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The Plastic Indentation of a Semi-Infinite Solid 
by a Perfectly Rough Circular Punch 

By GEORGE ]~ASON 1) and RICHARD T. GHIELD~), Newcastle upon Tyne and 
Providence, IR. I. 

1. In troduct ion  

Although many problems of plastic flow under conditions of plane strain 
have been solved, there are, as yet, few solutions to axially symmetric problems. 
Previous work includes solutions to the problems of the partially plastic thick- 
walled tube (see for example E6] a), and the problem of converging plastic flow 
in a conical channel E9,7]. These problems have been solved for both the Tresca 
and the yon Mises yield conditions. 

SHIELD [81 has considered the general problem of the plastic flow of metals 
under conditions of axial symmetry for the Tresca yield criterion and associated 
plastic stress-strain relations. The following work is essentially a continuation 
of that paper. In E8], as here, the material was assumed to be isotropic, non- 
hardening, rigid-plastic and a discussion was given of the types of plastic flow 
which could occur. The discussion and the applications in [8] showed that the 
plastic regimes which satisfy the hypothesis proposed by HAAR and YON 
KARMAN [41 are of importance in the solution of axially symmetric problems. 
This hypothesis states that  the circumferential stress is equal to one of the 
principal stresses in the meridional planes during plastic deformation. The 
problems considered under this hypothesis were the incipient necking of a 
circular cylinder stressed to yielding in tension, and the indentation of a semi- 
infinite solid by a smooth, circular flat-ended rigid punch. 

In this paper, section 2 contains a r6sum6 of the equations of E8~ relevant 
to the present work. In section 3 a possible velocity field is obtained for the 
compression of a circular cylinder. In sections 4 and 5 the indentation of a 
semi-infinite solid by a perfectly rough, circular flat-ended rigid punch is 
considered. A complete solution to this problem is obtained by  numerical 
methods, the numerical work being performed on the high speed digital 
computers AMOS and FERDINAND. The value of the average pressure over 
the surface of the punch is found to be 6.05 k, where k is the maximum shearing 
stress permissible in the body, in contrast to the value of 5.69 k obtained in E8} 
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for the smooth punch. The maximum numerical value of the ratio between the 
shearing stress Tr~ on the surface of the punch to the normal stress ~ is found 
to be 0.139. I t  follows that  the condition of perfect roughness between the 
punch and the material can be replaced by  the condition that  the coefficient of 
friction between the punch and the material must exceed 0.139 for the solution 
to apply. 

O" 1 

0" 2 

For the plastic regime 

2. The Basic Equations 

The basic equations of axially symmetric plastic flow were discussed in 
detail in [81 for a rigid-plastic nonhardening material obeying TRESCA'S maxi- 
mum shear stress yield criterion. As in the application of the theory in [81, the 
hypothesis of HAAR and YON KAR~X~ E4] is assumed for plastic states, i. e. the 
circumferential stress is taken to be equal to one of the other two principal 
stresses in the meridional planes. More specifically, the circumferential stress 
is taken equal to the algebraically greater of the other two principal stresses, 
as in the regions of deformation to be considered the radial velocity is positive 
and produces a tensile circumferential strain rate (plastic regime F of [81). The 
Tresca yield criterion then requires the principal stresses in the meridional 
planes to differ by  2 k, where k is the maximum shearing stress permissible in 
the material. A short summary  is now given of the relevant equations. 

In a cylindrical polar co-ordinate system (r, 0, z), the only non-vanishing 
stress components in a stress distribution which is axially symmetric about the 
z-axis are at, ao, a~, "Cry. The circumferential stress, aa, is a principal stress, the 
other principal stresses ~1, ~2 ((rl ~ a2) in the meridional planes being given by  

-2-1 (G r-~ Gz ) @ { ~ ((Tr- O~z)2 + T~ z}1/2 
(x) { }~/~ 1 (Gr + (Tz) - 1 ((Tr__ffz)2.@ T2r z 

under discussion we have 

a0 = ai = a~ + 2 k .  (2) 

The equations of equilibrium take the forms 

O'Crz Oa z "Crz 0a~ 0 ~  a~,- a0 _ 0 ,  - -  + + = 0 ,  (3) 
Or + Oz--  + r Or Oz- - r -  

in the absence of body forces. 
Equations (2), (3) provide four equations for the determination of the four 

stress components so that  in a sense the problem is 's tatically determinate ' .  
The system of equations is hyperbolic with orthogonal characteristics in the 
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(r, z)-plane which coincide with the slip-lines, the lines of max imum shearing 
stress. The slip-lines will subsequent ly  be referred to as ~- and//-lines.  

Surface elements perpendicular  to the c~- and fl-lines are acted upon b y  a 
shearing stress k and a normal  stress which will be denoted by  --p. The stress 
components  are given by  

G - - - p - - k s i n 2 9 ,  G = - - p + k s i n 2 9 ,  r~z=hcos2~0 ,  % = - - p + k ,  (4) 

where 9) is the inclination of the ~-line to the r-axis. The equilibrium equations 
(3) determine p and 9, and referred to the slip-lines the equations take the 
forms 

dp + 2 k d 9) + k (sin~o + cos~0) ds:, = 0 on an ~-line 

(5) 
dp -- 2 k dq; -- k (sin~ + cosg) dsr ~ -  = 0 on a fl-line, 

where ds,, ds• are elements of length along the g- and/~-lines. 
On the axis of symmet ry  the shearing stress is zero and the radial  and 

circumferential  stresses are of equal magnitude,  so tha t  on the axis 

3 
92 = ~ ~ .  (6) 

Using this result, an expansion of ib and ~ for small r shows tha t  in the neigh- 
bourhood of the axis of s y m m e t r y  

P -F 4 k 9 = const on an ~-line, p - 4 k ~v = const on a fl-line, (7) 

to first order. 
The velocity field is assumed to have radial symmetry ,  a l though this does 

not  necessarily follow from the symmet ry  of the stress field. If  u, w are the 
velocities in the r, z directions respectively, the non-zero strain rates are given b y  

Ou u Ow Ou Ow 
er-- Or' e ~  ez-- Oz '  7,~=~+ Or ' (8) 

with e 0 a principal s t ra in  rate. The other principal strain rates el, e2 associated 
with the at, a S directions are 

1 1 2 ] 
t?, 1 = ~ (~r-~- ~z) -F ~ { (~r-- ~2)2 ~- ~Yt,} 112, 

I (9) 

The incompressibility of the material  requires, with (8) for the strain rates, 

Ou u Ow 
0 ~  + ~ + Od~ = 0 .  (10) 
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This equation and the isotropy condition, which can be written 

Ou Ow 
O~ + Or 

-- -- cot2  ~v, 
Ou Ow 

-Or Oz 

(11) 

serve to determine the velocity components  u, w when the slip-line field is 
known. For  numerical  work it is convenient  to introduce the components  of 
velocity U, W along the ~- and/~-lines respectively, given by  

U = u cos~v + w sin~v, W = - u  sin~0 + w cos~v. (12) 

Equat ions (10) and (11) on u, w require U, W to satisfy the equations 

u ds= _ 0 on an ~-line, d U --  W dcp + 2 r 

(13) 
d W  + U d~o + u d s ~ _  0 oil a/3-line.  

2 r  

For the velocity field to be associated with the stress field the velocities 
must  be such tha t  

/ ' ~  Y > 0 ,  (14) 
f 

o u  o w  O~ aq) 
F + + U ~ -  - w 

Os~ " osc~ 
(15) 

where 

The theory  outlined in this section will now be applied to obtain a defor- 
mat ion mode for the compression of a circular cylinder and to obtain the solu- 
tion to the problem of indentat ion by  a rough circular punch. 

3. C o m p r e s s i o n  of a Circular  Cyl inder  

In  section 3 of [8 i several examples were given of possible incipient defor- 
mation modes for a circular cylinder of rigid-plastic material  stressed to yielding 
in uniaxial compression. The stress component  G~ then has the value -- 2 k, all 
other stress components  being zero. In  this case the characteristics are straight  
lines inclined at an angle of :~/4 to the co-ordinate axes. The cylinder occupies 
the region r ~ 1, z ~ 0, and velocity solutions were obtained which are such 
that  the normal  velocity over the end of the cylinder, z = 0, is constant.  Here 
we obtain a velocity field which satisfies the further restriction that  the radial 
velocity u be zero over the end z = 0 of the cylinder. 

For  simplicity the normal  veloci ty is taken to be un i ty  over the end OA of 
the cylinder (Figure 1). The velocity field involves a rigid body  motion of region 
O A C  in the axial direction and flow in the region A B C .  As in [81 it can be shown 
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that  u = w = 0 on BC because of the rigidity of the material above BC. The 
incompressibility condition and the condition of zero shearing strain rate 
together with the continuity condition across AC then require u and w to be 
given by  

1 
u = ~ l  (1 - tan2~0) lj2 , w = --~ cos-l( tan~) , (16) 

in region A BC, 

1 1 
4 ~ -  4 - ~ ,  

where the value of the inverse cosine lies between 0 and ~. The angle W is 
defined as in Figure 1. The velocity field defined by  (16) was given previously 
in a different form in [81, apart  from a multiplicative constant (equations 
(3.3) of [8~). 

"~ W~ g 

W=I 

Figure 1 

8 

'A 
, a  r 

Cylinder stressed to yielding in compression. 

4. Circular Punch:  Stress  Field 

In [87 a complete solution to the problem of the indentation of a semi- 
infinite solid of rigid-plastic material by  a smooth, circular flat-ended rigid 
punch was found. The closely allied problem of the indentation of a semi- 
infinite solid of rigid plastic material  by  a perfectly rough, circular flat-ended 
rigid punch is investigated here. These problems are both of importance in 
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testing the hardness of metals (see, for example [10~). The body is assumed 
to occupy the region z => 0, with the origin of co-ordinates at the centre 0 of 
the punch (Figure 2). The punch indents the portion OA of the surface of the 
solid, z = 0. The plastic stress field near the punch is assumed to satisfy (2). 
This assumption is shown to be correct by  the fact that  the solution to the 
problem is obtained. 

t t t  * * * t '  e ", 
N ~ N N ~ g N  

Figure 2 

Slip-line field due to indentation by a rough circular punch. 

Referring to Figure 2, the stress field in region A B C  is determined by  the 
stress-free surface AB.  The solution for this type of region has been tabulated 
in ESJ, and the results of Table I of that  paper may  be applied. The line AC is 
an e-line and BC is a/~-line. The field in region ACD is determined by  the 
c~-line AC and the singular point A, the fan being terminated by  the e-line AD 
which meets the axis of symmetry  at an angle of ~/4, at D. The field in region 
ADO is determined by  the e-line AD and the condition that  the/~-lines of the 
region meet the axis of symmetry  at angles of ~/4. The slip lines must meet the 
axis of symmetry  at angles of ~z/4 in order that  the shearing stress be zero on 
the axis. 

The stress field in region ACDO was obtained by  numerical integration of 
(5). These differential equations were replaced by  finite difference equations 
and the same numerical procedure used as in E83. Equations (7) were used to 
determine the position of the point D. Figure 2 shows the main details of the 
characteristic network obtained as a result of the numerical integration. The 
calculated pressure distribution over the punch is shown graphically in Figure 3. 
The average pressure over the punch is found to be 6.05 k. For comparison, the 
pressure distribution found in E8~ for a smooth punch is also shown in Figure 3, 
the average pressure over the punch in this case is found to be 5.69 k. With the 
distance OA as the unit of length, the distance OB, in Figure 2, was found to 
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be 1.88, and the distance OD was found to be 0.57. The angle of the fan was 
found to be 116 ~ A coefficient of friction may  be defined along OA by writing 

# _ ~rz (17) 
O" z 

The maximum value of # along OA was found to occur at A and to have the 
value 0.139. Thus, the solution obtained here holds for a rough punch provided 
that  the coefficient of friction between the material and the punch exceeds 
0.139. 
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Figu re  3 

Pressure  d i s t r i bu t i on  over  p u n c h .  

As in the case of the smooth punch the stress field has been extended into 
the rest of the body. The method of extension closely follows that  used in [8] 
in which theorems developed by  BIsI~oP [1] for the case of plane strain were 
applied. 

The extension of the stress field is indicated in Figure 4, and was obtained 
by assuming the material  to be fully plastic and satisfying (2). The fi-line BCD, 
together with the condition that  slip-lines meet the axis of symmetry  at angles 
of ~/4, determines the field to the left of the a-line through B. The field to the 
right of the a-line through B is determined by  the a-line through B and termi- 
nating the field by  a stress-free surface, BJK. The a-lines begin to intersect one 
another at G, a point on the a-line through B, and a shock is introduced, shown 
by  the heavy line in Figure 4. Another shock is introduced at point M, where the 
a-lines intersect on the a-line through C. The two shocks intersect at point H, 
and the stress field was continued by  the introduction of a shock HL, and a 
fan HJ of small angle (shown by  the broken line in Figure 4). The stress-free 
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boundary is parallel to the axis of symmetry at the point K. The stress field 
was terminated by the introduction of a stress discontinuity KLN, above which 
the stress is uniaxial compression or tension parallel to the axis of symmetry. 
The stresses in the region are indicated in the figure, and do not violate yield. 

._ �9 . ~ . . ~  ~ 

N 

'K 
J 

D 

0 A B 
Figure 6 

Extensioa of the slip-line field into the rigid region. 

The total force acting on KLN was calculated and found to be within 3.5% 
of the pressure on OA. This discrepancy is almost certainly due to the inaccu- 
racy of the finite difference forms of (5) near the axis, and of (7) away from the 
axis. Neither set of equations is really satisfactory in the neighbourhood of the 
axis of symmetry. With the distance OA as the unit of length, the point K is 
distant 3-59 from ON, 2.21 from OB, and N is distant 3.65 from OB. 

The stress field obtained is statically admissible and the value of 6.05 k is 
a lower bound for the average pressure by the limit analysis theorems due to 
DRUCKER, GREENBERG and PRAGER [3]. 

5.  C i r c u l a r  P u n c h :  V e l o c i t y  F i e l d  

An incipient plastic velocity field is obtained by assuming that flow is 
confined to the region ABCD of Figure 2. It  is assumed that the punch has unit 
velocity parallel to the axis of symmetry, and that the region OAD moves as a 
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rigid body in the axial direction with the velocity of the punch. The velodty 
field in region A B C D  must satisfy the conditions that  the normal velocity 

'across AD is continuous and that  the normal velocity across BCD is zero, as 
the region above this line is assumed to be rigid. As AD is an s-line, the first 
of these conditions implies W continuous across AD,  so that  

W = cos~0 on A D .  (18) 

Along AD the first of equations (13) holds, and with (18) this takes the form 

dU -- cos~o d~ + (U -- sin~) dr = O. ( 1 9 )  

The general solution of this equation is 

A 
U -- sin~ - r1!2 , (20) 

where A is a constant. To avoid an infinity in the value of U at the point D, 
A must be taken to be zero, so that  

U = sin~0 on A D .  (21) 

Thus the velocity field is seen to be continuous across AD. A similar argument 
to the above shows that  

U = W = 0 along BCD,  (22) 

so that  the velocity is also continuous across BCD. 
The point D is a singular point of the velocity field. Near this point the 

slip-lines are inclined at angles of at/4 to the co-ordinate axes, and the velocity 
field given by  (16) may  be taken to hold. This velocity field was assumed to 
apply in the region D E F  of Figure 2. Since the velocity is now known along 
the lines A F E C B ,  the velocities within this region may  be determined by  
integration of (13). The point A is also a singular point of the velocity field. 

The velocity field in region A F E C B  was obtained by  numerical integration 
of (13). The same numerical procedure was adopted as in [8], the differential 
equations being replaced by  finite difference equations. The incompressibility 
of the material provides a check on the accuracy of the calculation. I t  was 
found that  the flow across A B  was within 1% of the flow across OA. The 
deformation of an initially square grid which would result if this incipient 
velocity field were maintained for a short interval of time is shown in Figure 5. 

The velocity field must also satisfy the inequalities (14) if it is to be asso- 
ciated with the plastic stress field. The inequalities were checked numerically 
at various points of the field, a sufficient number of points being taken to 
ensure that  the inequalities held everywhere. 
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The velocity field is a kinematically admissible deformation mode and 
application of the limit analysis theorems shows that the value 6.05 k is an 
upper bound for the indentation pressure. The value 6"05 k is thus the actual 
indentation pressure, as it is also a lower bound. A theorem due to HILL [5] 
states that where deformation is actually occurring the stress field is unique. 
Also a theorem to BISHOP, GREEN and HILL [2] states that if any region of 
a complete solution is necessarily rigid, then it must be rigid in all complete 
solutions. Application of these theorems shows that the stress field of Figure 2 
in region A BCD is the actual plastic stress field, and plastic deformation can 
only occur in region A BCD of Figure 5. 

Figure 5 
Resulting deformation of a square grid if the incipient velocity field were maintained for a short 

period of time. 
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Zusammen/assung 

In dieser Arbeit werden das plastische Spannungsfeld und ein zulS, ssiges Geschwin- 
digkeitsfeld fiir den eben begrenzten Halbraum gegeben, der unter dem Einfluss 
eines ideal rauhen, starren Stempels init kreisf6rmigem Querschnitt steht. Das 
Material ist als starr-plastisch vorausgesetzt, ohne Verfestigung, und der Fliess- 
bedingung yon TRESCA geniigend. Es wird gezeigt, dass die Hypothese yon HAAR 
und voI~ I42XRMXN auf dieses Problem anwendbar ist, wonach zwei yon den drei 
Hauptspannungen gleich sind. Es wird auch eine giiltige Fortsetzung des plasti- 
schen Spannungsfeldes ins starre Gebiet in der NS.he des Stempels erhalten. 

(Received: May 11, 1959.) 

Flow of an Electrically Conducting Fluid Past a Porous Flat 
Plate in the Presence of a Transverse Magnetic Field 

B y  ANADI SHANKAR GUPTA, K h a r a g p u r ,  India x) 

1. Introduct ion  

In recent years, the subject of hydromagnetics has a t t rac ted  the attention 
of many  authors in view not only of its own interest but also of its enormous 
applications to problems of geophysical and astrophysical significance. 

The general equations of unified velocity and magnetic fields for the flow 
of an incompressible, viscous and electrically conducting fluid subject to a 
magnetic field have been derived by  BATCHELOR [112). 

In this paper, we have discussed the effect of a transverse magnetic field 
on the steady flow of an incompressible electrically conducting fluid past an 
infinite porous flat plate when the plate is subjected to either suction or injec- 
tion. Exact  solution has been obtained for the modified Navier-Stokes and 
Maxwell equations under the usual assumptions of magneto-hydrodynamics. 
The equation of heat transfer including viscous and Joule dissipation has also 
been integrated and the rate of heat transfer calculated. The corresponding 
problem in tile absence of magnetic field has been solved by  GI~IF~ITH and 
MEREDITH [2]. 

2. Bas ic  Equat ions  

The fundamental equations of hydromagnetics are: 

(a) MAXWELL'S equations : 

d i v E =  4.~c ~Q,  (1) 

1) Indian Inst i tute  of Technology. 
z) Numbers in brackets refer to References, page 50. 


