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1. Introduction 

Apart  from his fundamental work on intuitionism and on topology L. E. J. 
Brouwer wrote some minor articles on other subjects. In 1918 he published a paper [1] 

dealing with the equilibrium of a particle P moving under gravity on a surface S which 
is rotating with uniform angular velocity ~o about a vertical axis l, I f  O is a point of S 
with a horizontal tangent plane, then if O is on I it is a point of equilibrium, and the 
question arises whether this equilibrium is stable or unstable. 

Brouwer solves the problem first when S is smooth and then in the more difficult 
case of a Coulomb force with a constant coefficient of  friction. At least in the first 
case his results are elegant and remarkable, especially if O is a saddle-point of  S. 
The paper does not seem to have drawn much attention; a reason could be that it 
was published in Dutch. It is now made generally accessible by a translation in English 
which appeared in the second volume of Brouwer's collected works [2] and to which 
some notes and an interesting correspondence with Blumenthal and Hamel have been 
added. 

In section 2 a summary of Brouwer's results in the frictionless case is given. We 
have added a diagram illustrating the situation. In the later sections we introduce (not 
Coulomb friction but) a linear damping f o rce  and consider its influence on the stability 
of the equilibrium. 

In section 3 we deal with internal damping (proportional to the relative velocity 
of  P) and in 4 with external  damping (proportional to the absolute velocity of P). 

2. The undamped ease 

A cartesian frame O X Y Z  is fixed to the rotating surface S, with O Z  upwards along 

I and such that XOZ and Y O Z  coincide with the principal normal sections of S at O, 
the principal curvatures being kl, k2 respectively. We may suppose kl > k2. I f  k~, 
k2 are both positive S, at O, is convex from below, if k lk2  < 0 0  is a saddle-point. 
Taking x, y as the relative coordinates of P and restricting ourselves to motions in the 
neighbourhood of O we obtain the following equations of motion: 

5d - 2oJ~ + (gk l  - 0) 2 ) x = O, y + 2oJ~ + (gk2 - co 2) y = O, (2.1) 
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the second terms being the components of the Coriolis force, the third arising from 
those of gravity (with acceleration g) and of the centrifugal force. The set 2.1 is well- 
known in applied mechanics: it appears in the problem concerning the stability of a 
rotating shaft, which leads to the concept of critical speed  [3]. But there is an essential 
difference in that in the latter problem the constants analogous to k~ and k2 are always 
positive (they are the two flexural rigidities of the shaft), while in Brouwer's problem 
they can be negative. 

Solving 2.1 in the usual way we obtain the frequency equation 

ao h4 + alh 3 + a2A 2 + aaA + a4 = O, (2.2) 

with 

a0 = 1, al = a3 = 0, a2 = g ( k l  + k2) + 2o~ 2, 
a4 = ( g k l  - w2)(gk2 - w2). (2.3) 

The equilibrium at O is stable if and only if 2.2, a quadratic equation for ,V, has two 
different negative roots. Hence the following conditions must be satisfied 

a2 > O, a4 > O, a~ - 4aoar > 0 (2.4) 

2o~ 2 + g ( k l  + k2) > 0, (2.5) 

8(.o2(kl + k2) + g ( k l  - k2) 2 > 0. (2.6) 

( oj2 - -  g k l ) ( r  2 - gk2) > 0, (2.7) 

Omitting for the sake of brevity the more trivial border-line cases (kz = k2, kl + k2 
= O, k l k2  = 0) we distinguish four possibilities (a), (/3), (~,), (~). 

(~): k~ > k2, k l  > O, k2 > 0. The inequalities 2.5 and 2.6 are now always satisfied. 
Hence the equilibrium is stable if either 

co 2 < gk~ or oJ 2 > gk l ,  (2.8) 

this is the well-known result for the problem of the rotating shaft. 

(fl): k~ > 0, k2 < 0, k~ + k2 > 0. Once more 2.5 and 2.6 are satisfied. Stability takes 
place if and only if 

~o 2 > gk l .  (2.9) 

(~): k~ > 0, k2 < 0, k~ + k2 < 0. We have now 

(k l  - k2) 2 oJ 2 > gk l .  
o~ 2 > - �89 + k2), w2 < Is g - ( k ~  + kz)' 

The first two inequalities are only compatible if (3k1 + k2) (k l  + 3kz) < 0. Since 
k~ + 3k2 < 0 this implies as a necessary  condition 3k~ + k2 > 0. If it is satisfied there 
is stability if 

(k~ - k2) 2 (2.10) 
gk~ < ~2 < ~ g _ ( k l  + k2) 

If  3k~ + k2 < 0 the equilibrium is unstable. 

o r  
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(3): kl < 0, kz  < 0. In this case 2.5 and 2.6 are always incompatible; the equilibrium 
is unstable. 

Brouwer's results may be illustrated by means of a diagram (Fig. 1). As case 3) gives 
no stability we may suppose k~ > 0. We introduce the dimensionless numbers 
u = ~o2/gkl (0 < u < oo), and v = k2/k l  (v < 1). The stability regions are denoted 
b y a  + sign. The curve in the diagram is an arc of the hyperbola 8u(v + 1) + (1 - v) 2 

= 0; its tangent at (1, - 3 )  is vertical. The most interesting results are fi) and ~,) which 

Figure 1 
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show that the equilibrium at a saddle-point (unstable for oJ = 0) may be stabilized by 

suitably chosen rotations (provided that Ik2/kll < 3). The stabilization of an equili- 
brium by gyroscopic forces is an old problem in dynamics, it was dealt with at length, 
for instance, by Thomson and Tait in their classic treatise [4]. A main theorem reads: 

an unstable equilibrium can be stabilized by such forces if, and only if, the number of  
unstable degrees of freedom is even. It  must be kept in mind that in this theory only 
the Coriolis terms are taken into account and not the centrifugal forces. From 
Brouwer's result for the saddle-point situation (with one unstable coordinate) it follows 
that Thomson's  theorem does not hold if all forces arising from the rotation are taken 
into account. 

3. Internal damping 

We deal now with Brouwer's problem in the case of  a linear damping f o r c e -  c~ 
where ~ is the relative velocity of  the particle and c a positive constant. The equations 
of  motion are 

5d - 2wp + c5c + (gk l  - ~o2)x = O, 

y + 2wJ? + c9 '+  (gkz - o~2)y = 0, (3.1) 

and the frequency equation is 

ao )t4 + a120 + a22t 2 + aa;~ + a~ = 0, (3.2) 

with 

ao = 1, al = 2 c ,  a2 = g (k l  + k2) + 2oJ 2 + c 2, 
aa = c{g(k l  + k2) - 2~o2}, a,  = (gk~ - o)2)(gk2 - w2). (3.3) 
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The condit ion for  stability is: all four  roots  o f  (3.2) have non-posit ive real parts.  This 
is the case if as > 0 (i = 1, 2, 3, 4) and moreover  

ala2aa > aoa~ + a~a~, (3.4) 

the well-known R o u t h - H u r w i t z  condition. Hence the following inequalities must  be 

satisfied: 

20) 2 + g(k l  + k2) + c 2 > O, (3.5) 

-20 )  2 + g(k l  + k2) > O, (3.6) 

(gkl - 0)2)(gk2 - 0)2) > O, (3.7) 

-16o-, 5 + 40)212g(k~ + ke) - c 2] + g2(kz - k2) 2 + 2gc2(kl + k2) > O. (3.8) 

I f  kz > 0, k2 > 0, there is stability if  0) = 0. Fur the rmore  (3.5) is always satisfied; 
(3.6) implies 0)2 < �89 + k2) and in view of  (3.7) a necessary condition reads 
0)2 < gk2. The left-hand side of  (3.8) is a quadrat ic  function Q of  0) 2. The discriminant 
is 

D = 4[{e 2 + 2g(kl + k2)} 2 + 4g2(kl - k2) 2] > 0; (3.9) 

hence Q has two real zero 's  and Q > 0 for  the interval in between. Fur thermore  

Q(gk2) = g2(k~ - k2)(k~ + 7k2) + ge2(2kl + k2) > 0, Q(0) > 0, (3.10) 

which implies Q(0)2) > 0 i f 0  _< 0)2 < gk2. 

The conclusion is : i f  kl  > 0, k2 > 0, the equilibrium is stable i f  and only i f  0)2 

< g k  2 . 

I f  we compare  this result with that  for  c = 0 in section 2 we conclude that  the 
second range (oJ 2 > gk~) vanishes completely if  there is any internal damping,  how- 
ever small. This phenomenon  is not  unknown in the theory of  linear oscillations 
and depends essentially on the fact that  the limit (for e --> 0) o f  condition (3.4) is 
different f rom (2.4) [5]. 

Suppose now kl  > 0, k2 < 0; then (3.7) is only satisfied if 0)2 > gkx but  this is 

incompat ible  with (3.6). Therefore,  as a counterpar t  of  Brouwer 's  result: i f  O is a 

saddle-point the equilibrium can not be stabilized by rotation i f  there is any internal 

damping, however small. There is an analogous thorem for  systems subjected to gyro- 
scopic forces only [6]. If, at  last, k~ < 0, k2 < 0 it follows f rom 3.6 that  stability is 
impossible. 

4. External damping 

The components  of  the absolute velocity of  the particle are 2 - 0)y and ;9 + 0)x. 
Therefore in the case of  external linear damping  the equations of  mot ion  are 

5i + c2 - 20)p + (gkl - 0)2)x - coJy = O, 
.p + cj~ + 20)2 + e0)x + (gk2 - 0)2)y = 0, (4.1) 

c( > 0) being the damping  factor, 
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The coefficients of  the frequency equat ion are seen to be 

ao = 1, al = 2c, a2 = 2~o 2 + g ( k l  + k2) + c 2, 
a3 = 2o~ 2 + g ( k l  + k2), a4 = co 4 + { - g ( k l  + k2) + c2}o9 2 + g2k~k2. (4.2) 

Stability requires ai > 0, but  aa > implies a2 > 0. Moreover  the condit ion (3.4) 
simplifies because the term co 4 vanishes. Therefore  the equilibrium is stable if  and only 
if the following three inequalities for  ~o 2, two linear and one quadratic,  are satisfied 

2oJ 2 + g(k~ + k2) > 0, (4.3) 

8(k~ + k2)o~ 2 + g(k~ - k2) 2 + 2c2(k~ + k2) > O, (4.4) 

Q = o~ ~ + { - g ( k ~  + k2) + c2}~o 2 + g2k~k2 > 0. (4.5) 

We discuss once more  the different cases: 

(a) kl  > 0, k2 > 0. 

(4.3) and (4.4) are always satisfied. The discriminant o f  Q is 

D = c 4 - 2g(k l  + k2)c 2 + g2(k~ - k2) 2. (4.6) 

a quadrat ic  function o fc  2 with two positive zero 's:  

c~ = g ( ~ / ~  - ~/k--~2) 2, c~ = g(V/}-~ + ~/k-~2) 2. (4.7) 

I f  Cl 2 < c 2 < c~ we have D < 0 and Q is positive for  any 0) 2. F r o m  c 2 > c~ it follows 

that  Q has two real zero's  but  in view of  - g ( k l  + k2) + c~ = 2g~/k- -~  > 0 they are 
both  negative and therefore Q > 0 for  oJ 2 > 0. If, however,  c 2 < c~ the two zero 's  
~o~, co~, (~o~ < co~) of  Q are both  positive and therefore Q < 0 for  ~o2z < ~o 2 < oJ~. 
Summing up we have for case (c0: the equilibrium is stable f o r  any oJ 2 i f  the damping 

f a c t o r  is large enough (c 2 > c~); i f  c 2 < c~ there is only stabil i ty  i f  ei ther oJ 2 < oJ~ or 
09 2 > 09~. 

([3) k l  > O, k2 < O, k l  + k2 > O. 

(4.3) and (4.4) are again satisfied, As k~k2 < 0 the function Q has real zero 's  o~ < 0, 
oJ~ > 0. Hence there is s tabil i ty  i f  and only i f  o~ 2 > ~o~. 

(y) k l  > O, k2 < O, k l  + k~ < O. 

The conditions (4.3) and (4.4) are now 

~o ~ > f ~  = - � 89  + k2), (4.8) 

< f ~  = - ~ g  ( k i t -  + k2 - �88 (4.9) 
1 k~) 2 

r 2 

which are only compat ible  if f ~  > ft~. Putt ing 

H = (3k~ + kz)(k~ + 3k2), (4.10) 
kl  + kz 
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this inequality implies 

c 2 < �89 (4.11) 

From this there follow two conclusions: no stability is possible if the damping factor 
c surpasses a certain value and moreover H must be positive. From kl + ks < 0 it 
follows k~ + 3k2 < 0; hence for stability 3k~ + k2 > 0 is a necessary condition. 

To investigate whether (4.5) is satisfied we remark first that Q has one positive 
zero oJ~. Furthermore 

a(f2~) = �88 + k2)(H - 2c2), 

hence, in view of (4.11): 

Q(f2~) < 0. (4.12) 

On the other hand 

Q(f2~) = ( f ~  - gkl)(f2~ - gk2) + c2f~,  

or, after some algebra, 

Q(f2~) = - ~ ( 2 c  2 - g H  )(6c 2 + g H ) ,  

or, again in view of (4.11) 

a(f2~) > 0. (4.13) 

The situation is illustrated in Fig. 2, from which it follows that the conditions are 
only satisfied if 

oJ~ < o~ 2 < s (4.14) 

Figure 2 

_~2 

Summing up we have in our case y: a necessary condition f o r  stability is c 2 < �89 

(which implies 3kl + k2 > 0); i f  this is satisfied there is stability i f  and only i f (4.14) is 

valid. 

The influence of external damping on the stability at a saddlepoint may be derived 
from a comparison with the results of section 2. In all cases stability is impossible if 
3kl + k2 < 0, or in other words if Ik~[ > 3kl. 

(3) kl < 0, k2 < 0. 

In this case (4.3) and (4.4) are incompatible; the equilibrium is unstable. 
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Summary 

A surface S rotates with uniform velocity about the vertical axis through a point O on S with a 
horizontal tangent plane. A particle moves on S under gravity. In 1918 L. E. J. Brouwer investigated 
the stability of the equilibrium at O and especially the case of O being a saddle-point of S. Brouwer's 
results are discussed and extended to the case when there is either internal or external linear damping. 

Zusammenfassung 

Eine Fl/iche F dreht sich gleichm/~ssig um die senkrechte Achse durch einen Punkt O yon F mit 
wagrechter Beriihrungsebene. Ein Massenpunkt P bewegt sich zu F unter Einfiuss der Schwerkraft. 
L. E. J. Brouwer hat 1918 die Stabilit/it des Gleichgewichts in O untersucht und speziell den Fall wo 
O ein Sattelpunkt yon F i s t .  Die Brouwerschen Resultate werden erweitert ftir den Fall linearer 
D/impfung, entweder proportional zur relativen oder zur absoluten Geschwindigkeit von P. 
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