. d4[dx = 0. As Q
increases, the location of U,,, for a given () moves further downstream. As the value
of @ increases up to and above a critical value, the Mach number of the flow in the
nozzle reaches unity at certain point of the nozzle downstream from the neck where
the slope du/dx is infinite and the analysis of inviscid fluid breaks down. The critical
point at du/dx = co moves upstream as ( increases. At high speeds, the deviation of
electron temperature T, from the plasma temperature T increases with the speed.
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Hence the values of electrical conductivity ¢ and the friction coefficient o,, are
different depending whether we use 'y or T in the formula (27). As a result, the veloci-
ty distribution along the nozzle will be different actording to the variation of electrical
conductivity. In Figures 1 to 5, the dotted curves are based on electron temperature
which represents the correct values of two fluid theory, while the solid curves repre-
sent the single fluid result in which we assume T = (73 + 73}/2. The velocity based on
two fluid theory is higher than that based on single fluid theory.

Figure 2 shows the temperature distributions for various value of rate of discharge
Q. The interesting result is that at low values of Q, the difference between the tem-
peratures of electrons and ions is negligible while at high values of Q, this difference is
appreciable. However, the temperature of the plasma as a whole T given by the single
fluid theory is the same as that by the two fluid theory T = (7} + T,)/2. The tem-
perature of electrons is higher than that of ions. The most interesting result is that
for high rate of discharge where the local Mach number of plasma as a whole reaches
unity, the ion temperature T drops to zero and so is the ion pressure at this critical
location but the velocity # reaches a finite value. Hence we may consider that the ions
reaches its terminal or maximum possible velocity at this critical point for a given
initial pressure. This result has not been obtained previously. At low values of Q,
both the ion temperature and the electron temperature increases downstream in our
example but for high values of @, the electron temperature increases and ion tem-
perature decreases downstream. In the intermediate case e.g. Q = 10 x 10% ions or
electrons per cubic meter per second, the ion temperature may first increase down-
stream and drop suddenly near the critical point du/dx = oo or M = 1.
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Figure 3 shows the pressure distributions along the nozzle at various values of
rate of discharge Q. Again, at low values of Q, the pressures of electrons and ions are
about the same while at high values of @, they are different. The pressure of the elec-
trons is almost constant for all values of Q while the pressures of ions varies con-
siderably with Q. For the case where local Mach number reaches unity, the local
pressure of ions drops to zero. This fact is consistent with our previous statement
that the ions reach their terminal or maximum possible velocity for a given initial
pressure. The effect on pressure due to the values of ¢ based on 1" or T is also shown
in Figure 3.

Figure 4 shows the distribution of number density, ions or electrons per cubic
meter, along the nozzle at various rates of discharge Q. The number density decreases
as x increases. At the critical point M = 1, the number density has a finite value.

Finally, Figure 5 shows the distributions of electrical current density along the
nozzle at various rates of discharge Q.

VI. Conclusions

From our investigation, we found that at low rate of discharge, the single fluid
theory gives almost the same result as those by two fluid theory. However, the two
fluid theory gives a much more detailed picture of the flow field of the plasma. For
instance, it shows that the temperature of electrons is much larger than that of ions
at high rate of discharge. Since the temperature of electrons determines the electrical
conductivity of the plasma, the single fluid theory may underestimate the electrical
conductivity.

At the critical point M = 1, du/dx = oo the ion temperature and ion pressure both
drop to zero, and ion velocity reaches its terminal value for a given initial pressure.
It is a new result.

A special numerical example of subsonic nozzle flow of a fully ionized gas is
presented. Our result may be regarded as an illustrating example to show that even
though the single fluid theory may give reasonably good results of gross variables of a
plasma, the multi-fluid theory will definitely give better results, particularly about
the electron temperature which is essential to evaluating the over-all performance of
the flow of a plasma.
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Zusammenfassung

Die streng eindimensionale stetige Strémung eines vollig ionisierten Plasmas in einer
Diise mit langsam verdnderlichem Querschnitt unter dem Einfluss eines transversalen
elektrischen und magnetischen Feldes ist nach der Zweikomponenten-Theorie analysiert
worden, und die Ergebnisse wurden mit der klassischen Einkomponenten-Theorie der
Magneto-Gasdynamik verglichen. Es wurde festgestellt, dass die Einkomponenten-
Theorie zwar die Werte der Variablen fiir den gesamten Vorgang des Plasmas liefert, dass
jedoch die Zweikomponenten-Theorie anzuwenden ist, um ein Bild der Einzelheiten des
Strémungsfeldes zu erhalten, vor allem vom Temperaturunterschied zwischen Elektronen
und Ionen. Dieser Temperaturunterschied wichst mit steigender Temperatur. Dies diirfte
wichtig sein fiir die Bestimmung der elektrischen Leitfihigkeit im Falle einer technischen
Anwendung. In einem numerischen Beispiel wird die Unterschallstromung des vollig
ionisierten Plasmas in einer Diise berechnet.

(Received: October 27, 1964.)

Structure of Axisymmetric Force-Free Magnetic Fields
in a Dissipative Plasma

By Heinz DiETER MIDDENDORF, Jever, Germany?)

1. Introduction

Among the mechanisms by which a current in an ionized gas may become con-
stricted the ordinary (or Bennett-) pinch has been the subject of extensive study.
ALFVEN [1]2) has described a second type of filamentary current-field structure that
can exist in a more rarefied plasma when electrons (e) and ions (i) are free to gyrate
many times before suffering appreciable momentum changes due to collisional
interaction. If the latter is characterized by suitably defined relaxation times 7, (s =
e, 1}, and the cyclotron frequencies are w, = g, H/c m, (q,/m, being the charge/mass
ratio, H the magnetic field), then conditions of this kind correspond to w, 7, > 1.
In this limit the conductivity tensor for a magnetic plasma reduces to one where the
conductivity parallel to the magnetic field dominates to order (w,7,)? over the
transverse component, and to order w, 7, over the off-diagonal terms. As the current
density vector j becomes everywhere parallel to H the Lorentz force j N H vanishes
identically. Using j = (¢/4 ) curl H and div H = 0 from Maxwell’s equations?), the
condition for a magnetic field to be force-free in this sense can be expressed as

_icljnﬂszcurlH=o, (1.1)
or

curlH =ao H, Hgrada=0, (1.2)
where o is a scalar function of position.

1) Permanent address: Oestringer Weg 5, Jever, Friesland, W. Germany.
?) Numbers in brackets refer to References, page 385.
3) Gaussian c. g.s. units are employed throughout.



