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On the Thermodynamics of Non-simple Elastic Materials 
with Two Temperatures 

B y  PETER J.  CHEN, S a n d i a  L a b o r a t o r i e s ,  A l b u q u e r q u e ,  N e w  M e x i c o ,  MORTON E .  GURTIN 
a n d  WILLIAM O. WILLIAMS, Carneg ie -~ ' I e l lon  U n i v e r s i t y ,  P i t t s b u r g h ,  P e n n s y l v a n i a ,  U S A  

1. I n t r o d u c t i o n  

In E3, 51 GElaTIn- and WILLIAMS suggested that  there are no a priori grounds for 
assuming that  the second law of thermodynamics for continuous bodies involves only 
a single temperature;  that  it is more logical to assume a second law in which the 
entropy contribution due to heat conduction is governed by one temperature, that  
of the heat supply by  another1). They showed however for an extremely general class 
of simple materials that  the Clausius-Duhem inequality requires that  the two tem- 
peratures be equal. CI~EI~ and GuRTIX E7] investigated the case of a non-simple rigid 
heat conductor and found that  for such a material this was no longer true; signifi- 
cantly, dependence on the second gradient of temperature is not ruled out as it is in 
the single-temperature theory. 

In this paper we investigate further the fact that  the presence of two distinct 
temperatures allows a dependence on higher gradients, turning to a theory including 
mechanical effects. In the usual theories the  presence of higher gradients of defor- 
mation than the first in elastic constitutive relations is ruled out by  the second law2). 
Here, however, we see that  materials of grade higher than one can occur in a thermo- 
dynamic setting provided one allows the possibility of two distinct temperatures. 

Briefly, we consider a material  for which the deformation gradient F and its two 
successive gradients and the conductive temperature q2 and its two successive gradients 
at a given material point and time determine the internal energy, entropy, stress, 
heat flux and thermodynamic temperature at that  point and time. Presuming that  
this last relation is invertible to yield conductive temperature as a function of ther- 
modynamic temperature and the remaining arguments, we obtain the result that  the 
deformation gradient and the thermodynamic temperature 0 suffice to determine the 
stress, energy, and entropy and that  the usual stress and entropy relations hold. 
However, the dependence of the heat flux and the thermodynamic temperature on the 
gradients of F and ~ are not ruled out, and it is this dependence which gives the mate-  
rial its non-simple character. We further deduce certain restrictions which apply at 
equilibrium to the response functions of the material. 

We turn next to the corresponding linearized theory and show that  it is mechan- 
ically simple in the sense that  strain gradients do not enter the theory. In the steady- 
state situations we find that  the difference between the two temperatures is propor- 

1) A similar theory was studied by M(JLLER E6] who did not  require tz priori that  the entropy-flux be 
related to the heat  flux, bu t  rather allowed it to be specified by a separate constitutive relation. 

2) See GI:RTIN [2, 4]. 
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tional to the heat supply a) and that  the stress differs from that  predicted by classical 
thermoelasticity theory by a pressure which is proportional to this heat supply. 

2. Constitutive Assumpt ions  

We consider a material characterized by the five response functions ~, ~1, S, gt and 
which give the internal energy e, the entropy 9, the stress S, the heat flux q and the 
thermodynamic temperature 0 when the deformation gradient F, the conductive 
temperature 90, and the gradients 

F I =  VF,  F 2= V V F ,  g =  V90, G =  VV90 (2.1) 
are known : 

e = e(F, 90, g, G, F1, F~), 9 = ~(F, 90, g ,C ,  FI, F~), ] 

~.~ = ~)(F, 90, g, G, F1, V2) , q = q(~' ,  90, g,  G,  F1, F2) ,  [1 (2.2) 

0 = ~(V, 90, g, ~ ,  U~, F~). J 

We assume all quantities are referred to a configuration in which the body is homo- 
geneous; this assumption is only for convenience. The internal energy and entropy 
are expressed per unit volume and the heat flux and stress per unit surface area in 
this reference configuration. 

We assume that  the partial derivative of {} with respect to 90 never vanishes ; then 
is invertible in its second argument. Writing ~ for the inverse, we have 

90 = ~(F, O, g, G, F~, F~) . (2.3) 

Using (2.2h,~, a and (2.3) we define the functions e, ~ and S through 

/(F, O, g, G, F~, F~) = [(F, ~(F, O, g, G, F~, f ~), g, G, F~, F~) , (2.4) 

where f denotes any of e, 9, S. The free-energy yo is given by  

W= e -  09; (2.5) 
by (2.4), 

~r = ~(F, O, g, G, f ~, Fz) = e(F, O, g, G, f ~, F2) --  O~(F, O, g, G, F> f z) . (2.6) 

3. Consequences  of the Second L a w  

We require that  the first two laws of thermodynamics 

e = S - / ~ -  div q § r ,  (3.1) 

)] ~ -- div + '0  

hold at every point of the body and every time. Equation (3.2) with (2.5) and (3.1) 

becomes 0 ( 0) ~ ) + @ - - S - / } +  J - - ~  d i v q +  ~2 q . g < ~ O .  (3.3) 

a) c~E~, GU~TtN and WILL:A~*S [8]. 
4) GURTIN and WILLIA~r [3, 5]. 
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This inequali ty will be satisfied by  every the rmodynamic  process compatible with 
the consti tut ive equations (2.2) if and only if the following five conditions holdS): 

(a) The response functions ~, ~ 71 and ~ are independent ofF1, F2, g and G; i.e. yJ, 
S, ~, e are given by functions of F and 0 alone 

= ~(F, O) , S =  S(F, O) , ~ = ~(F, O) , e = ~(F, O) . 

(b) ~ determines S through the stress relation 

S(F, O) = ~F(F, 0).  

(c) ~ determines ~ through the entropy relation 

~(F, O) = --~o(F, 0).  

(d) At  each (F, q;, g, G, F I ,  F2)  either 

O(F, ~, g, G, F1, F2) = ~ ; 
or both 

qG(F, Q?, g, G, El, f 2 )  �9 A = 0 

for each completely symmetric third-order tensor A,  and 

(1F2( F, 9, g, G, F1, Fu) . ff2 -- 0 

for each fifth-order tensor Q that is symmetric in its f inal  four entries. 
(e) At  each (F, ~, g, G, F~, F2) 

(~o -- 0) (qF' F1 + q,p 'g + qg" G + q&" F~) + ~ q 'g < 0. (3.4) 

Here subscripts indicate partial gradients, e.g., qF~ (F, q;, g, G, F~, F2) is the gra- 
dient of (t with respect to F 2 (and hence is a tensor of order 5). The inner product  
A �9 t2 of two tensors of order n is defined in the usual manner,  i.e., 

A �9 St = A i j . . . k  Dij...k 
in cartesian components.  

In  view of (b) and (c) the free energy ~v, the stress S and the ent ropy ~1 obey the 
classical equations of thermostatics,  but  even though ~o, S, ~ and e can be expressed 
as functions of the deformation gradient F and the the rmodynamic  temperature  0 
alone, when taken as functions of F, 9, g, G, F v F 2 there is no reason to suppose tha t  
they  are independent  of any of these arguments.  

Of interest to us are the conductivity tensor K(F, ~) and the temperature discrepancy 
tensor A(F, 9). K(F, 9) is the symmetr ic  par t  of - 0g(F, ~, 0, 0, 0, 0) and is assumed 
never to vanish, while A(F, q0) is the symmetr ic  tensor 6) 

A(F, q)) = -- dc(F , q~, O, O, O, 0) .  

Since the left hand  side of (3.4) regarded as a function of (g, G, F1, F2) vanishes 
at g = 0, G = 0, F~ = 0, F 2 -- 0, it mus t  be a max imum at tha t  point. Hence its 

5) We omi t  the proof of this  assertion. I t  cart be es tabl i shed  wi th  the aid of a rgumen t s  due to COLEM*~ 
and NOLL [1] and  analogous to those used by  CHn~ and GURTIN [7]. 

6) Cf. C~EN and  GURTIN [7]. 
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gradient vanishes there and its second gradient must  be negative semi-definite at the 
point. Following CHEN and GURTIN [7] we can use these observations to obtain the 
following results: 

(f) At  equilibrium (i.e. when g = 0, G = 0, F 1 = 0, and F~ = 0) the thermodynamic 
temperature and the conductive temperature are equal and the heat f l ux  vanishes: 

0, 0 , 0 , 0 ) =  0, 0, 0 ,0)  : 0 .  

(g) The derivatives 

all vanish at equilibrium. 
(h) The conductivity tensor K(F, q)) and the temperature discrepancy tensor A (F, q~) 

are linearly dependent and both are positive semi-definite. 
We omit the somewhat  tedious proof of these assertions. 

4.  I n f i n i t e s i m a l  T h e o r y  

In  this section we present the linearized form of the general theory. We assume 
tha t  the material  is isotropie and consider motion relative to an undis tor ted stress- 
free reference state. We suppose tha t  the conductive temperature  ~0 departs only 
slightly from a constant  reference temperature  % and tha t  the first two gradients 
of ~v are small. We assume further  tha t  the displacement u, its first three gradients, 
and the velocity gradient are all small. Using the results (a)-(h) of the preceding sec- 
tion 7) it is not  difficult to show tha t  the consti tutive equations have the following 
approximations : 

S = 2 ( t r E )  l + 2 # E - - ~ ( 3 2 + 2 # ) ( 9 - 9 0 - a d @ ,  ] 

q = - k Vg , O = q) - a A g  , 
(4.1) 

e = e  0 + ~ % ( 3 ) ~ + 2 # ) ( t r E ) + c ( g ) - % - a A @ ,  [ 

/ = ~ o + ~ ( 3 2 + 2 # ) ( t r E ) +  c ln  9 - a A ~ ~  
9o 

where 
1 (Vu + V u  r) E =  2- 

is the infinitesimal strain tensor, 
c = %(1, q)o) 

is the specific heat (assumed to be strictly positive), and 

~o = ~(1, %),  ~7o = ~(1, %). 

In  (4.1), 2,/~ are the Lam6 moduli, c~ is the coefficient of thermal  expansion, h is the 
conductivity,  and a is the temperature  discrepancy. Further,  since K = k 1 and A = 
a 1 are positive semi-definite and K is non-zero, 

k > O ,  a > O .  

7) Cf. CHEN a n d  GURTIN [7]. 
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Note that  the linearized constitutive relations (4.1) are mecha~ically simple in the 
sense that  there is no dependence on VE and VVE.  In fact, if a = 0 or A~0 = 0 so that  
the two temperatures coincide then these equations are just the classical equations 
of linearized thermoelasticity. 

Combining the first of (4.1) with (4.2) and the equation of balance of linear 
momentum 

div S + b = Q i/ 
we arrive at 

# A u  + (2 + #) V div u - ~ (3 2 + 2 #) V (q) - a d~) = ~ ii - b ,  (4.3) 

where ~ is the density and b the body force per unit volume. On the other hand if we 
combine (4.1), (4.2), and (4.3) and linearize the resulting equation we are led to 

c ~ =  --~ % (3 2 + 2 f ~ ) d i v i ~ + h A q ) + c a A ~ + r .  (4.4) 

Equations (4.3) and (4.4) are the linearized coupled equations governing the 
behavior of the fields u and ~. I t  is easily verified that  in steady state situations with 
r = 0 the two temperatures coincide and the above equations reduce to the corres- 
ponding equations of classical thermoelasticity. 

In steady situations with r # 0 (4.4) implies 

k Aq~ = - r,  (4.5) 
and we conclude from (4.1)3 that  

O - ~ = ~ r ;  

thus the difference between the two temperatures is directly proportional to the heat sup- 
plied. Moreover if we consider the equation for S in this case we find 

S = 2 ( t r E )  l + 2 # E - - ~ ( 3 ~ + 2 # ) ( ~ - - % ) l - - f l r l ,  (4.6) 

where/3 is the constant 

k 

Hence the stress is equal to the classical thermoelastic value plus a pressure p = ~ r pro- 
portional to the density of external heat supply. This relation could possibly afford an 
experimental means of measuring the temperature discrepancy a. 

Another possibly measurable effect which r may  have upon the mechanical res- 
ponse of the body is as follows: We define the (infinitesimal) change in volume $V  by 

bV = f t r E  dV ,  

where ~3 is the volume occupied by  the body. Then from (4.6) it follows that  in steady 
situations 

t r S  +3c~(~9--q)o) d V + ~ R ,  d V =  3 Z + 2 #  

where R is the total heat supplied to the body by  radiation, i.e., 

R : f r  dV .  
. 1  
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Thus the volume expansion is equal its classical value plus a quantity proportional to 
the total external heat supply. If, in particular, the body is undergoing a steady-state 
free expansion (zero surface tractions and body forces) then it is not difficult to show 
that 

tr S dV = O, 

and hence 

OV : 3 o; f (q) - q~o) d r  -- 3 ~ a R . 
�9 d 

In this case ~ is directly related to r by (4.5)' if for instance the radiation is uniform, 
i.e. r is constant, on a cylindrical body of length l, with 9) = ~0 on the ends and 
uniform on cross sections the volume change is just 

3 ~ (  l ~ ) 
6 V =  k a +  12 R.  
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Zusammen/assung 

Diese Arbe i t  behande l t  eine the rmodynamische  Theorie von nichteinfacheI1, elast ischen 
Stoffen. Es wird gezeigt, dass Substanzen v o m  Grade h6her als eins v o r k o m m e n  k6nnen;  
vorausgesetzt ,  dass man  das eventuel le  Vorhandensein  zweier verschiedener  Tempera tu ren  
in Be t r ach t  zieht.  
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