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1. Introduction 

In this paper we examine the simultaneous occurrence of buoyancy and magnetic 
forces in the flow 9f an electrically conducting fluid up a hot vertical plate in a strong 
cross-magnetic field. Singh and Cowling [1 ] have shown that regardless of the strength 
of the applied magnetic field there will always be a region in the neighbourhood of the 
leading edge of the plate where electromagnetic forces are unimportant, whilst at large 
distances from the leading edge these magnetic forces dominate. The flow near the 
leading edge has been examined by Sparrow and Cess [2] whilst Singh and Cowling 
focussed their attention on conditions downstream. In particular they concentrated 
on examining that outer region of the boundary layer, which must always ultimately 
appertain, in which an inviscid balance between buoyancy and magnetic forces is 
achieved. Subsequent authors, Riley [3] and Kuiken [4] have re-examined the problem 
with a view to incorporating in the solution the inner viscous layer within the down- 
stream boundary layer which is appropriate if the boundary condition of 'no slip' at 
the plate is to be satisfied. Their attempts to use the method of matched asymptotic 
expansions in terms of a non-dimensional parameter in this region encountered diffi- 
culties associated with the asymptotic nature of the solution in respect of an unknown 
location of the leading edge. 

The work that follows reformulates the problem in terms of coordinate expansions 
with respect to a non-dimensional characteristic length which is fundamental to the 
problem in its reflection of the relative magnitudes of the buoyancy and magnetic 
forces at varying locations along the plate. This formulation provides the basis for a 
complete numerical integration from the leading edge which for the first time provides 
details of skin friction and heat transfer coefficients at all stations along the plate. 
Moreover an estimate may be made of an indeterminacy in asymptotic solutions 
which allows favourable comparison to be made between series solution estimates of 
skin friction and heat transfer and their exact numerical values. 

2. The Problem 

Consider the free convection flow of an electrically conducting, non-magnetic 
fluid up a heated semi-infinite plate extending vertically upwards with its leading edge 
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horizontal. The plate is maintained at a constant temperature To, greater than the 
constant temperature T~ of the surrounding fluid, in the presence of a strong magnetic 
field Ho normal to the plate. The magnetic Reynolds number R m = 47rKc~ where K is 
the thermal diffusivity and ~ the electrical conductivity of the fluid is taken to be small 
compared to unity allowing neglect of perturbations to the basic normal field. Fluid 
property variations are limited to a density variation which is taken into account only 
insofar as it affects the buoyancy terms, i.e. the Boussinesq approximation is applicable 
throughout. The reference density p~ is taken as that of the surrounding ambient 
fluid. Neglect of viscous and electrical dissipation together with the short circuit 
assumption has been shown by previous authors to give rise to the governing dimen- 
sional equations expressing conservation of momentum, energy and mass as 

~u ~u ~ Ho 2 ~2u 
+ v - ~  = g ~ ( T -  r ~ o ) -  P ~ u  + v ~  (1) U~X 

~T ~T ~2T 
u ~  + v c~y c~y 2 (2) 

c~u c~v 
~x + ~ = 0 (3) 

to be solved subject to the boundary conditions 

u = v = 0 ,  T =  To a t y  = 0 

u -~ 0, T - ~  Too as y -+ oo (4) 

u = 0  } 
T To a t x  = 0, y > 0. 

Here (u, v) are velocity components associated with the directions of increasing 
coordinates (x,y)  measured along and normal to the plate respectively. T is the 
temperature, g the acceleration due to gravity, fi the coefficient of thermal expansion 
and v the kinematic viscosity of the fluid. 

With respect to a characteristic length L the following non-dimensional quantities 
are in evidence 

Grv g~(To - T~)L  3 = v2 , Grashof  number 

Gr~ = gfi(To - T~ )L  3 Modified Grashof  number 
K2 

= L, Har tmann number 
\p~ov/ 

H,~ = - (aH~)L ,  Modified Hartmann number 

V 
Pr = - ,  Prandtl number 

K 

Since the geometry under consideration lacks an obvious length scale non-dimensional 
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parameters are best considered as local parameters with respect to the distance from 
the leading edge x. This local variation of parameters reflecting the relative magnitudes 
of the forces involved at a given station is instrumental in formulating the problem in a 
form suitable for numerical integration. In particular the non-dimensional quantity 

(,TH~/p ~)2 H~ g 4 
, x  _ _  l c ,  x 

gf3(To - Too)x - Grv, ~ Gr~, ~ (5) 

represents a local measure of the relative magnitude of magnetic and buoyancy forces 
independent of viscous or thermal diffusion elements. Consequently we seek to formu- 
late the problem in terms of this fundamental dimensionless characteristic coordinate. 

The semi-infinite problem may now be examined as a combination of a direct 
coordinate expansion for small ~: (near the leading edge) and an inverse coordinate 
expansion for large ~: (downstream) whose regions of validity may be gauged via 
comparison with a full numerical solution. 

3. I. Series solution near the leading edge--small 

Transformations appropriate in this vicinity are 

r = 4cKxa/4r 7) 
r -  r ~  = (To - r~)0(~,  7) 

cy [ g f i ( T ~  T~)] ~/~. 
Y] = x l / 4  ~ C = 

On substitution in the governing equations (1)-(3) these yield 

0~n + 3r = 4~{0~0~ - r 

to be solved subject to the boundary conditions 

(6) 

(7) 

(8) 

r  8r ~ - ~ = 0 ;  0 =  1 o n T = 0  

8---r --~ 0; 0-->0 as ~ ---> oe (9) 
g7 

0 e--~ = ~ 7 = 0  a t e = 0 , 7  > 0. 

The direct coordinate expansion solutions in powers of ~1/2 are 

r 7) = r + #~r + ~r + ' "  
0(~, 7) = 00(7) + ~1/201(w) + ~02(7) + . . .  (10) 

where r 0o are the well-known free convection similarity solutions for flow around a 
constant temperature semi-infinite vertical plate, extensively studied by Ostrach [5], 
and where r 01 are effectively the first-order corrections to the flow due to the 
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presence of the magnetic field. ~ ,  0~ may be directly inferred from the numerical 
solutions of Sparrow and Cess. 

4. II. Series solution downstream--large 

4.1. Outer Layer  

Transformations reflecting the effective balance between buoyancy and magnetic 
forces in this region are 

4* = c%xl/2F(~. ~) 

T -  T~ = (To - T~)O(~, ~), (11) 

c'y c' [ p ~ g f l ( T o  - T~)] ~/~ 
= x 1/~' = t - g - B ~  ] 

which in (1)-(3) yield 

}e Pr o - F~ = F ~ F ~  - F ~ F ~  - F F ~  - T F ~  

F 
0~ + ~ O~ = ~{F~O~ - F~O~} 

with boundary conditions 

OF 
F =  8--~-- 0; 0 =  1 

~F -~--~ --> 0; 0--+0 

o n g  = 0 

as  ~ --~ o(3. 

(12) 

(13) 

(14) 

(16) 

(_~)1/2 y ~ ( l _ P r )  ~ r F(~. ~) = Foo(~/) - + ~-~ In {Foo(g) - C?F~o(g)] 

+ ~ [Fo2(q) + ~o2(Foo(q) - qF(~o(g)}] + 0 

0(~:. ~) = 0oo(~) r2(1 2-~ Pr) In ~r [,-F;;(q)] 

Pr [002 - t*r/-F;;(~-)]. +Z 

(15) 

Equation (12) thus displays not only the anticipated force balance but also the 
developing inviscid nature of the flow as ~:--> 0% irrespective of Prandtl number. 
Indeed a reduction of Prandtl number only serves to accentuate this feature of the 
flow and to highlight the need to introduce an inner viscous layer if boundary condi- 
tions at the wall are to be satisfied. 

Inverse coordinate expansion solutions of (12) and (13), obtained using similar 
techniques to those of previous authors, are 
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Here Foo(7) and 000(4) are solutions of the 0(1) system 

0oo - F ~ o  = 0 ( 1 7 )  
1 t 0'o'o + ~FooOoo = O. 

first examined by Singh and Cowling. Since the order of the system is less than the 
order of the full equations all the boundary conditions cannot be satisfied. In particular 
the no slip boundary condition at the boundary is abandoned and (17) solved subject 

to 
Foo(0) = 0; r~o(0) = 1; r~0(oo) = 0. (18) 

The numerical solution given by Singh and Cowling is 

Foo(OO) = 1.616 
r ~ ( 0 )  = -0.4437 = 9' 

and for small 7 

7~/2 7 74 72 75 
Foo(7) = 7 + 27 - 2 ' 4! 2 3! + 0(76)" (19) 

Expansion (19) provides the basis for matching conditions on the solutions of an 
inner viscous layer. 

Solutions (15) and (16) display the introduction of logarithmic terms (Stewartson 
[6]) to ensure exponential decay of 0(Pr/~:) solutions Fo=, 0oz which remain unsolved. 
In the special case Pr = 1 no such contributions are necessary. The unknown constant 
/~o= reflects the first indeterminacy of the asymptotic solution associated with the 
unknown location of the leading edge. 

4.2. Inner Layer  

Equations valid in the vicinity of the wall where viscous forces are of the same 
order as those of buoyancy and magnetic drag are obtained from transformations 

F(~:, ~1) = ~I2F(~, ~1) 

o(~, 9) = o(~, 7) (20) 
/ f i \ 1 1 2  

The governing equations are 

0 - ff'~ + F ~  = { P ~ t ~  - PcP~} (21) 

0~ = Pr {P~0~ -/~0~} (22) 

with boundary conditions 

aP 
F =  a---~ = 0 ;  0 =  1 on~  = 0  

~---> 0; 0-->0 (23) a s  ~ --> oo. 
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The solutions consistent with the outer layer solutions are 

/~ (~ : ,~ )= .~ .  l + e  - ~ +  " 2! 

+ a/2. l a ( ~ ) + 0  

/Pr\  8/z ~: ya(1 - Pr) ,~z 
- -  - I n  2 P r  2 ,  

(__~) a/2 /pr \  a/2 sc 7a(l _ pr) 
0((, ~ ) =  1 + " 7 ~ -  [-~-) ln~r ~2Pr 

where 

and 

Fla = 37 3y (1 - Pr) 
2 4 Pr 

+ e - '  [ 37(1-Pr)Pr 

7 (1 - ~2 e-~ + 4 P-r er) 

ZAMP 

(24) 

(25) 

1 [ y(1-_Pr)]  ~= 7 ~4 

~ ]  + ~5 e-~ [ ~  �9 (1 - Pr) 
Pr ~] 

(26) 

7 ~a e -~ 7 01a = / x , a ~ - r - ~ . ~  + 7  + ~ e  -~. (27) 

The unknown constant, tz~a, of the inner solution may be related to the indeter- 
minacy of the outer solution via 

/*la + 9' (1 - Pr) ,, 
2 Pr = (Fo2)~=0 -/Zoz7 

or equivalently 

~s = ( 0 2 2 ) ~ = 0  - -  /~02y �9 

(28) 

(29) 

Although the correlation between inner and outer indeterminancies is given above, 
in the context of coefficients at the plate it is/zla that is of particular interest. Accord- 
ingly in the subsequent work it is this quantity alone with which we are concerned. No 
solutions for Foe, 0o2 are established. The possibility of evaluating/x0z once/~la is 
estimated is simply to be noted. It will be demonstrated that such an estimate may be 
made from the numerical solution which when incorporated in asymptotic representa- 
tions of skin friction and heat transfer coefficients gives rise to good agreement with 
exact results over a large range of ~:. 

5. Numerical Solution 

A step-by-step numerical solution has been obtained to supplement the series 
solutions for small and large ~. Derivatives in the ~:-direction are replaced by differ- 
ences and all other quantities by averages. The method of solution seeks to establish 
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velocity and temperature profiles at a station ~:2, downstream of the station ~1, at 
which profiles are known. These known profiles are used in initial approximations for 
the averaged quantities of velocity and temperature appearing in two sets of non-linear 
algebraic equations. An improved approximation for the averaged quantity is obtained 
using Newton's method and the process repeated until a required accuracy is achieved 
in the difference between two successive approximations. The solution profiles at ~2 
are then trivially recovered. 

Errors arise from the use of finite differences in both the ~:- and T-directions. The 
size of truncation errors in the T-direction can be checked using finite difference 
estimates whilst errors in the ~:-direction are controlled by prescribing a maximum 
modulus of deviation between a one-step and a two-step solution between ~:1 and ~:2. 
Profiles obtained from integrating over the half interval are the ones used as initial 
profiles for the next full step of the solution. The level of accuracy achieved is governed 
solely by the limitations on available storage space. In this instance the integrations in 

the T-direction were carried out with 

T, ~ = 0(0.1)8.0 

and a maximum modulus of deviation of 10 -6. An overall accuracy of at least four 
decimal places is therefore anticipated. 

6. Results 

As suggested in w 5 the level of accuracy of the numerical solution is governed 
by available computer storage. Accordingly in this instance results have been obtained 
for the case Pr = 0.72 for which the boundary layer width is limited and conditions at 
infinity are achieved when T ~ 8 or less. Nevertheless this choice will exemplify the 
role of logarithmic contributions. Thus the structure evidenced by this investigation 
will provide a sound basis for a more detailed study of the more practicable case of 

liquid metals for which Pr << 1. 
Initial profiles for the full numerical solution when the Prandtl number is 0.72, 

are q~0, 00 such that 

4,;'(0) = 0.7967, 0;(0) = - 0.5947. (30) 

With these profiles system (7) and (8) subject to (9) are integrated as far as ~: = 4 where 
the following correlations hold, 

T = g; c~F(4, g) 4 ~ c~g - ~ ( 4 ,  T) (31) 

o(4, rT) = o(4, T). 

After appropriate scaling the numerical solution proceeds using the transformed 
equations (12) and (13) under boundary conditions (14). Since the skin friction and 
heat transfer coefficients depend on second velocity derivative and first temperature 
derivative these quantities as well as velocity and temperature profiles are calculated 
at each successive ~-step and then used to evaluate the physical coefficients accordingly. 
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As the solut ion marches  down the plate  the influence of  the thickening b o u n d a r y  

layer  makes  it increasingly difficult for  the required accuracy to  be main ta ined  within 

the finite interval  0 < g < 8. In tegra t ion  is therefore te rmina ted  at ~: = 16 in the 

ant ic ipa t ion  that  this will be large enough to be asymptot ic  in the sense of  inner  and  

outer  downs t ream solutions.  The numer ica l  details of  this in tegrat ion are presented in 

Table  1. I l lustrat ive profiles of  velocity and  tempera ture  in the range 0 < ~ < 4 are 

Table 1 

s e ~'w/Pr Q ,~ "rw/Pr Q ~ "rw/Pr Q 

0.00005 0.0946 4.9869 0.1 0.5722 0.6919 4.1 0.9820 0.1936 
0.0001 0.1123 4.1904 0.2 0.6544 0.5641 5.2 1 . 0 0 0 0  0.1752 
0.001 0.1983 2.3440 0.5 0.7654 0.4227 6.0 1 .0101  0.1647 
0.002 0.2348 1.9647 1.0 0.8459 0.3335 8.0 1 . 0 2 8 8  0.1452 
0.005 0.2927 1.5526 1.5 0.8895 0.2878 10.0 1 . 0 4 1 8  0.1314 
0.01 0.3447 1.2962 2.0 0.9184 0.2581 12.0 1 . 0 5 1 5  0.1209 
0.02 0.4044 1.0791 3.0 0.9559 0.2201 14.0 1 .0591  0.1127 
0.05 0.4953 0.8412 4.0 0.9800 0.1956 16.0 1 .0651  0.1059 

Figure 1 
Leading edge velocity profiles. 

Figure 2 
Leading edge temperature profiles. 
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presented in Figures 1-2. These amply demonstrate the retarding and thickening effects 
of magnetic drag on the boundary layer. Figure 3 incorporates the full numerical 
solution profiles at ~: = 4 and 16 from the downstream integration together with the 
zeroth order representations of inner and outer asymptotic solutions. 

Figure 3 
Downstream velocity profiles, - -  num- 
erical solutions. - - -  one term outer. 
. . . .  one term inner. 
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To estimate ix13, the first indeterminacy of the asymptotic solutions, truncated 
series representation of the temperature first derivative is equated to the exact numer- 
ical value at ~ = 16. Thus/X~a is chosen so that 

{~-  (~:' ~/)}~=o, r = {~' + -~ "tz~3 (32) 

+ _~ In ~r(_~,a  ( 1 -  Pr).~'~ 
Pr ] Jr P~=o.72 

which yields 

/x~ 3 = 0.4267. (33) 

With heat transfer and skin friction coefficients defined by 

Q= \,,H~] To -Too -~ y = o  

Pr - gfl(To ~ Too) \p| ~-Y u:o 

(34) 

(35) 

truncated series representations are 

(a) leading edge 

1 
Q = 2-1/2~-1/~0n(~ :, 0) = (4 Pr 2 ~:) 1/4{-0"5046 + 0"1236~1/2} 

/ 4~: \ 1/4 
prr'--~ = 21,2~/4r 0) = (~-~-~) {0.6760 - 0.1SS0~ :~,2} 

(36) 

(37) 
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(b) downstream 

Q = -se-1/20~(~ :, 0) = - 1  p ~  0~(~, o) 

= -~'i75 + ~ (1 - Pr) In - ~ {/xla - 0.2218} (38) 

Pr~'W = f-1/2F~(~'  0) = f i l  F~(~:,* 0) 

1 y ya (~r) P r {  Y (1 - 3 Pr)}. (39) -- prl/2 + ~:1/2 2~:a/2 (1 - Pr)In + ~575 t~a - 

These series representations are plotted against the exact solutions in Figures 4 and 5. 

Figure 4 
Skin friction coefficient, 
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numerical solution, - - - -  series representations. 

Figure 5 
Heat transfer coefficient, 
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7. Discussion 

A detailed investigation of the title problem has been outlined. With the given 
estimate of F13 a high level of agreement is demonstrated between the exact numerical 
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solut ion and series estimates.  In  bo th  cases of  heat  t ransfer  and  skin fr ict ion co- 

efficients est imates over lap over a lmost  the whole range of  ~. Moreove r  the points  at  

which series representa t ions  diverge f rom the correct  solut ions are such as to give some 

confidence that  s t ra ight forward ext rapola t ions  l inking these series representa t ions  

may  well be sufficient for  pract ical  purposes  for  0(1) values of  the Prand t l  number .  

Of  par t icular  note is a compar i son  of  the relative magni tudes  of  the second and 

th i rd  terms of  (38) and the th i rd  and four th  terms of  (39). Here the knowledge  of  the 

asymptot ic  structure including the logar i thmic  terms is par t icular ly  significant. 

F o r  Pr  of  0(1), the a lgebraic  term dominates  whereas as the Prandt l  number  decreases 

into the range where significant effects may  be observed in pract ice,  i.e. in the context  

of  l iquid metals,  it  is the logar i thmic  term which will provide  the d o m i n a n t  higher  

order  correct ion to skin fr ict ion and heat  t ransfer  estimates. A l though  the var ia t ion  

of/~13 with Prandt l  number  remains an open quest ion it is doubt fu l  that  such var ia t ion  

will affect the val idi ty of  this feature. 
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Summary 

The magnetohydrodynamic free convection flow of an electrically conducting fluid past a semi- 
infinite plate in a strong cross-field has been examined. Formulation in terms of a characteristic length 
has enabled a full numerical solution to be obtained providing details of skin friction and heat 
transfer at all stations along the plate. An estimate of an indeterminacy in asymptotic solutions allows 
favourable comparison to be made between series solutions estimates of these quantities and their 
exact numerical values. 

Zusammenfassung 

Die magneto-hydrodynamische Str6mung mit freier Konvektion in einer elektrisch leitenden 
Fltissigkeit entlang einer halbunendlichen Platte ist in einem starken Querfeld untersucht worden. 
Die Einffihrung einer charakteristischen Lfinge hat eine vollstfindige numerische L6sung erm6glicht, 
die die Reibungskraft und den WS, rmefibergang entlang der Platte ergibt. Eine Abschfitzung yon 
einer Unbestimmtheit in den asymptotischen L6sungen erlaubt einen Vergleich zwischen den dutch 
Reihe16sungen erhaltenen Werten dieser Gr6ssen und ihren exakten numerischen Werten. 
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