
Vol. 22,1971 217 

Nonlinear Analysis of Flow Pulses and Shock Waves in Arteries 

Part I: Derivation and Properties of Mathematical Model 

By Max Anliker, Robert L. Rockwell1), Dept. of Aeronautics and Astronautics, 
Stanford University, Stanford, California and Eric Ogden, Environmental Biology 
Division, Ames Research Center, NASA, Moffett Field, California 
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cross-sectional area of ar tery  at the reference int ra luminal  pressure P0 
local wave speed 
parameters  in wave speed expression 
local wave speed for linearized analysis 
designations for general curves in z, t plane 
diameter  at aortic valve when p = P0 
diameter  at distal end of ar tery  when p = P0 
circumferential  Young ' s  modulus  
axial frictional force per  uni t  mass of fluid 
wall thickness 
distance from aortic valve to distal end of ar tery  
pa ramete r  in wave speed expression 
int ra luminal  pressure 
calculated mean pressure 
reference pressure 
capillary pressure 
pressure at distal end of ar tery  
S v = local volume flow rate 
qo(t) = volume flow rate ejected by  hear t  
radial coordinate 
Reynolds number  for s teady flow 
peripheral  resistance 
curvilinear coordinate 
cross-sectional area of ar tery  

�9 cross-sectional area for linearized analysis 
t ime 
axial fluid velocity averaged over cross section 
axial distance coordinate 
distance from aortic valve to femoral a r te ry  
exponent  in cross-sectional area expression 
outflow paramete r  
undetermined multiplier 
blood viscosity coefficient 
blood density 
outflow funct ion simulat ing effect of side branches 

1) Now, Naval  Weapons  Center, China Lake, California. 
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I. In troduct ion  

The intermittent ejection of blood from the left ventricle produces pressure and 
flow pulses in the aI'terial tree. Experimental studies of these pulses reveal that  they 
are propagated with a characteristic pattern. The pressure and flow pulses are 
interrelated and constitute a mechanical phenomenon whose features are defined by  
the physical and geometric propert ies  of the arterial tree. We know from actual 
measurements on animals and on man that  the pressure and flow pulses undergo 
well-defined changes in their wave form as they propagate away from the heart [1, 2]. 
These changes have been observed to be quite sensitive to certain variations in the 
properties of the cardiovascular system. Therefore the question arises, to what extent 
can deviations of the wave  forms from their normal patterns be used as diagnostic 
indicators or in a study of the control mechanisms responsible for maintaining and 
regulating blood flow. With the recent development of ultrasound echo-ranging 
devices and pulsed doppler shift flowmeters which allow us to detect the flow pattern 
in major arteries without penetrating the skin [3, 4, 5], this question seems to be 
particularly relevant, However, a meaningful interpretation of changes in the pulse 
waves is only possible if we have a thorough quantitat ive understanding of how the 
various cardiovascular parameters can affect the pressure and flow pulses. As an 
a t tempt  to develop this quanti tat ive understanding, we have therefore begun a 
nonlinear analysis of large-amplitude waves in blood vessels which takes into account 
recently established experimental facts [6, 7, 8]. 

One of the principal reasons for undertaking the work described in this paper is 
the need for a noninvasive method of determining possible changes which may occur 
in the cardiovascular system of astronauts as a result of prolonged exposure to 
weightlessness [9]. Preventive measures are being contemplated which are designed 
to inhibit the space adaptation of the circulatory system, and the effectiveness of 
these measures has to be ascertained in a reliable fashion through transcutaneous 
measurements. If  we succeed in developing noninvasive methods and the necessary 
instrumentation to quantify essential cardiovascular variables and parameters, it will 
be possible to better  utilize naturally-occurring circulatory phenomena as indicators 
of health or disease. Moreover, we should then be capable of studying the circulatory 
control mechanisms in man under truly natural conditions - that  is, without t rauma 
and/or anesthesia. 

A thorough study of blood flow in arteries or veins presents formidable obstacles. 
For example, we do not yet know what constitutes a sufficiently accurate mathematical  
model for the mechanical behavior of the vessel wall and its surroundings. Also, we 
have yet to establish criteria which indicate when certain simplifying assumptions 
such as linearity in the system behavior, inviscid flow, one-dimensional flow, etc., 
can be justified. So far, most theoretical studies of the arterial pressure and flow 
pulses have been based on linear analyses [1, 2, 10, 11, 12] even though there has been 
increasing evidence of the presence of strong nonlinear phen0mena [6]. Some of the 
first serious at tempts  at including nonlinear effects were made by Lambert  [13], 
Streeter et al. [14], Rudinger [12, 15], Barnard et al. [16, 17], and Jones i18], who 
considered the flow to be one-dimensional and made use of the method of charac- 
teristics. The essential advantage of their approach i s  that  the method of charac- 



Vol. 22, 1971 Derivation and Properties of Mathematical Model 219 

teristics includes automatically the effects o f  reflections and makes it possible to 
account for the variations in cross-sectional area with distance and pressure and for 
the convection of the signal by the flow. Although to-date, no realistic analysis of the 
generation and evolution of the natural pulse wave in arteries has been made, the 
referenced investigations have clearly indicated the potential usefulness of the method 
of characteristics. The availability of faster digital computers and more detailed 
quantitative information on the mechanical behavior of arteries renders the exten- 
sion of earlier efforts feasible and timely. Since the theoretical predictions we are 
aiming for are to be verified and scrutinized in animal laboratories, we have elec- 
ted to study first the cardiovascular system of the dog without, however, losing 
sight of ultimate applications to man. 

Recent experimental observations [6, 19] on anesthetized dogs suggest that the pro- 
pagation of large-amplitude pressure waves in arteries or veins is strongly influenced by 
nonlinear effects. I t  has been shown that the local phase velocities of artificially induced 
small sinusoidal pressure signals increase appreciably when we increase the prevailing 
transmural pressure and flow velocity. At a given transmural pressure, the phase 
velocities also increase with distance from the heart. Consequently, the natural 
pressure pulse should exhibit a marked steepening of its wave front with propagation 
and also an increase in pulse amplitude. Such behavior can be interpreted as being 
similar to that observed during the initial phases of shock wave formation in a 
compressible flow field. In the present study we shall examine this similarity and 
explore the possibility of shock waves evolving from pressure pulses which have large 
amplitudes and steep wave fronts already at the root of the aorta, such as the pulses 
encountered with incompetent aortic or tricuspid valves [20, 21, 22] 3). 

For sufficiently small pressure peiturbations, such as the sinusoidal wavetrains 
shown in Figure 1, a linearized analysis of the transmission characteristics of these 
trains can be justified. Also, it can be used to demonstrate that the propagation 
characteristics of artificially induced signals vary with the naturally-occurring 
pressure and flow fluctuations [6, 19]. 

Since arteries do not seem to be significantly dispersive for pressure waves, the 
phase velocity can be approximated by the speed of signals in the form of finite trains 
of sine waves [6]. This has been corroborated extensively for the canine aorta in the 
frequency range from 40 to 200 Hz. In our analysis we shall assume that the non- 
dispersive property is valid also for frequencies as low as 1 Hz. In addition, we shall 
utilize in an approximate manner the pressure dependence of the wave speed shown 
in Figure 2 for the thoracic segment of the aorta [23]. 

The system of one-dimensional nonlinear differential equations for the present 
problem is hyperbolic which means that the occurrence of shock waves must be 
considered a distinct possibility. As a matter of fact, the idea of shock waves in blood 
vessels is not new [21]. Their possible occurrence has been postulated at times in the 
past [11, 12] but has not been considered seriously because under normal conditions 

2) In patients with aortic insufficiency, i.e., incompetent or leaking aortic valves, there is 
extensive regurgitation of arterial blood from the aorta back into the left ventricle. Similarly, 
in patients with severely leaking tricuspid valves we find regurgitation of venous blood from 
the right ventricle back into the vena cava. In both cases extremely large pressure pulses 
may be generated by the heart. 
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Figure 1 
Representa t ive  tracings of recordings 
of the na tura l  pulse wave in the 
thoracic aor ta  of an anesthetized dog, 
wi th  artificially superimposed t ra ins  of 
sinusoidal waves of various frequencies 
[6]. The t rans ien t  signals were induced 
at different t imes during the cardiac 
cycle. Note t ha t  the sine waves  are highly 
damped bu t  re ta in  their sinusoidal 
character  dur ing propagation.  All of the 
pressure curves are drawn to the same 
relative scale, as indicated. However,  
each of the curves has a different zero 
poin t  since they  were separated for 
i l lustration purposes,  zlz represents  the 
distance between the two catheter- t ip 
manometers  used to record tile two 
pressure signals in each pair  of curves. 

SINUSOIDAL WAVETRAINS 
SUPERIMPOSED ON THE NATURAL PULSE WAVE 
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Figure 2 
Wave  speed-pressure 
da ta  obtained for 
thoracic aor ta  of an 
anesthetized dog 
[23]. Each  point  
represents  the ave- 
rage speed of a peak 
and successive valley 
of a sine wave. 
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the distances required for their development exceed physiologically meaningful 
values. However, for very strong pressure pulses with steep wave fronts, the distances 
at which shock waves can be identified could be within the anatomical range. If we 
can verify this hypothesis, we could possibly arrive at an explanation for the genesis 
of the pistol shot sounds which can be heard over arteries in the extremities of patients 
with incompetent aortic valves [20] or over the corresponding veins in cases of leaking 
tricuspid valves [22]. 
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In the past, the mechanical properties of the arterial wall were in most cases 
given in terms of a constant Young's modulus. If we disregard the pressure dependence 
of this modulus, the wave speed is predicted to decrease with pressure [14], contrary 
to experimental observations (see Fig. 2). The present study differs insofar as it 
introduces the mechanical properties of the arterial wall into the equations in a very 
direct manner through the experimentally observed wave speed as a function of 
pressure and distance from the heart. 

II.  D e r i v a t i o n s  

In this study of large-amplitude wave propagation in arteries, we assume one- 
dimensional motion of the blood. We model the vessel as a tapered elastic tube and 
allow for continuously distributed seepage through the wall to simulate the outflow 
through the branches in a manner which approximates the regional blood flow 
pattern. The blood is treated as an incompressible fluid and the effects of viscosity are 
accounted for in an approximate fashion. To define the interaction of the blood with 
the elastic wall, we prescribe the mechanical behavior of the tube by the speed of 
small pressure waves and the variation of this speed with pressure and location. 
With the pressure dependence of the local wave speed, we are stipulating how the 
cross-sectional area changes when the pressure fluctuations cannot be considered 
small. The equations governing the fluid flow and the fluid-wall interaction are then 
transformed according to the method of characteristics and put into a form suitable 
for machine computation. Such an approach automatically includes reflection phe- 
nomena and the essential nonlinearities of the system, and also permits us to obtain 
solutions corresponding to arbitrary initial conditions and realistic boundary condi- 
tions. For the most part, the notation used here is the same as that introduced by 
Skalak [11] and Rudinger El21 in their survey papers. Although this analysis assumes 
the cross section of the artery to be circular, it can readily be extended to vessels with 
non-circular cross sections. By postulating one-dimensional flow, we treat the pressure 
and flow velocity as uniform over the entire cross section. This is obviously an 
approximation of reality and means that we are essentially considering spatial average 
values of the dependent flow variables at each cross section. 

1. Basic Equations 

Conservation of mass requires that the rate of mass increase inside a blood vessel 
segment of unit length is equal to the net influx of mass. For an incompressible fluid 
and allowing for outflow of fluid through the arterial wall we have 

, ~)s 0 ( s  v) 
0~ + ~ T -  + ~ = 0 (1) 

where yJ is the rate of volumetric outflow (leakage) per unit length of artery. For the 
time being, the nature of ~v is left undefined. Its inclusion in the equation simulates 
the outflow of blood from the artery of interest through discrete bifurcations and 
branches. 
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As in Ref. I l l ]  and I12] we write for conservation of m o m e n t u m  

Ov Ov 1 0 p  
o~ + v ~ + q oz - t (2) 

where / represents the effect of any  forces acting on the fluid other  than pressure 
forces. / is a force per unit  mass of fluid in the z direction and has the dimensions of an 
acceleration. Like ~o, it is also temporar i ly  left undefined but  will ul t imately be 
restricted to represent only the effects of viscosity. 

Since arteries are distensible and tapered, the cross-sectional area varies with 
pressure and distance z from the heart :  

S = S(p, z ) .  (3) 

We now assume tha t  the functional form of equation (3) is algebraic. I t  would be quite 
easy to include an explicit dependence of cross-sectional area on time (such as with 
respiration or during transient responses to vaso-active drugs). A dependence on 
velocity could also be incorporated, bu t  there appears to be no need to do so for the 
normal  range of flow velocities in arteries. 

Relations (1)-(3) consti tute three equations for the three unknowns v, p and S. 
With  the aid of (3) we can write in lieu of (1) 

+ ~ = 0. (4) s ~ - = +  = a T + v  = ~ + v  ~ -  p 

Restricting the expressions / and %v to be algebraic functions of p and v, we have with 
(2) and (4) a pair of quasi-linear (the coefficients in the equations depend on the 
unknowns, but  not  on their derivatives), first-order partial differential equations 
which we solve by  the method of characteristics. 

Wi th  A = A(p, v, z, t) as an undetermined multiplier, we mult iply (4) by  ~ and 
add to (2): 

(5) 
+ ~ = 0 .  - / + I v  ~ p 

For any  curve C in the z, t plane, the parametr ic  equations of C can be given in 
terms of a curve parameter  s as 

z = =(=) 
and 

t = t ( s ) .  

Along C, 

dv c Ov dt c Ov dz 
ds - at ds + Oz dss c" 
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We choose C so tha t  

dt = 1 and d~sZ 
ds = v + ~ S . (6) 

C C 

Similarly along another  curve C', 

dp c' dp dt c" Op dz 
ds -- Ot ds + ~ z  ds [c," 

Selecting C' such tha t  

T s ~ , =  dz c" 1 dt 1 and d~s - ~ (OS/Op)z + v (7) 

we can reduce (5) to 

+ ~ ~ = o .  (8) ds + ~  ~ - / + ~ v  ~ p 

We now a t t e m p t  to find a A for which the curves C and C' coincide, i.e., a ~ for 
which expressions (6) and (7) are identical. This requirement  is satisfied if 

c 

: 4 -  s (9) 

where c is defined b y  

/10, 
c = (os /opL " 

Since dt/ds = 1 we have dz/ds = dz/dt and the so-called characteris t ic  directions, 
or base characteristics,  are given b y  

dz 
I ~ :  - -  v 4 -  c .  ( 1 1 )  

dt 

Inser t ing (9) and (10) into (8), we obtain the compat ib i l i ty  equations,  or characteris t ic  
equations: 

[ ( )  c] d p vc OS = t = - ~  dr. (12) 
II•  d v +  qc = I : F ~ -  O z  p 

The in terpre ta t ion of these four equations is t ha t  I I+  (equation (12) wi th  the upper  
signs) is mean t  to hold on the curve specified b y  I+ (equation (11) wi th  upper  sign), 
and correspondingly I I~  on I - .  

F rom equat ion (11), the meaning of c becomes clear: c is the local w a v e  speed, 
the velocity a t  which small dis turbances are p ropaga ted  relat ive to the fluid at  rest. 
For  a thin-walled circular cylindrical vessel whose cross-sectional area varies slowly 
with axial distance, the wave speed expression (10) is equivalent  to the classical 
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Moens-Korteweg relation 

c = 2 ~ r  

in which E denotes the circumferential Young's modulus, r the internal radius, and 
h the wall thickness. Since the solutions for the base characteristics (11) are real, the 
original system of equations (2) and (4) is hyperbolic. 

The solution to the problem can be initiated once the functional form of S = 
s (p ,  z) is known. To obtain S(p, z) we could postulate a mathematical  model for the 
mechanical behavior of the arterial wall and then derive the area-pressure relation 
and the corresponding wave speed expression. However, conventional models for the 
mechanical behavior of the wall often predict a decrease in wave speed with pressure 
[141 which, as can be noted from Figure 2, is in contradiction with experimental 
evidence. This difficulty is automatically avoided if we describe the mechanical 
behavior of the vessel in terms of the experimentally observed wave speed as a 
function of pressure and location E23]. The wave speed enters quite naturally into the 
characteristic equations (11) and (12), and the area-pressure relation can be obtained 
by  integrating equation (10). Finally, by  specifying / and ~p together with appropriate 
initial and boundary conditions, we can arrive at numerical solutions to the problem 
on hand by integrating equations (11) and (12). 

2. Cross-Sectional Area as a Funct ion o / P r e s s u r e  and Distance 

Measurements in the thoracic aortae of anesthetized dogs [231 suggest that  wave 
speed changes with intraluminal pressure may  be approximated by a linear function 
over the normal physiological range of pressure. Figure 2 displays typical results of 
wave speed measurements in which the normal range of pressure was extended by 
appropriate occlusions of the aorta. A quadratic function would approximate the 
curve in Figure 2 more closely and was in fact used for a number of computer runs. 
However, the results did not differ significantly from the cases where a linear relation- 
ship was employed, and since the amount of computing time required was perhaps 
50% greater due to the much more complicated expression for the cross-sectional area 
corresponding to the quadratic function, we consistently used a linear pressure 
dependence of the wave speed. 

Assuming in addition that  the wave speed varies linearly with distance along the 
aorta [71, we have 

c(p, z) = (c o + C 1 p) (1 + n Z). (13) 

By substituting (13) into (10) and integrating the resulting differential equation we find 

S(p, z) = A (z) e p-pO/~c(p' ~) cIpo,,) (14) 

where P0 is a reference pressure and A (z) is an as yet unspecified function which 
defines the cross-sectional area of the blood vessel at the pressure P0 as a function 
of the distance z from the heart: A(z)  = S (p  o, z). 

Patel [24] has taken measurements on the major arteries of 11 moderately large 
dogs with an average weight of 22.1 kg. These measurements are considered as 
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representative diameters at a given pressure Po, for example P0 = 100 m m  Hg. 
Assuming a wall thickness-to-radius value of 0.08 in the aorta and one of 0.25 in the 
external iliac artery, we converted his data  to internal diameters corresponding to the 
pressure P0 as plotted in Figure 3. However, we are interested in larger animals (the 
ult imate application is to man), and we have therefore scaled these converted data 
upward to correspond to a 30 kg dog whose bifurcation was somewhat arbitrarily 
placed at 54 cm. This was done by increasing the internal diameters obtained from 

Patel 's  data by  a factor of 1/30/22.I = 1�9 assuming that  the ratio of weights is the 
same as the ratio of lumen areas�9 The new diameters are also shown in Figure 3. 

Figure  3 
I n t e r n a l  d i amete r  d a t a  for the  
dog ao r t a  according to Pa te l  [24]. 
The  solid curve  a p p r o x i m a t e s  the  
d i ame te r  var ia t ion  wi th  d i s tance  for 
t h e  hypo the t i ca l  30 kg dog. 
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An exponentially decreasing diameter appears to be a reasonable approximation 
for the aorta, according to the data published in the literature and given in Figure 3 
(see also Ref. E25]). We therefore could write for A (z): 

A(z) = S(Po, z) = So(Po ) e - ~  (15) 

where So(Po ) is the cross-sectional area at the root of the aorta at the pressure Po. 
With (15) we have 

S(p, z) = So(Po ) e - ~  +(p-p~176 c(p,O c(p~ 0 (16) 

and thus a complete definition of the geometry and mechanical behavior of the aorta. 

3. The Frict ion Express ion 

The expression for the force parameter  / in equations (2) and (12) will now be 
restricted specifically to one representing the effects of blood viscosity�9 As stated 
before, / must be an algebraic function which unfortunately rules out a more general 
modeling of the viscous friction which would include proper phase relationship to the 
pressure�9 We consider two cases: laminar and turbulent steady flow in a pipe. Making 
use of the corresponding formulae of Poiseuille and Blasius, we obtain 

/ laminar  ~ - -  8 2"~ 1~ 72 q S (17) 

ZAM P 22115 
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and 
(~_) 1/a [vim 

/turbulent = - - ' 1 3 6 0  5518 sgn v (18) 

with/ ,  representing the friction coefficient of blood. These expressions are in a strict 
sense only valid for steady flow but are now assumed to be applicable also for pu!satile 
flow. 

4. The Outflow Expression 

The outflow of blood from the aorta through disGete side branches and bi- 
furcations is modeled by a continuously distributed leakage or seepage defined by the 
outflow function ~0. We use the data of Sapirstein [26] on regional blood flow measure- 
ments to specify how much blood, in per cent of the total cardiac output, is lost per 
unit time through the major arteries (identified in Fig. 3 and 4) emanating from the 
aorta. The results are summarized in Table 1 and Figure 5. It  appears that  these 
data are reasonably well approximated by an outflow function which stipulates that 
the local leakage rate is proportional to the difference t5 - / se  between the local 
arterial pressure p and the capillary pressure Pc and which exhibits the gross features 
of the regional blood flow pattern. Among the various functions considered, the most 
realistic outflow distribution was obtained with 

(P--Pc)  1 . 1 + c o s ~ -  for z~<z* 
~o(/5, z) = 

Y (/5 -- Pc) (1.1) e -'~ for z />  z* 

Figure 4 
Schematic illustration of the 
major components of the canine 
arterial tree, as given in Ref. [271. 
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Table 1 
Approximate distribution of blood through the major arterial branches of the aorta, deduced from 
Sapirstein's data E26~"). 

Branch DistanCe from Fraction of Fraction of 
aortic valve cardiac output cardiac output 
cm to branch remaining 

Aortic valve 0 1.00 
Coronary arteries 0 § .05 .95 
Brachiocephalic 3 .17 .78 
Le~t subclavian 4 .02 .76 
Intercostals, bronchials, diaphragmatic distributed .11 .65 
Celiac axis 38.5 .08 .57 
Cranial mesenteric 40.5 .18 .39 
Right renal 42 .06 .33 
Left remal 44 .06 .27 
Caudal mesenteric 51 .09 .18 
Bifurcation 54 .09 .09 

a) The values given are based in part on Reference [26~ and in part on unpublished data collected 
by Dr. Sapirstein. 

Figure 5 
Average distribution of 
blood plotted from the 
data of Table 1. The dashed 
curve is the result of 
integrating the volume 
flow rates for the Standard 
Case (Section III)  over a 
cardiac cycle. 
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in which z* represents the distance from the aort ic  va lve  to the general  region of the 

femoral  a r te ry  and 1/y is a measure of the outflow resistance. For  the cases considered 

in this analysis z* was taken  to be 70 cm. 

The seepage dis t r ibut ion defined by (19) is shown in Figure  6. Near  the heart ,  

the  outf low is large to s imulate  the blood flow into the brachiocephal ic  and left 

subclavian arteries at the top  of the aortic arch. The  seepage rate  is low in the thoracic  
region and again large near  z ~ 50 cm to approx imate  the outf low to the abdominal  

organs and into the bifurcation.  The exponent ia l  decrease in ~# for z >~ z* accounts  

for the diminishing outf low into the arteries distal  to the femoral  region. Since the 

pressure in the capillaries is of the order of 25 m m  Hg, we have  chosen this value for Pc 

in all our computat ions.  The  parameter  y was general ly chosen such tha t  the diastolic 

pressure at the hear t  was of the order of 80 m m  Hg. 

A typical  outf low dis tr ibut ion obta ined  with this funct ion is given in Figure  5 

(Standard Case). I t  can be seen that  the gross behavior  of the empir ical  da t a  is also 
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Figure  6 
Out f low d i s t r ibu t ion  of blood 
t h r o u g h  the  ar te r ia l  wall  as 
def ined by  equa t i on  (19). 
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exhibited by the computed results, but the agreement is not altogether satisfactory. 
This indicates the need for a more appropriate accounting for outflow, although 
perhaps this effort would be better  expended on a model including discrete branches 
rather than on the purely continuous outflow model considered here. The present 
procedure for modeling the effect of branches from the aorta is very approximate. 
However, until more accurate information is available on the true regional flow 
distribution and its dependence on pressure, approaches such as the one taken here are 
justifiable. 

5. Boundary Conditions 

The boundary conditions must be specified at the proximal and distal ends of the 
arterial conduit for which we want to determine the pressure and flow pulse patterns. 
Each of these boundary conditions can take different forms. 

a) Proximal Boundary Condition 

There were two types of boundary conditions utilized. The first was to prescribe 
the variation of the pressure at the aortic valve as a function of time: 

p(0, t) = po(t) . 

Although this choice seemed a logical one in view of the abundance of actual pressure 
recordings taken near the aortic valve, it did not give very satisfactory results and 
was abandoned. The principal disadvantage was that  with a representative pressure 
recording as the proximal boundary condition we could not consistently predict the 
experimentally observed flow profiles near the aortic valve. The numerical results 
often exhibited moderate positive and negative flow velocities at the root of the aorta 
during the latter two-thirds of the cardiac cycle, when the aortic valve is normally 
closed. (At this stage, we do not wish to deal with incompetent valves.) Clearly, if the 
true pressure fluctuation were used in conjunction with the actual geometric and 
elastic parameters, heart rate, cardiac output, outflow function, etc., the predicted 
flow pulses should be in close agreement with those observed experimentally,provided 
we have a valid mathematical  model for the mechanical behavior of the system. 
We infer from this that  we either do not yet have a sufficiently accurate description 
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of the mechanical properties of the circulatory system, or that  relatively small changes 
in the pressure pulse produce dramatic changes in the flow pulse and therefore the 
pressure variation with time must be known to a higher degree of accuracy than we 
normally have in physiological pressure measurements. 

Much more satisfactory results were obtained by  specifying the volume flow rate 
of blood from the left ventricle into the aorta: 

q(O, t) = qo(t) . 

The flow rate is an equally natural  choice as a boundary condition. I t  is related directly 
to cardiac output and pulse rate both of which can readily be measured and are 
physically impol tant  parameters. Since q is equal to the product of spatial mean flow 
velocity and cross-sectional area, the boundary condition now takes the form 

q0(t) 
v(O, t) - s ( p ( o ,  t), 0) " (20) 

In this analysis we shall use the curve shown in Figure 7 [281 as representative of the 
cardiac ejection qo(t). Since p and therefore S ( p ,  0) are not known a p r i o r i ,  iteration 
is necessary to satisfy the boundary condition (20) as stated. 

Figure 7 
Cardiac ejection rate as a 
funct ion of time. Adapted 
f rom Ref. [28~ by scaling to 
yield a net stroke volume of 
30 cm 3. As hear t  rate  we 
have assumed 120 beats  per 
minute.  
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b) Distal Boundary Condition 

As in the case of the proximal boundary we considered two types of conditions 
at z = L. Recognizing that  the pulsatile component of blood flow diminishes in the 
smaller arteries and arterioles and essentially vanishes in most precapillaries and 
capillaries, we assume that  the terminal pressure is constant: 

p ( L ,  t) = PL " (21) 

This is a reasonable approximation only if the diameter at the distal end of the artery 
is sufficiently small. 

The second type of terminal boundary considered is based on the concept of 
peripheral resistance, which is defined as the ratio of driving pressure across the 
capillary bed to volume flow rate through this bed. If  we take the pressure at the 
venous end of the capillary as Pc, the driving pressure is p ( L ,  t) - -  Pc.  The peripheral 



230 Max Anliker, Robert L. Rockwell and Eric Ogden ZAMP 

resistance R L can therefore be expressed as 

RL _ p ( L ,  t) -- Pc (22) 
q(L, t) 

which allows us to write the boundary condition as 

p(L, t) -- Pc v(L, t) = (23) 
R L S (p (L, t), L) 

The concept of flow rate being proportional to pressure has been widely used in 
the analysis of blood flow although it seems too simple to be very realistic. Smal l  
changes in R L will usually cause relatively large changes in the pressure and flow along 
the artery. We decided to choose that  value for R r  which produces a representative 
mean pressure at the heart. The validity of the peripheral resistance idea will be 
tested by  determining the relation between the actual driving pressures and 'flow rates 
for specific distances from the heart when a constant end pressure is stipulated as the 
boundary condition (equation (21)). 

6. In i t ia l  Conditions 

From an engineering point of view it might be logical to specify that  the velocity 
everywhere in the arterial conduit is initially zero and that  the pressure is at a 
nominally low level, for example, 25 mm Hg. Then, by  initiating the pulsatile ejection 
of blood from the heart, one can observe the 'starting process'. This could possibly 
be of some interest in studying the transient response of the cardiovascular system to 
normal heart beats following a period of cardiac arrest. Similarly, one might want to 
analyze the response to sudden changes in the system parameters. The initial condi- 
tions for that  problem would then be the steady state conditions of the unperturbed 
circulation at the time instant of the occurrence of the change. However, as a rule the 
initial conditions were usually chosen as close as possible to the anticipated steady 
state conditions in order to minimize computer time. In assessing the effects of changes 
in the system parameters, we generally selected as the initial pressure and flow velocity 
patterns those of the Standard Case (see Section IIIA) at the end of diastole. Of 
course, the effect of any initial conditions is ultimately damped out and does not 
influence the steady state solutions. 

I I I .  T y p i c a l  R e s u l t s  - S t a n d a r d  C a s e  

For the most part  the IBM 360 computer was used, although some runs were 
made on the Univac 1108. The so-called method of specified time intervals was 
employed E14, 291. The ordinary differential equations (11) and (12) were converted 
into finite difference equations. Provisions for iteration were included, but with 
computing intervals of dz  = 2 cm, At ~ .001 sec, they proved unnecessary. With this 
choice, the differences in the computed results were generally less than 1 mm Hg in 
pressure and 2 cm/sec in velocity when compared with results obtained with much 
smaller computing intervals. An exception was the case of aortic insufficiency (see 
Section IV K) in which the large and rapid changes in pressure and flow required 
intervals of A z  ~ 1 cm and A t  ~ .0001 sec to maintain the desired accuracy. 
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Unless indicated otherwise, the following parameter  values were used throughout  
the s tudy:  

= 1.06 grams/cm 3, 
/~ = .049 poise, 
P0 ~ 100 m m  Hg = 1.33 • 105 dynes/cm 2, 
PL = 25 m m  Hg = 3.3• 104 dynes/cm 2, 
L = 150 cm. 

The units of pressure used in performing the calculations were usually dynes/cm 2. 
However,  conversion to the more popular  millimeters of mercury  was generally made 
for presentat ion of the results. 

To establish a basis of comparison in s tudying the effects of certain parameters,  
we defined a Standard  Case for the aorta  and, its cont inuat ion beyond the saphenous 
ar tery  in an anesthetized 30 kg dog. The following physical and geometric features 
were assumed. 

1. Wave  Speed: 

c(p, z) = (97 + 2.03 p) (1 + .02 z) cm/sec (24) 

where p is the pressure in mm Hg and z is the distance from the aortic valve in cm. 
This dependence of the wave speed on pressure and distance from the heart  approxi- 
mates the pat terns given in the literature E7] and observed in our laboratory [231. 
For  example, the experimental  da ta  shown in Figure 2 represent the wave speed as a 
function of pressure in the canine thoracic aor ta  at about  25 cm from the aortic valve. 

2. Cross-Sectional Area: 

Consistent with equation (16) and the data  plot ted in Figure 3, we have taken 

[4.63e -~176176 for z ~< 54 

S(p,  z) = / 0"411 e -'O89(z-Sg)+(p-p~176 for z >/54.  
(25) 

The available anatomical  data  suggest tha t  S varies with z in a different exponential  
manner  for the continuat ion of the aorta  beyond the bifurcation (z /> 54 cm) as 
compared with z ~< 54 cm. For  z ~< 54 em we used the da ta  shown in Figure 3, while 
for z >~ 54 cm we selected the exponent  such tha t  we have a terminal diameter of 
100 microns when L = 150 cm and p =/50. Originally, a terminal  diameter of 10 microns 
was used, which approximates  more closely the capillary size but  requires a larger 
value of L for the same function s (p ,  z) and thus more extensive computat ion.  
However,  the results did not differ noticeably and in order to minimize computer  
time we selected as terminal diameter 100 microns. 

3. Hear t  Parameters  and Outflow Expression: 

For  the Standard  Case the pulse rate is 120 beats per minute and the net stroke 
volume 30 cm 8. This  means that  the cardiac output  of the hypothet ical  30 kg dog is 
3.6 litters or 0.12 litters per minute per kg mass [301. The  value of y appearing in 
equation (19) for the outflow function w(p, z) was determined to produce a diastolic 
pressure of 80 m m  Hg. This was achieved for y = 9.29 • 10 .8 cma/sec/mm Hg. 



232 Max Anliker, Robert L. Rockwell and Eric Ogden ZAMP 

The pressure and flow veloci ty  profiles predicted for the S tandard  Case and 

laminar  flow are displayed in Figure 8 for six different locations beginning with z = 0 

(the aortic valve) and cont inuing to z = 100 cm. Figure  9 shows the tempora l  mean 

values for pressure and flow veloci ty  as a function of z together  wi th  the d iameter  at 

diastolic pressure. 

o~ 140~ z'cm 
~- r  120 I- 0 20 40 60 

60 '  ' ' ,,, j ~ .  o,L, g, >:~ 120 
~,cTjl 0 20 40 60 80 IO0 

- 4 0  
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TIME, s e c  

Figure 8 
Pressure and flow velocity profiles at six different locations along the artery for the Standard Case. 
z = 0 is the location of the aortic valve. Note steepening of the wave front and peaking of the 
pulses with propagation. Flow patterns computed at intermediate stations show that flow reversal 
persists to z = 30 cm in this case. 

Figure 9 
Pressure and flow velocity averaged over 
the cardiac cycle and plotted as a function 
of distance from the heart for the Standard 
Case. Also internal diameter at diastolic 
pressure. 
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The temporal  pressure profiles plot ted in Figure 10 for various distances from the 

aortic valve indicate the familiar  gradual  change in shape as the pulse wave propagates 

in the aorta.  We clearly note the incisura in the pressure pa t te rn  at z = 0. I ts  sharpness 

however  begins to disappear  wi th  increasing distance. In the course of our numerical  

studies, we observed tha t  the short  in terval  of backflow or negat ive  flow shown in 

Figure 7 was not  necessary to produce the incisura; abrup t  decreases in the cardiac 

ejection ra te  can cause an incisura even when there  is no flow reversal.  For  the 
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F igure  10 
P re s su re - t ime  profiles for t he  S t a n d a r d  Case 
a t  d i f ferent  d i s t ances  f rom the  aort ic  valve,  
i l lus t ra t ing  the  evolu t ion  of the  na t u r a l  
p ressure  pulse.  The  pressure  cor responding  
to  80 m m  H g  is denoted  a t  the  beg inn ing  
of each profile. 
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Standard Case no backflow was found beyond 30 cm. As the pulse wave propagates, 
the wave front steepens markedly with distance. The pulse pressure grows fastest 
near z = 70 cm and reaches a maximum near z = 90 cm. The dicrotic wave first 
becomes noticeable at z = 40 cm and is fully developed past z = 60 cm. By integrating 
the product of area and velocity at each station over a cardiac cycle, we obtain the 
volume flow at each point. The results are given in Figure 5 for comparison with the 
empirical data of Ref. E26~. 

The growth of pulse pressure with increasing distance from the heart correlates 
well with in vivo observations. That the diastolic pressure decreases with distance 
has also been noted in experimental studies I2]. However, the variation of the mean 
flow velocity with distance from the aortic valve as predicted by this analysis has not 
been mentioned in the literature. In fact, the graphs in Ref. E2] seem to suggest that  
the mean velocity decreases monotonically with distance. This could be interpreted 
as an indication of a deficiency in our present model, although the equipment necessary 
for reliable and accurate measurements of flow velocity in blood vessels has not been 
generally available. 

IV. Bas ic  Propert ies  of Mathemat ica l  Model  

Having a mathematical model which yields reasonable predictions for the 
characteristic features of the actual pressure and flow pulses generated by the heart, 
we intend to study the consequences of making certain basic changes in this model. 
We are particularly interested in assessing the effects of simplifications which are 
frequently introduced in elementary theories on blood flow. Whenever we compare 
the results from any of the altered models with those of the Standard Case, it should 
be kept in mind that even though the Standaid Case solution is used as a reference, 
it represents an approximation to the pressure and flow pulses observed in reality. 
However, the computer results discussed are sufficiently accurate to be considered as 
exact solutions of the mathematical problems defined by the various models. 
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1. S e m i - I n / i n i t e  Tubes  wi th  U n i / o r m  Cross Sec t ion  

In  order to s tudy the pulse waves in the absence of geometrically induced 
reflections, we treat  the case of a semi-infinite elastic tube of constant  diameter.  
To simplify the problem further, we assume tha t  there is no outflow. For  such tubes 
and various functions c(p, z) we shall examine the flow and pressure pulses induced 
by  a single stroke with an ejection pat tern  as shown in Figure 7. 

The inside diameter of the tube is taken to be 2.43 cm at a pressure of 100 m m  Hg. 
Since there is no geometric taper, the pressure and flow fluctuations should be much 
lower than those occurring in a moderate ly  tapered tube. Therefore, in order to a t ta in  
reasonable fluctuations in pressure and flow, we double the stroke volume by  doubling 
the values of cardiac ejection rate given in Figure 7. The initial conditions are zero 
velocity and a constant  pressure of 80 mm Hg everywhere in the tube. 

Figures 11 and 12 illustrate the results for four different wave speed functions: 

c = c(p, z) = (97 + 2.03 p) (1 + .02 z) cm/sec (Standard Case) 

c = c(z) = (97 + 2.03• 100) (1 + .02 z) (independent of p) 

c = c(p) = (97 + 2.03 p) (no variat ion with distance) 

c = constant  = (97 + 2.03• 100) . 

(26) 

(27) 

(28) 

(29) 

6C0 . 5 .50 0 

IOO 

Cn BO 
- 1 -  

E 
E 140 

u~120 
I. iJ 

8O 

Figure 11 

t II\  c`p,z, 

INFINITE TUBE C = CONSTANT 

8 L 
I I 

.25 .50 0 
TIME, sec 

I 
.25 .5i0 

Pressure profiles in semi-infinite tubes  with different wave speed functions. The tubes are untapered 
and there is no outflow through the wall. Ejection pa t t e rn  is tha t  for Figure 7 but  scaled to yield 
a stroke volume of 60 cm 3. The solid lines represent  the results corresponding to c = c(p, z) as 
defined by  expression (26) ; dashed lines correspond to c = c(z) as given by  expression (27). The 
dotted lines are obtained for c = c(p), and the dash-dot  lines illustrate the results for a cons tant  
wave speed defined by  expressions (28) and (29), respectively. 

In  all these expressions the pressure p is measured in m m  Hg and the distance z in 
centimeters from the heart. Funct ion (26) exhibits the wave speed variation with 
pressure and distance as it has  been assumed in the Standard  Case. Taking in (26) the 
pressure to be 100 mm Hg, we obtain function (27). Disregarding in (26) the wave 
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F igure  12 
Veloci ty  profiles correspon-  
d ing  to Figure  11 for an  
elast ic  t u b e  wi th  c o n s t a n t  
cross sect ion and  dif ferent  
express ions  for the  wave  
speed. 
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speed increase with distance from the heart, we arrive at the expression (28). Finally, 
both neglecting the spatial variation of the wave speed and assuming an average 
pressure of 100 mm Hg everywhere, we have the constant wave speed function given 
by (29). 

From Figures 11 and 12 it is clear that the pressure and flow pulses are noticeably 
changed when we have a wave speed which increases with z. The same observation 
was also made when we assumed c to be independent of z in the Standard Case. For a 
meaningful prediction of the natural pressure pulse in the aorta, we must therefore 
take into account the variation of the wave speed with distance. The influence of 
pressure dependence of the wave spe~d appears to be less significant here than is the 
increase of c with distance. We notice, however, an increase in the slope of the wave 
front when c is pressure dependent and a more gradual decrease in the pressure or flow 
for the wave back, as might be anticipated. Since the slopes are already steep, the 
differences in slope are not readily apparent in the figures but they do in fact amount 
to factors of two or three. 

Functions (26) and (27) stipulate higher wave speeds and thus a stiffer arterial 
wall than do either (28) or (29). Therefore, with (26) or (27) the pressure pulses arrive 
at each station sooner and have larger amplitudes than the pulses corresponding to 
(28) and (29). We also note that for functions (28) and (29), the pressure returns to 
80 mm Hg after the ejection ceases, whereas for the cases of the tube becoming stiffer 
with increasing distance from the origin, the pressure remains elevated for the time 
periods considered. 

For the functions (27) and (29) the individual changes in shape of the pressure and 
flow pulses with increasing distance from the origin can at least in part be attributed 
to fluid viscosity. The nonlinear effects due to the wave speed variation with flow 
velocity, to the local changes in cross-sectional area with pressure, and to the local 
taper generated by the pressure pulse are still present and also cause modifications 
of the results. 

For the wave speed functions considered there is no evidence of a dicrotic wave 
in any of the pressure pulses. 
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2. Linearized Treatment 

The differential equations (2) and (4) for one-dimensional fluid flow are inherently 
nonlinear. If we linearize these equations, we reduce the problem to one which can be 
treated by conventional methods such as Fourier analysis. As a matter of fact, most 
of the past studies of pulsatile blood flow are based on linearized equations, even 
though it has been recognized that linearization constitutes an approximation. While 
such an approximation may be tolerable in analyzing the gross behavior of the system 
in some cases, it can introduce excessive errors in a prediction of the detailed variations 
in the pressure and flow patterns with distance from the heart. To determine the 
magnitudes of these errors in our case, we have set out to examine the differences 
between the solutions of nonlinear and linear analyses. 

If we consider the fluid velocity and the deviation of the pressure from a mean 
value p as perturbations, the linear approximations to the governing differential 
equations (2) and (4) can be written as 

Ov 1 Op 
- -  + - / ( ~ , ~ , z )  
Ot 9 0 z  

and 

(30) 

ov ( os, op ( 
v + ~0 = 0 .  (31) 

SL(p, Z) denotes the cross-sectional area relation for the linearized problem. The 
original outflow expression ~0 is linear in the dependent variables and does not have 
to be modified. 

The method of characteristics applied to these equations yields 

dz 
I• dr- = 4- cL (32) 

and 

[ vcL cL ] 
I I ~ :  dr4-  - /(7, v,z) T T - -  dt (33) 

where the wave speed is now independent of pressure. 

CL(Z) = V SL(P, z) (34) 
e (OSL/OPLIp_~" 

As before, we prescribe the spatial variation of the wave speed and then integrate 
equation (34) to determine the dependence of the cross-sectional area on pressure. 
Specifying the geometric taper again by (15) we obtain 

SL( p, z) = So(Po ) e -a~'+ Ip-pol/~c~ . (35) 

We note that S L grows exponentially with pressure, whereas in the nonlinear analyses 
the cross-sectional area defined by (13) and (16) approaches an upper limit with 
p --> oo, namely 

lim S(p, z) : So(Po ) e -~z+I/Q~CI+~)~<po''/ 
p--+oo 
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Especially relevant would be a comparison of linear and nonlinear analyses for 
the Standard Case. We choose the mean pressure of the nonlinear solution as the 
pressure p, about which the linearization is made. Accordingly, we take p = 88 mm Hg. 
For the wave speed expression, we use equation (24) with the pressure set identically 
equal to 88 mm Hg. 

Figures 13 and 14 illustrate the solution of both the linear and nonlinear problems. 
In the linearized case, the systolic pressure is higher in the proximal aorta than 
predicted by the nonlinear treatment because the increase in cross-sectional area with 
pressure (distension) is no longer present as a pressure-alleviating phenomenon. 
As z increases, the difference between the systolic pressures diminishes and changes 
sign. This may in part be due to the fact that  the outflow from the proximal aorta is 
higher for the linear analysis than for the nonlinear one. (The outflow is proportional 
to the pressure.) Therefore, a smaller flow pulse reaches the distal portions of the 
artery in the linear case, giving rise to a smaller pressure pulse there. 

In the linear case, the wave fronts are considerably less steep and do not increase 
their slopes appreciably with distance. The wave backs are steeper so that the wave 
peaks are delayed, but the valleys occur at approximately the same time. As the 
pressure increases above the average value p, the arterial wall becomes stiffer in the 
nonlinear analysis causing a progressive steepening of the wave front; conversely, as 
the pressure falls below the average value, the vessel becomes more distensible which 
in turn produces more moderate slopes. These differences become more pronounced 
with increasing distance from the heart. I t  is evident that the slope does not vary 
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F igure  14 
Veloci ty  p a t t e r n s  for tile 
S t a n d a r d  Case c o m p u t e d  
on the  basis  of non l inea r  
and  l inear  analyses .  The  
cor respond ing  pressure  
p a t t e r n s  are shown  in 
Figure  13. 

M ax  Anliker,  Robe r t  L. Rockwel l  and  Eric  Ogden  ZAMI '  

120 r z, cm 

8 0 ~  0 

 IL\, 
o 160 >." 
I -  

~ 

> 80 

40 

,,A6o 

| % /, 

I I 

25  .50 0 
I 

.25 
TIME, sec 

I00 / STANDARD 
CASE 

I I 

i / LINEARIZED 
; i /  STANDARD 
iA  cAsE 

I I I 

.50 0 .25 .50 

appreciably between the bot tom and top of each pulse in the linear solution. Also, the 
rate of pressure rise at the front of the pulse is approximately equal to the rate of 
decay at the back. 

We also note that  the dicrotic wave is larger in the linear approximation. One 
possible explanation for this could be the increased stiffness of the distal portion of 
the artery in the linear case which was introduced by  selecting p = 88 mm Hg for all z. 
Since the dicrotic wave appears to be caused by the reflection of the pr imary pressure 
pulse fronl the distal portions of the artery, it can be expected that  the larger dicrotic 
wave is due to a stiffer distal end, i.e., a harder reflection region in the linear analysis. 

The prominent differences seen between the two solutions indicate that  a reliable 
interpretation of the possible causes for relatively small changes in the naturally 
occurring pressure and flow pulses can be made only if nonlinear phenomena are 
taken into account. 

3. El/ect o~ Friction 

There is evidence that  fluid friction does not play a dominant role in the large 
arteries [31] but becomes increasingly important  when we approach the capillary bed. 
The results discussed so far are all based on a friction coefficient corresponding to 
steady laminar flow. In order to assess to some degree the importance of frictional 
effects, different values of the viscosity coefficient # were assumed and the results 
compared with the Standard Case. I t  has been stated [32] that  the 'effective' viscosity 
coefficient for pulsatile flow in the large arteries is of the order of eight times that  
associated with steady flow. Therefore, the effect of increasing # ten-fold as compared 
with the Standard Case was examined. In addition, the inviscid approximation was 
investigated. An increase in the viscosity coefficient produces a higher flow resistance 
and therefore a decrease in the flow velocity and an increase in the pressure, at least in 
the proximal aorta. The inviscid case should essentially yield opposite results. With 
the retarding effects of friction removed, the flow velocity pulse, and correspondingly 
the pressure pulse, should have a larger magnitude for smaller diameters. 
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The results plotted in Figures 15 and 16 confirm these expectations. For the larger 
viscosity coefficient, the overall pressures are higher when z < 40 cm and the pulse 

Figure  15 
P ressu re - t ime  profiles for 
d i f ferent  va lues  of effective 
v iscos i ty  coefficient in the  
l a m i n a r  model  for the  
fr ict ion te rm.  The  S t a n d a r d  
Case (# = .049 poise) is 
shown  for compar ison .  
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Figure  16 
Veloci ty- t ime profiles for 
d i f ferent  va lues  of v iscos i ty  
coefficient cor responding  to 
t he  p res su re  profiles shown  
in F igure  15. 
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pressure at the heart  has increased slightly. The resistance to outflow along the ar tery 
should actually be greater for a more viscous fluid, but  this detail was not  included in 
the model for the outflow function ~v. I ts  proper inclusion would tend to increase the 
pressures further. Beyond  40 cm, the cumulative effects of increased friction cause 
such a rapid decay of the pressure and velocity pulses tha t  they are virtually damped 
out at 100 cm from the heart. In  a relative sense, the amplitude of the dicrotic wave 
has been reduced more markedly than tha t  of the pr imary pulse. One possible 
explanation for this can readily be given. If  the dicrotic wave is indeed caused by  
reflection, it must  exhibit the effects of friction in a compounded fashion. 

The case for # = 0 is not  quite a true inviscid solution because the terminal 
pressure, left unchanged at 25 m m  Hg, would undoubted ly  be different for # = 0. 
While a true inviscid formulation would lead to an altered terminal condition, the 
investigation of tha t  problem would not be of practical interest. Our intention here is 
to approximate  reality as closely as possible, and we have therefore left the distal 
boundary  condition unchanged. 

For  the larger viscosity coefficient of # ~ .49 poise, the pressure and flow pulses 
are significantly different from those of the other cases (# = 0, .049). If the 'effective' 
viscosity coefficient is in fact of this order of magnitude,  then fluid viscosity does play 
an impor tant  role, even in arteries as large as the aorta. On the other hand, the 
comparison of the case/2 = 0 with the Standard  Case suggests tha t  the differences due 
to friction are not  great for z ~ 60 cm where the mean diameter is larger than  0.6 cm. 
Beyond tha t  region, the pressure and velocity fluctuations for # = 0 progressively 
depart  from those of the Standard Case. 

Aside from the laminar Poiseuille expression (17), the Blasius formula for s teady 
turbulent  flow in a pipe was also used for the cases # = .049 poise and # = .49 poise. 
As can be noted from Figures 17 and 18, the pressure and flow pulses are remarkably  
unaffected by  turbulent  friction, especially for z < 80 cm. Deviations are observed 
only for z >~ 80 cm or for diameters less than  0.3 cm where the flow is unlikely to be 
turbulent.  Only near the heart  is turbulent  flow normally considered possible. The 
differences between results for the two values of # are not  profound because the tur- 

f~  TURBULENT FLOW, 
120 Z,oCm " 20 / \ 40  /-/-, poise 

Figure 17 
Changes in the pressure 
pa t t e rns  resulting from 
different values of effective 
viscosity coefficient in the 
tu rbu len t  model for fluid 
friction. The Standard  Case 
(laminar flow, # = .049 
poise) is also shown. 
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Figure 18 
Velocity pa t te rns  for 
tu rbu len t  friction corres- 
ponding to pressure 
pa t te rns  shown in 
Figure 17. 
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bulent expression for friction (18) includes the coefficient of viscosity raised only to 
the one-fourth power. 

Since we are dealing here with friction models which are in some sense artificial, 
we can not perform a true investigation into the importance of fluid viscosity. All we 
can say is that  an increase of the viscosity coefficient from 0.049 to 0.49 poise in our 
laminar frictional term produces considerable changes in the pressure and flow pulse, 
particularly at larger distances from the heart. By contrast, the same increase in # 
does not induce significant changes when the turbulent friction term is utilized. 
However, it remains to be shown whether the expressions chosen for the frictional 
term are adequate representations of the true situation. Clearly, a thorough investiga- 
tion of the effects of fluid viscosity on large-amplitude pulsatile flow in distensible 
tubes should be conducted. 

4. Peripheral Resistance 

The notion of peripheral resistance is applicable when the pressure and flow 
pulses are linearly related. The adequacy of such a concept for the distal boundary 
condition should be investigated. We are doing this by utilizing as the distal boundary 
condition the fact that the pressure is essentially constant in the vicinity of the 
capillaries. The corresponding solution for the Standard Case is then examined as to 
the pressure-flow relationship at various distances from the heart. Figure 19 gives the 
results in terms of the instantaneous blood velocity as a function of instantaneous 
pressure at four different distances from the heart. I f  we can disregard the cross- 
sectional area changes with pressure, the local blood velocity is directly proportional 
to the local blood flow. For small diameters, we may indeed neglect the cross-sectional 
area changes and therefore interpret the curves in Figure 19 as approximations of the 
pressure-flow relations. We note that with decreasing distance from the heart, the 
pressure-flow relationship deviates progressively from a linear one. 

To further assess the effects of prescribing a peripheral resistance RL, we have 
considered the  Standard Case artery and suitably selected a value for RL at each of 
the various distances z from the heart indicated in Figure 19. This means we have 
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160 

140 

Figure 19 
Pressure-velocity relation 120 
for the Standard Case a t  
four different distances from 
the heart .  D t denotes the I00 
diameter of the ar tery at  the 
indicated value oI z where PRESSURE, 
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closed curves represents the 
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c o m p u t e d  t h e  p r e s s u r e  a n d  f low pu lses  for  f ou r  a r t e r i e s  w i t h  t h e  s a m e  in i t i a l  d i a m e t e r ,  

t a p e r ,  c(p, z), ~o(p, z), e j e c t i o n  p a t t e r n  a n d  h e a r t  r a t e ,  b u t  w i t h  d i f f e r e n t  l e n g t h s ,  

t e r m i n a l  d i a m e t e r s ,  a n d  p e r i p h e r a l  r e s i s t ances .  T h e  v a l u e s  u s e d  for  R L are  g i v e n  in  

T a b l e  2. I n  e a c h  case  RL w as  se l ec t ed  s u c h  as to  y ie ld  a t  t h e  r o o t  of t h e  a o r t a  t h e  s a m e  

d ias to l i c  p r e s s u r e  as does  t h e  S t a n d a r d  Case.  T h e  c o r r e s p o n d i n g  r e s u l t s  a re  i l l u s t r a t e d  

in  F i g u r e s  20  a n d  21. 

Table 2 

Peripheral resistance for different terminal diameters 

Diameter Length RL 
cm cm dyne sec/cm s 

.04 120 2.39x 106 

.1 103 3.82 x 105 

.5 71 9.93 x 10 a 
1.0 40 2.60 x 10 a 

T h e  p r e s s u r e  a n d  f low v e l o c i t y  p rof i l es  for  t h e  cases  w i t h  t e r m i n a l  d i a m e t e r s  of 

0 .04 c m  a n d  0.1 c m  c a n n o t  b e  d i s t i n g u i s h e d  w i t h i n  d r a w i n g  a c c u r a c y  f r o m  t h o s e  for  

t h e  S t a n d a r d  Case. H e n c e ,  for  t h e  m a t h e m a t i c a l  m o d e l  u s e d  here ,  t h e  c o n c e p t  of 

p e r i p h e r a l  r e s i s t a n c e  a p p e a r s  to  b e  a v e r y  g o o d  a p p r o x i m a t i o n  for  a r t e r i e s  w i t h  e n d  

d i a m e t e r s  of 0.1 c m  or  less. 

F o r  a t e r m i n a l  d i a m e t e r  of 0.5 c m  t h e  a g r e e m e n t  is n o t  as good.  I n  t h i s  case  we 

h a v e  d e v i a t i o n s  u p  to  4 m m  H g  in  p r e s s u r e  a n d  u p  t o  12 c m / s e c  in  ve loc i ty .  W h e n  t h e  

t e r m i n a l  d i a m e t e r  is t a k e n  as 1.0 c m  a t  L = 40  cm,  we n o t e  t h a t  e x t r a  w a v e s  b e g i n  t o  
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Figure  20 
P res su re - t ime  profiles 
ob ta ined  by  speci fy ing a 
per iphera l  res i s tance  
relat ion for d i f ferent  
t e r m i n a l  d iameters .  The  
t ape r  of the  a r t e ry  and  
o the r  p a r a m e t e r  va lues  are 
t he  s ame  as for the  
S t a n d a r d  Case. 
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Figure  21 
Veloc i ty- t ime profiles 
cor respond ing  to the  
pressure  p a t t e r n s  shown  
in F igu re  20, ob ta ined  b y  
spec i fy ing  a per iphera l  
res i s tance  re la t ion  a t  the  
dis ta l  end  of the  ar tery.  
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appear; the pressure and flow pulses are distorted and their magnitudes altered 
considerably. The peripheral resistance concept leads to results which can no longer be 
considered as acceptable approximations. 
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5. Wave Front Velocity 

It  has been shown that the familiar features of the natural pulse generated by the 
heart are predicted by the present model. The wave" front velocity offers another 
comparison between theory and experiment. To define a characteristic point of the 
wave front on which to base the calculations of the velocity from the transmission 
time over a given distance, a straight line was drawn tangent to the front of the 
pressure pulse at the location of maximum slope (inflection point). Another line was 
drawn tangent to the pressure curve at the end of diastole preceding the beginning 
of the pulse. The intersection of these two lines was used as the characteristic point, 
whose speed is interpreted as the wave front velocity. The results for the pressure 
pulse of the Standard Case are shown in Figure 22. 

14 

e u 12 121 mm Hg MEAN PRESSURE~ / 
U~ / /  ~o 

F i g u r e  22 >: 

W a v e  f r o n t  v e l o c i t y  of  t h e  ~ 8 
p r e s s u r e  p u l s e  a s  a f u n c t i o n  .a 
of  d i s t a n c e  f r o m  t h e  a o r t i c  > l- 6 / / / / ' ~  \ STANDARD CASE 
v a l v e  f o r  t h e  S t a n d a r d  z 
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= 88 m m  H g )  a n d  f o r  a ,,, 
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is a c u r v e  e x t r a c t e d  f r o m  
R e f e r e n c e  [7]. 0 210 410 iO 8; l;O 

z, cm 

McDonald [7] has published some data on the wave front velocities for a situation 
where the mean pressure was 121 mm Hg. After scaling his distances to correspond 
to the hypothetical dog considered here, those velocities are also given in Figure 22. 
The comparison of McDonald's values with the results from the Standard Case is 
generally satisfactory. However such a comparison is not strictly proper because the 
mean pressure of the Standard Case is only 88 mm Hg. Therefore, an additional 
computer run was made using the parameters of the Standard Case except that the 
mean pressure was raised to 121 mm Hg by decreasing the outflow constant y. The 
larger wave speeds due to the higher pressures should naturally cause larger values of 
the wave front velocity and the computer results, also given in Figure 22, confirm this. 
Further, recent measurements taken in the canine ascending aorta [33, 341 indicate 
that the wave front velocity averages 3.3 m/sec at pressures of 100 to 110 mm Hg. 
Assuming that a value of z ~ 5 cm characterizes the region of the ascending aorta, 
we see that this data point also agrees with the computer results given in Figure 22. 

It  seems that our mathematical model of the aorta can be used to predict actual 
wave front velocities with reasonable accuracy. Of course, it would be more meaningful 
to compute the wave front velocities on the basis of the physical and geometric 
parameters of a particular dog, and then compare these velocities with the corre- 
sponding measurements made on the same dog. 
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Z u s a m m e n f a s s u n g  

Druck- und Strompulse mit  grosser Amplitude erzeugt in der Aorta und in andern Haupt-  
arterieii des Hundes  werden theoretisch berechnet f~r vorgeschriebene Ausstr6mungspulse yon der 
linken Herzkammer  und ft~r gegehene physikalische und geometrische Eigenschaften des Kreisiauf- 
systems. Der Blutansfluss durch die )~ste und Verzweigungen der uns interessierenden arteriellen 
Leitung ist durch ein kontinuierlich verteiltes, von Druck und Ort abh/~ngiges Ausflussmodell 
nachgeahmt.  Am herzfernen Elide der Leitung ist als Randbedingung entweder der periphere 
Widerstand oder ein konstanter  Druck vorgeschrieben. Die Geometrie der Leitung ist durch ihren 
kreisf6rmigen Querschnit t  und den rnit Herzdistanz exponentiell abnehmenden Radius definiert. 
Die elastischen Eigenschaften der Gef~sswaiid siiid dutch die yon Ort und Druck abhhmgige 
Geschwindigkeit kleiner Druckwellen gegeben. Durch Integrat ion der Beziehung zwischen Wellen- 
geschwindigkeit und Querschni t tsdehnung ist damit  auch der Querschnit t  als Funkt ion des Druckes 
und der Herzdistanz vorgeschrieben. Die mchtl inearen Gleichungen far eindimensionale Str6mung 
einer inkompressibler Fl~ssigkeit werden mit  Hilfe der Charakteristikeiimethode iiitegliert fflr 
Kreislaufparameterwerte die einem hypothet ischen Hund von 30 kg Gewicht entsprechen. Das 
verwendete mathemat ische  Modell flit die arterielle Leitung wiedergibt maiiche der bekannten 
Eigenschaften des vom Herzen erzeugten Pulses, einschliesslich die Klappenincisur, das Ansteigeu 
und Abfallen tier H6he des systolischen Druckgipfels mit  wachsender Ent fe rnung vom Herzen. 
W/ihrend der Fortpflaiizung der Pulswelle zeichnet sich eine zunehmeiide Steilheit der Wellen- 
front ab, die jedoch nicht  merkbar ist Welln man die grundlegenden Gleichungen linearisiert. Die 
numerischen Ergebnisse weisen darauf hiD, dass die sekund/ire (dicrotic) Welle dureh Reflexionen 
erzeugt wird, und als solche von der Verjt~nguiig des Querschnit tes und vom Blutausfluss abh/ingt. 
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