REFERENCES

- [1] C. A. TRUESDELL and W. MOLL, *The Non-Linear Field Theories o/Mechanics,* Handbuch der Physik (Ed. S. FLUGGE), Vol. III/3, Springer, Berlin (1965).
- [21 A. E. GREEN and N. LAws, Q. J. Mech. appl. Math. *20,* 265 (1967).
- [3] B. D. COLEMAN, Archs ration. Mech. Analysis *17*, 1 (1964).
- [4] B. D. COLEMAN and V. J. MIZEL, J. chem. Phys. 40, 1116 (1964).
- [5] IR. A. TOUPIN, Archs ration. Mech. Analysis *17,* 85 (1964).
- [6] N. Fox, Q. j. Mech. appl. Math. *19,* 343 (1966).
- [7] C. N. DESILVA and K. A. KLINE, Z. angew. Math. Phys. 19, 128 (1968).
- [8] S. J. ALLEN and C. N. DESILVA, J. Fluid Mech. 24, 801 (1966).
- [9] S. J. ALLEN, C. N. I)ESILVA and K. A. KLINE, Physics Fluids *70,* 2551 (1967).
- [10] J. L. ERICKSEN, Archs ration. Mech. Analysis 4, 231 (1960).

Zusammen/assung

Die Thermodynamik der richtungsorientierten Medien wird mit Hilfe der Clausius-Duhem-Ungleichheit und des Prinzips der materiellen Objektivität untersucht. Ein besonderer Fall der Materialsymmetrie wird diskutiert.

(Received: February 27, 1968.)

Extremal Principles and Isoperimetric Inequalities for some Mixed Problems of Stekloff's Type

By JOSEPH HERSCH, ETH, Ziirich and LAWRENCE E. PAYNE, Cornell University, Ithaca, N.Y., USA

1. We consider a plane domain G with boundary Γ . The 'mixed Stekloff problem' we are here concerned with is that of a vibrating homogeneous membrane without masses in *G*, but carrying masses along *F*: linear density $\rho(s) \geqslant 0$; the 'total mass' is $M = \oint_T \varrho \, ds$; moreover, we suppose that our membrane is elastically supported along Γ : elastic coefficient $k(s)$. – We have the eigenvalue problem:

$$
\Delta u = 0 \quad \text{in} \quad G \,, \quad \frac{\partial u}{\partial n} + [k(s) - \lambda \varrho(s)] \ u = 0 \quad \text{along} \quad \Gamma \,.
$$
 (1)

 $\left(\frac{\partial}{\partial n}\right)$ is the *outer* normal derivative.)

2. For the classical Stekloff problem with $k(s) \equiv 0$, the eigenvalues are noted μ rather than λ ; the first is $\mu_1 = 0$. This problem has been considered by several authors [10, 16, 23]. Some closely related problems have been considered by TROESCH [19, 20] and by WEHAUSEN and LAITONE [21].

WEINSTOCK [23] showed that, among all simply connected domains with analytic boundary and assigned total mass $M = \oint_T \rho ds$, the circles with constant linear density ρ along Γ yield the largest second eigenvalue μ_2 , i.e.

$$
\mu_2 \leqslant \frac{2 \, \pi}{M} \, .
$$

His proof uses conformal mapping and is very similar to that of $SzES6$ [17] for the corresponding isoperimetric inequality concerning free simply connected membranes

with *homogeneous mass distribution in their interior:* $\mu_2 \leqslant \pi p^2/M$ with $p \simeq 1.8412$. -WEINBERGER [22] avoided the use of conformal mapping and thus extended Szeg6's inequality to multiply connected membranes and to higher dimensions; as he indicates in the same paper, Szeg6 and Weinberger jointly noted that Szeg6's proof (based on conformal mapping) actually yields, for simply connected plane free homogeneous membranes, the stronger isoperimetric inequality $\mu_2^{-1} + \mu_3^{-1} \geq 2 M/\pi p^2$.

Exactly in the same way, we now remark that, for the Stekloff problem, WEIN-STOCK's proof [23] of the inequality $\mu_2 \leqslant 2 \pi/M$ actually yields the sharper isoperimetric result

$$
\mu_2^{-1} + \mu_3^{-1} \geqslant \frac{M}{\pi}:
$$

Among all simply connected domains with analytic boundary carrying an assigned total mass M, the circles with constant linear mass density along their circumference yield the Smallest value of $\mu_2^{-1} + \mu_3^{-1}$.

Indeed: Given a *two-dimensional* linear space of functions, which we call L_2 , its 'inverse Rayleigh trace' $TRinv[L_2]$ is by definition [8] equal to $R[v_1]^{-1} + R[v_2]^{-1}$, where v_1 and v_2 are any two functions in L_2 , 'orthogonal in the Dirichlet-metric': $D(v_1, v_2) = 0$, $R[v]$ is the Rayleigh quotient $D(v)/\oint_T \varrho(s) v^2 ds$ and $D(v)$ is the Dirichlet integral \iint_{G} grad² *v dA*; $dA = dx dy$ is the element of area. - Now

$$
\mu_2^{-1} + \mu_3^{-1} = \text{Max}_{L_2} \text{ } TRinv[L_2]
$$

if we restrict L_2 by the condition that each function v in it should be orthogonal to the constant 1 'in the ϱ -norm', i.e. $\oint_T \varrho(s) v ds = 0$. - As Weinstock (using Szegö's method) has shown, there exists a conformal mapping $w(z)$ of the domain $G = G_z$ onto the unit circle $|w| < 1$ such that $\oint_{\Gamma_z} \varrho w ds = 0$ $(ds = |dz|)$; let $w = U + iV$; the cartesian coordinates U and V of the w-plane are themselves eigenfunctions of the Stekloff problem in the circle with $\rho \equiv 1$, corresponding to the double eigenvalue $\mu_2^0 = \mu_3^0 = 1$; $U(z)$ and $V(z)$ are the 'transplanted' [14] functions in G_z , and they satisfy all orthogonality conditions:

$$
\oint_{\mathbf{r}_z} \rho \, U \, ds = 0 \,, \quad \oint_{\mathbf{r}_z} \rho \, V \, ds = 0 \,, \quad D_{G_z}(U, V) = D_{|w| < 1} \left(U, V \right) = 0 \,.
$$

Therefore

$$
\mu_2^{-1} + \mu_3^{-1} \geqslant T Rinv \left[L(U, V) \right] = R[U]^{-1} + R[V]^{-1} = \frac{\oint \varphi \, e \, U^2 \, ds}{D_{G_x} \left(U \right)} + \frac{\oint \varphi \, V^2 \, ds}{D_{G_x} \left(V \right)}
$$
\n
$$
= \frac{1}{\pi} \oint \varphi \, (U^2 + V^2) \, ds = \frac{1}{\pi} \oint \varphi \, ds = \frac{M}{\pi}.
$$

3. We now come back to our 'mixed Stekloff problem' (1) with elastic support *k(s)* at the boundary. Then the Rayleigh quotient is

$$
R[v] = \frac{D(v) + \oint\limits_{\Gamma} k(s) \; v^2 \; ds}{\oint\limits_{\Gamma} \varrho(s) \; v^2 \; ds} \, .
$$

The first eigenvalue λ_1 is no longer zero; it is characterized by Rayleigh's principle: $\lambda_1 = \text{Min}_{n} R[v]$.

Following PICARD's lines (cf. [13, 18]), we now prove elementarily that *an eigenfunction u* of constant sign *necessarily realizes the Minimum of the Rayleigh quotient* $R[v]$.

Indeed, let v be any continuous and piecewise derivable function;

$$
\operatorname{grad}^{2} v - \operatorname{div} \left(\frac{v^{2}}{u} \operatorname{grad} u \right) = \operatorname{grad}^{2} v + \frac{v^{2}}{u^{2}} \operatorname{grad}^{2} u - 2 \frac{v}{u} \operatorname{grad} v \cdot \operatorname{grad} u
$$

$$
= \left(\operatorname{grad} v - \frac{v}{u} \operatorname{grad} u \right)^{2} \geqslant 0 ;
$$

whence by integration in G :

$$
0\leqslant D(v)-\oint\limits_{\Gamma}\frac{v^2}{u}\frac{\partial u}{\partial n}\,ds=D(v)+\oint\limits_{\Gamma}k(s)\,v^2\,ds-\lambda\oint\limits_{\Gamma}\varrho(s)\,v^2\,ds\,.
$$
 (2)

This last inequality is true regardless of the signs of k(s) and of $\rho(s)$ *; if* $\rho(s) \geq 0$ *, it* follows that $R[v] \geq \lambda = R[u]$, thus $\lambda = \lambda_1$ and $u = u_1$ is the *first* eigenfunction. - We used essentially that u is *harmonic* and has *constant sign.*

Remark. – Let u be any *harmonic* function of *constant sign* in G ; we have by (2):

$$
D(v) \geqslant \oint_{\Gamma} \frac{v^2}{u} \frac{\partial u}{\partial n} ds \,.
$$
 (3)

This inequality contains *Dirichlet's principle:* if $v = u$ on the boundary Γ , then $D(v) \geq \oint u \, du / \partial n \, ds = D(u)$. – (On the other hand, the admissible choice $v = \text{const}$ implies $\oint_T 1/u \frac{\partial u}{\partial n} ds \leq 0$, which follows also from the fact that $\Delta \ln u = \text{div} (\text{grad } u/u) = - \text{grad}^2 u/u^2 \leq 0$, $\ln u$ is superharmonic.)

Furthermore, if u and $\partial u/\partial n$ have the same sign on the part of Γ where $v \neq 0$,

then inequality (3) also implies *Thomson's principle* for vector fields $p = \text{grad } u$ without sources: by Schwarz' inequality, we then have

$$
D(v) \geqslant \oint\limits_{\Gamma} \frac{v^2}{u} \frac{\partial u}{\partial n} ds \geqslant \frac{\left(\oint\limits_{\Gamma} v \frac{\partial u}{\partial n} ds\right)^2}{\oint\limits_{\Gamma} u \frac{\partial u}{\partial n} ds} = \frac{\left(\oint\limits_{\Gamma} v \mathbf{P} \cdot \mathbf{n} ds\right)^2}{\iint\limits_{G} \mathbf{P}^2 dA}
$$

 $(n$ is the outer normal).

Inequality (3) can be transformed into a somewhat sharper form by introducing into it the function $v + c$ (c = constant) instead of v; the optimal constant is

$$
c_{opt} = -\oint\limits_{\Gamma} \frac{v}{u} \frac{\partial u}{\partial n} ds \Big/ \oint\limits_{\Gamma} \frac{1}{u} \frac{\partial u}{\partial n} ds
$$

and it gives the inequality

$$
D(v) \geqslant \oint\limits_{\Gamma} \frac{v^2}{u} \frac{\partial u}{\partial n} ds + \frac{\left(\oint\limits_{\Gamma} \frac{v}{u} \frac{\partial u}{\partial n} ds\right)^2}{-\oint\limits_{\Gamma} \frac{1}{u} \frac{\partial u}{\partial n} ds};
$$
\n(3')

the additional term on the right is non-negative.

4. The method of one-dimensional auxiliary problems [2, 3, 5, 11, 12, 15] applied to *the mixed Stekloff problem.*

4.1. Leading idea, motivation

In order to obtain lower bounds for the first eigenvalue λ_1 , we have *to apply Rayleigh's principle* not to the given problem itself, but *to some auxiliary problems.* Now we consider as auxiliary problems vibrating strings in *G,* some parallel to the x-axis, the others to the y-axis, and with end points P_0 , P_1 on Γ . Those strings carry no masses in their interior; each one carries two point masses: m_0 at P_0 and m_1 at P_1 ; *they are elastically supported in their interior.*

As in [5], we shall avoid the resolution of an infinity of auxiliary problems by *choosing* beforehand their first eigenfunction (it must have *constant sign),* and only then determine the one-dimensional problems themselves.

Let us choose two *positive* functions f and g in $G: f(x, y) > 0$ continuous *in x* and twice partially derivable *with respect to x* (but not necessarily continuous in y); and $g(x, y) > 0$ continuous *in y* and twice partially derivable *with respect to y* (but not necessarily continuous in x).

We further suppose that the following condition is fulfilled:

$$
\frac{f_{xx}}{f} + \frac{g_{yy}}{g} \leq 0 \quad \text{in all } G \,.
$$
 (4)

For every segment through G, parallel to the x-axis and with extremities P_0 and P_1 on the boundary Γ , $f(x, y)$ is the first eigenfunction of an auxiliary vibrating string with the elastic coefficient $\varkappa(x) = f_{xx}(x, y)/f(x, y)$ and the masses $m_0 = -f_x(P_0)/f(P_0)$, $m_1 = \frac{f_x(P_1)}{f(P_1)}$ and the corresponding (first) eigenvalue is $\tilde{\lambda} = 1$. Indeed, f has constant sign and satisfies

$$
f_{xx} - \varkappa(x) f = 0;
$$
 $-f_x(P_0) - 1 \cdot m_0 f(P_0) = 0$ and $f_x(P_1) - 1 \cdot m_1 f(P_1) = 0$.

(One should be careful that m_0 or m_1 may here be negative; but the formal calculation in 4.2 remains valid in this case.)

Similarly, on every segment through G, parallel to the y-axis, $g(x, y)$ is the first eigenfunction of an auxiliary string and corresponds to the eigenvalue $\tilde{\lambda} = 1$.

The following formal calculation is equivalent to applying the one-dimensional Rayleigh principle (more precisely: Picard's method for its proof, see Section 3) to each auxiliary string.

4.2. *Formal calculation*

Let again $u = u_1(x, y)$ be the first eigenfunction of the given Stekloff problem (1).

$$
u_x^2 - \left(\frac{f_x}{f} u^2\right)_x = u_x^2 - 2\frac{f_x}{f} u u_x + \frac{f_x^2}{f^2} u^2 - \frac{f_{xx}}{f} u^2 = \left(u_x - \frac{f_x}{f} u\right)^2 - \frac{f_{xx}}{f} u^2;
$$

$$
u_y^2 - \left(\frac{g_y}{g} u^2\right)_y = u_y^2 - 2\frac{g_y}{g} u u_y + \frac{g_y^2}{g^2} u^2 - \frac{g_{yy}}{g} u^2 = \left(u_y - \frac{g_y}{g} u\right)^2 - \frac{g_{yy}}{g} u^2;
$$

now *assuming that the following integrals have a sense,* we obtain

$$
D(u) - \oint \left(\frac{f_x}{f} \frac{\partial x}{\partial n} + \frac{g_y}{g} \frac{\partial y}{\partial n}\right) u^2 ds = \iint\limits_{\mathbf{G}} \left[\left(u_x - \frac{f_x}{f} u\right)^2 + \left(u_y - \frac{g_y}{g} u\right)^2 - \left(\frac{f_{xx}}{f} + \frac{g_{yy}}{g}\right) u^2 \right] dA \geq 0 ;
$$

since u is harmonic, $D(u) = \phi u \partial u / \partial n ds = \phi [\lambda_1 \varrho(s) - k(s)] u^2 ds$, whence $F = \frac{F}{F}$ $\mu_1 \varrho(s) = \lceil \kappa(s) + \frac{\tau}{f} \frac{\partial n}{\partial n} + \frac{\tau}{g} \frac{\partial n}{\partial n} \rceil$ *1"*

the integrand cannot be everywhere negative: therefore, if $\rho(s) \geq 0$,

$$
\lambda_1 \geqslant \inf_{\Gamma} \left\{ \frac{1}{\varrho(s)} \left[k(s) + \frac{f_x}{f} \frac{\partial x}{\partial n} + \frac{g_y}{g} \frac{\partial y}{\partial n} \right] \right\}. \tag{5}
$$

In particular, if we have chosen $f = g$ (positive, continuous and twice differentiable, satisfying $\Delta f \leq 0$,

$$
\lambda_1 \geqslant \inf_{\Gamma} \left\{ \frac{1}{\varrho(s)} \left[k(s) + \frac{1}{f} \frac{\partial f}{\partial n} \right] \right\},\tag{5'}
$$

which is the analogue here of the BARTA inequality [1] for vibrating membranes.

Furthermore, if by chance we have chosen exactly $f = g = u_1(x, y)$, then

$$
k(s) + \frac{1}{f} \frac{\partial f}{\partial n} = \lambda_1 \varrho (s) ,
$$

so we have equality in (5) and (5'); hence

$$
\lambda_1 = \operatorname{Max}_{\substack{f \ge 0 \\ g > 0}} \inf_{\substack{p \ge 0 \\ \frac{f_{xx}}{f} + \frac{g_{yy}}{g} < 0}} \inf_{\substack{p \ge 0 \\ p \ge 0}} \left[k(s) + \frac{f_x}{f} \frac{\partial x}{\partial n} + \frac{g_y}{g} \frac{\partial y}{\partial n} \right] \tag{5''}
$$

Remark. - We note the rather trivial inequalities

$$
\inf_{\Gamma} \frac{k(s)}{\varrho(s)} \leqslant \lambda_1 \leqslant \frac{\oint \limits_{\Gamma} k(s) \, ds}{\oint \limits_{\Gamma} \varrho(s) \, ds} = \frac{K}{M} \, ; \tag{6}
$$

the inequality on the right follows immediately from Rayleigh's principle applied to the function $v \equiv 1$; the inequality on the left follows from (5') applied to $f \equiv 1$.

Physical interpretation: the upper bound *K/M* in (6) becomes actually the first eigenvalue of the problem when one augments to infinity the modulus of elasticity of the membrane; the lower bound on the left, when one reduces the modulus of elasticity to zero. Both inequalities thus express monotony.

In particular, if $k(s) = c \varrho(s)$ with a constant c, then $\lambda_1 = c$ and $u_1 = \text{const.}$ (Special case: the classical Stekloff problem: $k(s) \equiv 0$, the first eigenvalue is then zero.)

4.3. *Vector formulation*

As was done in [5] for vibrating membranes, we construct, to each pair of admissible functions f, g, the vector field $\mathbf{p} = (-f_x/f; -g_y/g)$; the condition (4) becomes $\text{div }\mathbf{p} - \mathbf{p}^2 = -f_{xx}/f - g_{yy}/g \geq 0$ and the lower bound (5) becomes

$$
\lambda_1 \geqslant \inf_{\Gamma} \left\{ \frac{1}{\varrho(s)} \left[k(s) - \boldsymbol{p} \cdot \boldsymbol{n} \right] \right\}.
$$

Direct proof. – We consider a vector field \boldsymbol{p} in *G*, of which we assume:

(i) The first component of \boldsymbol{p} must be continuous *in x* and partially derivable *with respect to x,* the second component continuous *in* y and partially derivable *with respect to y;*

(ii) the condition

$$
\operatorname{div} \boldsymbol{p} - \boldsymbol{p}^2 \geqslant 0 \tag{4'}
$$

must be fulfilled;

(iii) the integrals following below must exist.

Let once more $u = u_1(x, y)$ be the first eigenfunction of the given problem (1). Then

$$
\text{grad}^2 u + \text{div} \ (u^2 \ \mathbf{p}) = \text{grad}^2 u + 2 \ u \ \mathbf{p} \cdot \text{grad} \ u + u^2 \text{div} \ \mathbf{p}
$$
\n
$$
= (\text{grad} \ u + u \ \mathbf{p})^2 + u^2 \ (\text{div} \ \mathbf{p} - \mathbf{p}^2) \geqslant 0 \ ,
$$

whence, if we may integrate,

$$
0\leqslant D(u)+\oint_{\Gamma}u^2\,\boldsymbol{p}\cdot\boldsymbol{n}\;ds=\oint_{\Gamma}\left\{u\,\frac{\partial u}{\partial n}+u^2\,\boldsymbol{p}\cdot\boldsymbol{n}\right\}ds=\oint_{\Gamma}\left\{\lambda_1\varrho(s)-[k(s)-\boldsymbol{p}\cdot\boldsymbol{n}]\right\}u^2\,ds\,;
$$

the integrand cannot be everywhere negative, whence, if $\rho(s) \geq 0$,

$$
\lambda_1 \geqslant \inf_{\Gamma} \left\{ \frac{1}{\varrho(s)} \left[k(s) - \boldsymbol{p} \cdot \boldsymbol{n} \right] \right\}. \tag{5''}
$$

If we introduce the vector field $p = -$ grad u/u , we have equality, whence

$$
\lambda_1 = \text{Max}_{div \ \mathbf{p} - \mathbf{p}^s > 0} \ \text{inf}_{\Gamma} \left\{ \frac{1}{\varrho(s)} \left[k(s) - \mathbf{p} \cdot \mathbf{n} \right] \right\}. \tag{5}^{\Gamma V}
$$

5. We shall henceforth restrict our consideration to the case where $k(s) = +\infty$ along a 'fixed' part Γ_0 of the boundary Γ , while $k(s) = 0$ on the 'free' remaining boundary $\Gamma_1 = \Gamma - \Gamma_0$. It is then sufficient to consider only masses $\rho(s)$ along Γ_1 (masses along Γ_0 cannot vibrate and therefore play no role in the problem).

 $\Delta u=0$ in G, $u=0$ along Γ_0 , $\frac{\partial u}{\partial n}-\lambda \varrho(s) u=0$ along Γ_1 .

We first consider a *'trilateral' T,* i.e. a Jordan domain with three designated boundary points. Let the Jordan arcs a, b, c be its 'sides'. We assume a mass distribution $\varrho(s)$ along c, but *no masses along a and b*. Total mass: $M_c = \int \varrho(s) ds$. Let λ_a be the *first eigenvalue of the problem with fixed side a* $(k = \infty)$ *, free sides b and c* $(k = 0)$ *:* $\Delta u=0$ in T, $u=0$ along *a*, $\frac{\partial u}{\partial n}=0$ along *b*, $\frac{\partial u}{\partial n}-\lambda_a\varrho(s) u=0$ along *c*.

Let λ_b be the first eigenvalue when b is fixed, a and c free.

We shall prove the isoperimetrie inequality

$$
\left(\frac{1}{\lambda_a} + \frac{1}{\lambda_b}\right) \frac{1}{M_c} \geqslant \frac{4}{\pi}.
$$
\n(7)

Proof. - Let the given trilateral T be in the complex z-plane; we map it conformally on to the circular sector \tilde{S} : $\xi^2 + \eta^2 < 1$, $\xi > 0$, $\eta > 0$ of the $\zeta = \xi + i\eta$ -plane in

such a way that $\zeta(a)$ (the image of a) is the real interval $\tilde{a}: 0 < \xi < 1$, $\zeta(b)$ the imaginary interval $\tilde{b}: 0 < \eta < 1$, and $\zeta(c)$ the circular arc $\tilde{c}: \zeta = e^{i\alpha}, 0 < \alpha < \pi/2$. This mapping is possible, since all trilaterals are conformally equivalent.

The corresponding problems in S *with constant mass density* $\tilde{\rho}(\alpha) \equiv 1$ along \tilde{c} , have respectively the first eigenfunctions $\tilde{u}_a = \eta$ and $\tilde{u}_b = \xi$, and the same corresponding first eigenvalue $\tilde{\lambda} = (1/\xi) \partial \xi/\partial r = (1/\xi) \xi/1 = 1$; here $M_{\tilde{c}} = \pi/2$, so that for \tilde{S} we have equality in (7). We note that $\tilde{u}_\alpha^2 = \tilde{u}_\beta^2 = \eta^2 + \xi^2 = 1$ along \tilde{c} , and $D(\tilde{c}) = D(\tilde{u}_\beta) = \pi/4$.

We now 'transplant' the functions $\tilde{u}_{\tilde{\lambda}}$ and $\tilde{u}_{\tilde{\lambda}}$ on to the given trilateral T: $U(z)$ = $\tilde{u}(\zeta(z))$, i.e.

$$
U_a(z) = \eta(z) \quad \text{and} \quad U_b(z) = \xi(z);
$$

again $U_a^2 + U_b^2 = 1$ along c; since Dirichlet's integral remains invariant under conformal *transplantation,* $D(U_a) = D(U_b) = \pi/4$. [It follows also this way: $D(U_a) = D(\eta(z))$ \int_{T} | $d\zeta$ | dz |² $dA_z = \int_{\tilde{S}}$ $dA_{\zeta} = \pi/4.$ |

Now we apply Rayleigh's principle twice:

$$
\lambda_a \leq R[U_a]
$$
 and $\lambda_b \leq R[U_b]$, $\frac{1}{\lambda_a} + \frac{1}{\lambda_b} \geq \frac{4}{\pi} \int_c^b \varrho \left(U_a^2 + U_b^2 \right) ds = \frac{4}{\pi} M_c$;

this is (7).

It is readily seen that we have *equality* not only for the particular rectangular sector \tilde{S} , but *for all circular sectors* with constant mass density along the circular arc c; we even have equality for *any* trilateral $a \, b \, c$, provided the masses along c are those obtained by the (unique) conformal mapping onto \tilde{S} .

Inequality (7) can be compared with the more general one

$$
(\lambda_a^{-1} + \lambda_b^{-1} + \lambda_c^{-1}) M^{-1} \geqslant \frac{3}{\pi},
$$

obtained in $[7, 8]$ for all nonhomogeneous membranes on a trilateral *a b c*, of total mass *M,* fixed in turn along each one of the three 'sides' *a, b, c* (extremal membrane: homogeneous membrane on a trirectangular spherical triangle). In our present situation all the masses are on the boundary arc c, $\lambda_c = \infty$, hence $(\lambda_a^{-1} + \lambda_b^{-1}) M^{-1} \geq \frac{3}{\pi}$, which is less precise than our specific bound (7) .

Example. – Consider the rectangle $-\phi$, O, $i \pi/2$, $-\phi + i \pi/2$ (in the complex z-plane) as a trilateral with the designated points $-\phi$, O, $i\pi/2$, the side a being the segment $-\phi$, O; c the segment O, i $\pi/2$; b the rest of the boundary; $\rho \equiv 1$ along c, $M = \pi/2$. We have the *first* eigenfunctions $u_a = Ch(x + p) \sin y$ and $u_b = Sh(x + p) \cos y$ with the corresponding first eigenvalues $\lambda_a = Th p$ and $\lambda_b = Ch p$; $(\lambda_a^{-1} + \lambda_b^{-1}) M^{-1} =$ *(Cth p + Th p)* $2/\pi \geq 4/\pi$ in agreement with (7). Asymptotically we have equality when $p \rightarrow \infty$; this is not astonishing: a half-strip can be considered as a circular sector with infinite radius and vanishing aperture.

6. We now consider the following mixed Stekloff problem on a *doubly connected domain D* of the *z*-plane, bounded by the Jordan curves Γ_0 and Γ_1 :

 $\varDelta u=0$ in *D*, $u=0$ along \varGamma_0 , $\frac{\partial u}{\partial n}-\lambda \varrho(s) u=0$ along \varGamma_1

(all masses are on Γ_1). Total mass: $M = \oint_{\Gamma_1} \varrho(s) \, ds$.

The *modulus* μ of D can be defined by conformal mapping $\zeta(z)$ on to a circular ring $\tilde{D}: 1 < |\zeta| < R$, $\mu = (1/2 \pi) \ln R$.

The corresponding problem in \tilde{D} with $\tilde{\Gamma_0}$: $|\zeta| = 1$, $\tilde{\Gamma_1}$: $|\zeta| = R$, and constant mass density $\tilde{\varrho} \equiv 1$ along $\tilde{T_1}$, total mass $M = 2 \pi R$, has the first eigenfunction $\tilde{u} = \ln |\zeta|$ and the first eigenvalue

$$
\tilde{\lambda} = \frac{1}{R \ln R} = \frac{1}{2 \pi R \mu} = \frac{1}{M \mu} ;
$$

we shall prove, for the first eigenvalue $\lambda = \lambda_1$ of our arbitrary D, the inequality

$$
\lambda \leqslant \frac{1}{M \mu}.
$$
\n⁽⁸⁾

Proof. – We transplant \hat{u} on to $D: U(z) = \hat{u}(\zeta(z))$; $U = 0$ along Γ_0 and $U = \ln R$ along Γ_1 ; since the Dirichlet integral remains invariant under conformal transplantation, $D(U) = D(\tilde{u}) = 2 \pi \ln R$; by Rayleigh's principle,

$$
\lambda \leqslant \frac{D(U)}{\oint\limits_{\Gamma_1} \varrho \ U^2 \ ds} = \frac{2 \pi \ln R}{(\ln R)^2 M} = \frac{1}{M \mu}, \quad \text{i.e.} \quad (8) .
$$

Remark. - Inequality (8) also immediately follows from Rayleigh's principle applied to the harmonic function v in D satisfying $v = 0$ on Γ_0 and $v = 1$ on $\Gamma_1: D(v) = 1/\mu$, thus $\lambda \leqslant R[v] = D(v)/\oint \varrho v^2 ds = 1/M\mu$. (In fact, $U = v \ln R$.)

We have *equality* for all circular rings with $\rho =$ const along Γ_1 , and even *for any doubly connected domain D with an adequate mass distribution e* (obtained by conformal mapping onto the conformally equivalent circular ring \tilde{D}) along the free boundary curve Γ_1 .

Inequality (8) can be compared with the more general one $(\lambda_{\Gamma_0}^{-1} + \lambda_{\Gamma_1}^{-1}) M^{-1} \geq 8 \mu/\pi^2$, obtained in [6, 8] for all doubly connected nonhomogeneous membranes of modulus μ and total mass M , fixed alternatively along each of the boundary curves (extremal membrane: straight cylinder with homogeneous mass distribution). In our present situation, all the masses are on Γ_1 , $\lambda_{\Gamma_1} = \infty$, hence $\lambda_{\Gamma_2} \leq \pi^2/8 M \mu$, which is less precise than our present specific bound (8).

Corollary. – It follows that the modulus μ of a given doubly connected domain D can be characterized as

$$
\mu^{-1} = \text{Max}_{choice\ of\ \varrho(s)\ along\ }r_1}(\lambda_1 M) \tag{9}
$$

or in other words:

The inverse modulus μ^{-1} of a doubly connected domain with boundary curves Γ_0 *and* Γ_1 , is equal to the largest total mass $M = \oint_{\Gamma_1} \rho$ ds that Γ_1 can carry, while the first *eigenvalue* λ_1 of the mixed Stekloff problem (with fixed Γ_0) does not become inferior to unity.

This characterization is analogous to that of DE LA VALLEE POUSSIN and FROST-MAN I41 for the Capacity in space as the least upper bound of the masses the set can carry while its potential does nowhere exceed unity. - *Contrarily to the usual ways of Potential theory,* we here give a characterization in terms of an *eigenvalue* (and not of an energy or a potential), and we consider the *Stekloff problem* (instead of a Dirichlet problem) to obtain theorems on harmonic functions.

810 **JOSEPH HERSCH and LAWRENCE E. PAYNE** *ZAMP*

It is worth mentioning that the restriction to everywhere positive masses $\rho(s)$ can be dropped: let h be any positive harmonic function in *D*, vanishing along Γ_0 : it is then the first eigenfunction to the mass density $\rho = (1/h) \partial h / \partial n$ along Γ_1 , with corresponding first eigenvalue $\lambda_1 = 1$. The density ρ may well change sign; we have

$$
\frac{1}{\mu} = \operatorname{Max}_{\substack{Ah=0 \text{ in } D \\ h>0 \text{ along } \Gamma_0}} \oint_{\Gamma_1} \frac{1}{h} \frac{\partial h}{\partial n} ds .
$$
\n(9')

This follows immediately from inequality (3), in which we set $u = h$ and introduce for v the harmonic function with boundary values zero on Γ_0 and one on Γ_1 : then $D(v) = 1/\mu$. The Maximum is attained for $h = v$. - This variational problem is, of course, invariant under conformal mapping of the domain D.

The same is true in 3-space and can be used as a characterization of Capacity: let D be a three-dimensional domain with boundary surfaces Γ_0 and Γ_1 ; then

$$
4 \pi C = \operatorname{Max}_{\substack{Ah=0 \text{ in } D \\ h=0 \text{ along } \Gamma_0}} \iint\limits_{\substack{r_1 \\ h>0 \text{ along } \Gamma_1}} \frac{1}{h} \frac{\partial h}{\partial n} dS . \tag{9''}
$$

7. The following problem is closely related to the preceding one. We consider a *'quadrilateral' Q* in the z-plane, i.e. a Jordan domain with four designated boundary points; let *a, b, c, d* be its 'sides'. We consider the mixed Stekloff problem with fixed side $a (k = \infty)$, free b, c, $d (k = 0)$ and all masses $\rho(s)$ along $c (p = 0$ along a, b and d); side c lies opposite to side a .

 $\Delta u = 0$ in *Q,* $u = 0$ on *a,* $\partial u/\partial n = 0$ along *b* and *d,* $\partial u/\partial n - \lambda \rho(s) u = 0$ along *c*. Total mass: $M_c = \int \varrho(s) ds$.

The modulus $\mu = \mu_{ac}^{c}$ of Q can be defined by conformal mapping onto a rectangle \tilde{R} in the $\zeta = \xi + i\eta$ plane: $-\rho$, O, iq , $-\rho + iq$; $\zeta(q) = \tilde{a}$ is the segment $-\rho + iq$, *- p*; δ the segment *- p*, O; \tilde{c} the segment O, *i q*; \tilde{a} the segment *i q*, - *p* + *i q*; then $\mu = \frac{\rho}{q}$.

The corresponding mixed Stekloff problem in \tilde{R} with $\tilde{\varrho} = 1$ along \tilde{c} , $M_{\tilde{c}} = q$, has first eigenfunction $\tilde{u} = \xi + \phi$ with the corresponding first eigenvalue $\tilde{\lambda} = 1/\phi = 1/M_{\tilde{\kappa}}\mu$. We shall prove that, for our arbitrary quadrilateral Q and a mass density $\rho(s)$ along c,

$$
\lambda \leqslant \frac{1}{M_c \,\mu_{ac}}.\tag{8'}
$$

Proof. – We transplant \tilde{u} on to $Q: U(z) = \tilde{u}(\zeta(z)) = \xi(z) + \phi$; $D(U) = D(\tilde{u}) = \phi q$; by Rayleigh's principle, $\lambda \le R[U] = \frac{\rho}{\rho} q/\rho^2 \int_{c} \rho ds = \frac{q}{\rho} M_c = 1/M_c \mu$.

Remark. - As in Section 6, inequality (8') also immediately follows from Rayleigh's principle applied to the harmonic function v in \hat{Q} which solves the mixed Dirichlet-Neumann problem: $v = 0$ along a, $v = 1$ along c, $\frac{\partial v}{\partial n} = 0$ along b and $d: D(v) = 1/\mu_{ac}$, thus $\lambda \le R[v] = D(v)/\int \varrho v^2 ds = 1/M_c \mu$. (In fact, $U = \varrho v$.)

As is readily verified, we have *equality* for all rectangles and for all sectors of circular rings ($c =$ circular arc), with $\rho =$ const along c; we even have equality for

c

every quadrilateral with an appropriate mass density $\rho(s)$ on c (obtained by conformal mapping onto R).

Inequality (8') can be compared with the more general one $(\lambda_a^{-1} + \lambda_c^{-1}) M^{-1} \geq 8 \mu/\pi^2$, obtained in [6, 8] for all nonhomogeneous membranes of total mass M on a quadrilateral of modulus $\mu = \mu_{ac}$, fixed in turn along a and along c (extremal membrane: homogeneous rectangle). In our present situation, all the masses are on $c, \lambda_c = \infty$, hence $\lambda = \lambda_a \leq \pi^2/8 M_c \mu$, which is less precise than our specific bound (8').

Corollary. – As in Section 6, it follows that the modulus μ_{ac} of a given quadrilateral a b c d can be characterized as

$$
\mu_{ac}^{-1} = \text{Max}_{choice\ of\ g(s)\ along\ c} } (\lambda_1 M_c): \tag{9''}
$$

The inverse modulus μ_{ac}^{-1} of a quadrilateral a b c d is equal to the largest total mass $M_c = \int \varrho$ ds that the side c can carry while the first eigenvalue λ_a of the mixed Stekloff *c problem (with a fixed; b, c and d free) does not become inferior to unity.*

As we did in Section 6, we again note here that the restriction to everywhere positive masses can be dropped: the modulus μ_{ac} can be characterized by

$$
\frac{1}{\mu_{ac}} = \operatorname{Max}_{\substack{Ah=0 \text{ in } Q \\ oh/on = 0 \text{ along } b \text{ and } d}} \int \frac{1}{h} \frac{\partial h}{\partial n} ds . \tag{9}^{IV}
$$
\n
$$
\sum_{\substack{hh=0 \text{ along } a \\ h>0 \text{ along } c}} \frac{\partial h}{\partial n_{ab}} ds .
$$

This again follows from (3) . The Maximum is attained by the functions h which are constant along c.

In particular, if the sides b and d are horizontal segments and a is a segment on the y-axis, we may choose $h = x$; since $\frac{\partial x}{\partial n} = \frac{\partial y}{\partial s}$, we obtain

$$
\frac{1}{\mu_{ac}}\geqslant \int\limits_{c}\frac{dy}{x}\,,
$$

which is a well-known superadditivity property of moduli ([9], p. 608).

8. In an arbitrary quadrilateral Q with sides *a, b, c, d* and given mass distribution $\rho(s)$ along c, we now consider two mixed Stekloff problems:

(i) $\Delta u = 0$ in *Q*, $u = 0$ along *a* and *b*, $\partial u/\partial n = 0$ along *d*, $\partial u/\partial n - \lambda \varrho(s) u = 0$. along c; first eigenvalue λ_{ab} .

(ii) $\Delta u = 0$ in Q, $u = 0$ along a and d, $\partial u/\partial n = 0$ along b, $\partial u/\partial n - \lambda \varrho(s) u = 0$ along c; first eigenvalue λ_{ad} .

In the conformally equivalent rectangle \tilde{R} (see Section 7) with $q = \pi/2$, $\mu_{ac} =$ $\mu_{\tilde{a}\tilde{c}} = p/q = 2 p/\pi$ and $\tilde{\varrho} \equiv 1$ along \tilde{c} , $M_{\tilde{c}} = \pi/2$, we have the following first eigenfunctions of problems (i) and (ii): $\tilde{u}_{\tilde{a}\tilde{b}} = Sh (\xi + \tilde{p}) \sin \eta$ and $\tilde{u}_{\tilde{a}\tilde{d}} = Sh (\xi + \tilde{p}) \cos \eta$; $\tilde{u}_{\tilde{a}\tilde{b}}^2 + \tilde{u}_{\tilde{a}\tilde{a}}^2 = Sh^2 p$ on \tilde{c} ; $D(\tilde{u}_{\tilde{a}\tilde{b}}) = D(\tilde{u}_{\tilde{a}\tilde{a}}) = \pi/4 \int_{-p}^{0} [Sh^2(\xi + p) + Ch^2(\xi + p)] d\xi =$ $\tilde{\mathcal{A}}$ *o_z (4) p (h)* $\tilde{\mathcal{A}}$ *f*_{\tilde{a} ^{*f*} \tilde{a} = *Cth p* = *Cth* $\pi \mu_{\tilde{a}}$ \tilde{c} /2; (1/ $\tilde{\lambda}_{\tilde{a}}$ \tilde{b} + 1/ $\tilde{\lambda}_{\tilde{a}}$ \tilde{d}) 1/ $M_{\tilde{c}}$ = (4/ π) *Th* $\pi \mu_{\tilde{a}}$ \tilde{c} /} we shall prove that, for our arbitrary quadrilateral *Q,*

$$
\left(\frac{1}{\lambda_{ab}} + \frac{1}{\lambda_{ad}}\right) \frac{1}{M_c} \geqslant \frac{4}{\pi} \, Th\left(\frac{\pi}{2} \, \mu_{ac}\right). \tag{10}
$$

Proof. – We transplant $\tilde{u}_{\tilde{a}\tilde{b}}$ and $\tilde{u}_{\tilde{a}\tilde{a}}$ on to Q: $U_{ab}(z) = \tilde{u}_{\tilde{a}\tilde{b}}(\zeta(z))$ and $U_{ad}(z) =$ $\tilde{u}_{\tilde{a}\tilde{a}}(\zeta(z)); U_{ab}(z)$ vanishes on a and b, $U_{ad}(z)$ on a and d; $D(U_{ab}) = D(\tilde{u}_{\tilde{a}\tilde{b}}) =$ $(\pi/4)$ *Sh p Ch p = D*($\tilde{u}_{\tilde{a}\tilde{a}}$) = D(U_{ad}); $U_{ab}^2 + U_{ad}^2 = Sh^2$ p on c. We apply Rayleigh's principle twice :

$$
\frac{1}{\lambda_{ab}}+\frac{1}{\lambda_{ad}}\geqslant \frac{1}{R[U_{ab}]}+\frac{1}{R[U_{ad}]}=\frac{M_c Sh^2\ p}{\frac{\pi}{4}Sh\ \rho\ Ch\ \rho}=\frac{4}{\pi}\ M_c\ Th\ \rho=\frac{4}{\pi}\ M_c\ Th\left(\frac{\pi}{2}\ \mu_{ac}\right).
$$

Again, it is readily seen that we have *equality* for all rectangles and for all sectors of circular rings (c = circular arc), with $\rho = \text{const}$ along c; and even for every quadrilateral with appropriate mass distribution $\rho(s)$ on c (obtained by conformal mapping on to R).

Inequality (10) can be compared with the more general one

$$
(\lambda_{ab}^{-1} + \lambda_{bc}^{-1} + \lambda_{cd}^{-1} + \lambda_{da}^{-1}) M^{-1} \geq 16 \pi^{-2} (\mu + \mu^{-1})^{-1} ,
$$

obtained in [6, 8] for all quadrilateral nonhomogeneous membranes of modulus μ and total mass *M,* fixed in turn along each pair of adjacent sides (extremal membrane: homogeneous rectangle again). In our present situation, all the masses are on c . $\lambda_{bc} = \lambda_{cd} = \infty$, hence

$$
(\lambda_{ab}^{-1} + \lambda_{ad}^{-1}) M_c^{-1} \geq 16 \pi^{-2} \mu (1 + \mu^2)^{-1}.
$$

Since, whatever μ , there are Stekloff problems giving equality in (10), our specific bound (10) is necessarily sharper for all μ (> 0):

$$
Th\left(\frac{\pi}{2} \mu\right) \geqslant \frac{4}{\pi} \frac{\mu}{1+\mu^2}.
$$

Limit cases:

(a) $\mu_{ac} \rightarrow \infty$: The side *a* disappears, the quadrilateral is reduced to the *trilateral* b c d (with masses along c): (10) becomes $(\lambda_b^{-1} + \lambda_d^{-1}) M_c^{-1} \geq 4/\pi$; this is (7) of Section 5.

Interpretation for the extremal domains: the rectangle becomes a half-strip $=$ sector with angle zero; the sector of a circular ring with $a = \text{smaller circular arc}$, becomes a circular sector (extremal domain of Section 5).

(b) $\mu_{ac} \rightarrow 0$: If b and d both tend to disappear, we obtain asymptotically, from (10), the same inequality $2 \lambda_a^{-1} M_c^{-1} \geq 2 \mu_{ac}$, i.e. $\lambda_a \leq 1/M_c \mu_{ac}$, as from (8') in Section 7.

9. We now consider a quadrilateral Q (sides *a, b, c, d)* and given mass distributions $\varrho_a(s)$ along a and $\varrho_c(s)$ along c ; $M_a = \varrho_a(s) ds$; $M_c = \varrho_c(s) ds$; $\rho = 0$ along b and d , a c

Let λ_b be the first eigenvalue with $u = 0$ along b (fixed) and $\partial u/\partial n = 0$ along d (a, c, d free); and let λ_d be the first eigenvalue with the same mass distributions along a and *c,* but with d fixed and a, b, c free.

In the conformally equivalent rectangle \tilde{R} with $q = \pi/2$ (see Sections 7 and 8: $\mu_{ac} = \mu_{a\tilde{c}} = p/q = 2 p/\pi$ and with $\tilde{\varrho} = \tilde{\alpha}$ = const along \tilde{a} and $\tilde{\varrho} = \tilde{\gamma}$ = const along \tilde{c} , we have the following first eigenfunctions of both problems:

$$
u_{\tilde{\delta}} = Ch(\xi - \xi_0) \sin \eta, \quad u_{\tilde{a}} = Ch(\xi - \xi_0) \cos \eta,
$$

where ξ_0 is determined by

$$
\frac{-Th(-p-\xi_0)}{\tilde{\alpha}}=\frac{Th(-\xi_0)}{\tilde{\gamma}}\text{ , i.e.}
$$
\n
$$
\frac{Sh(p+2\xi_0)+Shp}{Sh(p+2\xi_0)-Shp}=\frac{Sh(p+\xi_0)Ch\xi_0}{Sh\xi_0Ch(p+\xi_0)}=\frac{Th(p+\xi_0)}{Th\xi_0}=-\frac{\tilde{\alpha}}{\tilde{\gamma}}\text{ ,}
$$

whence

$$
Sh\left(\phi+2\xi_0\right)=\frac{\tilde{\alpha}-\tilde{\gamma}}{\tilde{\alpha}+\tilde{\gamma}}\;Sh\;\rho\tag{11}
$$

with the corresponding first eigenvalue $\tilde{\lambda} = Th (-\xi_0)/\tilde{\gamma}$.

 $\text{Ch}^2(-p - \xi_0) = Ch^2(p + \xi_0);$ and along *c*, $U_b^2 + U_d^2 = Ch^2(-\xi_0) = Ch^2 \xi_0;$ whence, by Rayleigh's principle applied twice, We choose arbitrarily ξ_0 (i.e. $\tilde{\alpha} : \tilde{\gamma}$), we construct $\tilde{u}_{\tilde{b}}$ and $\tilde{u}_{\tilde{a}}$, and we transplant both those functions on to the given quadrilateral $Q: U_b(z) = \tilde{u}_{\tilde{b}}(\zeta(z)), U_d(z) = \tilde{u}_{\tilde{d}}(\zeta(z));$ $D(U_b) = D(\tilde{u}_{\tilde{b}}) = \pi/4$ Sh p $\tilde{Ch} (p + 2 \xi_0) = D(\tilde{u}_{\tilde{d}}) = D(U_d)$. Along a, we have $U_b^2 + U_d^2 =$

$$
\frac{1}{\lambda_b} + \frac{1}{\lambda_d} \geqslant \frac{\int_{c} \varrho_a U_b^2 ds + \int_{c} \varrho_c U_d^2 ds + \int_{c} \varrho_a U_d^2 ds + \int_{c} \varrho_c U_d^2 ds}{D(U_b)} + \frac{a}{\frac{D(U_d)}{D(U_d)}} \qquad (12)
$$
\n
$$
= \frac{M_a Ch^2 (\rho + \xi_0) + M_c Ch^2 \xi_0}{\frac{\pi}{4} \sin \rho Ch (\rho + 2 \xi_0)} = \frac{2}{\pi \sin \rho} \frac{M_a [1 + Ch (2 \rho + 2 \xi_0)] + M_c [1 + Ch (2 \xi_0)]}{Ch (\rho + 2 \xi_0)}.
$$

Let us choose ξ_0 such that this bound be best possible; we obtain easily the optimal value $\hat{\xi}_0$:

$$
Sh\left(\phi+2\,\hat{\xi}_0\right)=\frac{M_a-M_c}{M_a+M_c}\;Sh\;\phi\;;\tag{11'}
$$

this is not astonishing: it corresponds to transplanting the eigenfunctions $\tilde{u}_{\tilde{b}}$ and \tilde{u}_{d} of the rectangle \tilde{R} *with* $\tilde{\alpha}:\tilde{\gamma} = M_a: M_c$, see (11); this rectangle realizes equality, our bound will therefore be exact.

When we introduce (11') into (12), we obtain, decomposing

$$
2\,p + 2\,\xi_0 = (p + 2\,\xi_0) + p \quad \text{and} \quad 2\,\xi_0 = (p + 2\,\xi_0) - p:
$$

$$
\frac{1}{\lambda_b} + \frac{1}{\lambda_d} \geqslant \frac{2}{\pi Sh\left(\frac{\pi}{2}\,\mu_{ac}\right)} \Big\{ \left(M_a + M_c\right) Ch\left(\frac{\pi}{2}\,\mu_{ac}\right) + \sqrt{\left(M_a + M_c\right)^2 + \left(M_a - M_c\right)^2 Sh^2\left(\frac{\pi}{2}\,\mu_{ac}\right)} \Big\}.
$$
\n(12')

(a) *Special case* $M_a = 0$:

$$
\frac{1}{\lambda_b} + \frac{1}{\lambda_d} \geqslant \frac{4}{\pi} M_c \, Cth\left(\frac{\pi}{2} \,\mu_{ac}\right). \tag{12''}
$$

Limit case a \rightarrow *point, i.e.* $\mu_{ac} \rightarrow \infty$:

$$
\frac{1}{\lambda_b}+\frac{1}{\lambda_d}\geqslant \frac{4}{\pi}M_c
$$

we obtain again (7) of Section 5.

(b) *Special case* $M_a = M_c$:

$$
\frac{1}{\lambda_b} + \frac{1}{\lambda_d} \geqslant \frac{4}{\pi} M_a \, Cth \left(\frac{\pi}{4} \, \mu_{ac} \right). \tag{12''}
$$

814 JOSEPH HERSCH and LAWRENCE E. PAYNE ZAMP

(c) If M_a and M_c are not known separately, but only the total mass $M_a + M_c = M$ is given, we obtain:

$$
\frac{1}{\lambda_b} + \frac{1}{\lambda_d} \geqslant \frac{2}{\pi} M \ Cth\left(\frac{\pi}{4} \ \mu_{ac}\right); \tag{12}^{\text{IV}}\tag{12}^{\text{IV}}
$$

equality can here only be realized when $M_a = M_c = M/2$.

c

10. *Some Examples*

10.1. *An Application of Section 9*

We consider a mixed Stekloff problem in a given square of side s; as indicated in Figure 1 this square is to be considered as a quadrilateral such that all four 'sides' must have the same length.

Since in this case we have $\mu_{ac} = 1, M_a = M_c = s$ and $\lambda_b = \lambda_d$, it follows from (12") of Section 9 that

$$
\lambda_b \leqslant \frac{\pi}{2s} Th\,\frac{\pi}{4},
$$

with equality if the four designated points defining the quadrilateral coincide with the vertices of the square.

10.2. *An Application of Sections 4 and 7*

We consider a mixed Stekloff problem in the square $-1 \leq x, y \leq 1$ (Fig. 2). This square is to be considered as a quadrilateral *with the four designated points* 1, $i, -1, -i$. The modulus μ of this quadrilateral is equal to $1/\mu$, therefore $\mu = 1$. The total mass is $M = M_c = \int \varrho ds = 2$. By (8') of Section 7,

$$
\lambda_1\leqslant \frac{1}{M_c\,\mu}=\frac{1}{2}.
$$

(More generally, we have here an extremal property quite similar to the foregoing example 10.1.)

A lower bound for λ_1 can be constructed, as indicated in Section 4, using e.g. the following simple functions $f(x, y)$ and $g(x, y)$:

square $x < 0$, $y < 0$: $f = A(x + 1)$; $g = A(y + 1)$; square $x > 0$, $y < 0$: $f = B \cos[k(x-1)]$; $g = C Ch[k(y+1)]$; square $x < 0$, $y > 0$: $f = C Ch[k(x + 1)]$; $g = B \cos[k(y-1)]$; square $x > 0$, $y > 0$: $f = D + E x$; $g = D + E y$;

for the x-continuity of f (and the y-continuity of g), we must have $A = B \cos k$ and $D = C Ch k$; for the x-continuity of f_k (and the y-continuity of g_n), we must have $A = B k \sin k$ and $E = C k Sh k$.

Since f and g should not vanish inside the square, A, B, C, D must not vanish, thus k tg $k=1$, $k \simeq 0.860_3$.

f and g satisfy $f_{xx}/f + g_{yy}/g = 0$, condition (4) is satisfied. We therefore have by (5):

$$
\lambda_1 \geqslant \inf_c \left[\frac{f_x}{f} \frac{\partial x}{\partial n} + \frac{g_y}{g} \frac{\partial y}{\partial n} \right] = \frac{E}{D+E} = \frac{1}{1 + (k \; Th \; k)^{-1}} \simeq 0.3746 \; .
$$

We have thus obtained

$$
0.3746 \leqslant \lambda_1 \leqslant 0.5.
$$

10.3. *An Application of Sections 4 and 5*

10.3.1. We consider a mixed Stekloff problem in the rectangle displayed in Figure 3. This rectangle is to be considered as a trilateral (in the sense of Section 5) with the three designated points 0, 2 i q and $-p + i q$. One 'side' a of this trilateral is fixed, while side b is free and without masses, whereas side c (on the imaginary axis) is free and carries all masses. Total mass: $M = M_c = 2 q$.

side a -- k = $\infty, \varrho = 0;$ side b --- k = 0, $\varrho = 0;$ side c k = 0, $\varrho = 1$

Limit case $p = \infty$ *(half strip): First eigenfunction* $u_1(x, y) = e^{\pi x/4q} \sin(\pi y/4q)$ *;* corresponding first eigenvalue

$$
\lambda_1 = \frac{1}{u^1} \left. \frac{\partial u_1}{\partial x} \right|_{x=0} = \frac{\pi}{4 q} \simeq \frac{0.7854}{q}.
$$

10.3.2. *Elementary upper and lower bounds, due to monotony.*

(a) The modified problem: left segment $x = -p$ completely *fixed*, has higher eigenvalues, whence $\lambda_1 < (\pi/4 \, q)$ Cth $(\pi \, p/4 \, q)$.

(b) The modified problem: left segment $x = -p$ completely *free*, has lower eigenvalues, whence $\lambda_1 > (\pi/4 \ q) \ Th \ (\pi \ p/4 \ q).$

(c) The modified problem: the whole lower half-rectangle $y \leq q$ completely *fixed*, has higher eigenvalues, whence $\lambda_1 < (\pi/2 q)$ Th $(\pi p/2 q) = \lambda_1^+$.

10.3.3. *Application of Section 5.*

Since we have clearly $\lambda_a = \lambda_b = \lambda_1$ and here $M_c = 2q$, our inequality (7) gives simply

$$
\lambda_1 \leqslant \frac{\pi}{4 \; q} \simeq \frac{0.7854}{q}
$$

[a much sharper bound than $10.3.2(a)$]. - Therefore we know: λ_1 *is a maximum when* $p = \infty$.

10.3.4. *Application of Section* 4 (one-dimensional auxiliary problems).

We choose simple functions $f(x, y)$ and $g(x, y)$ in the following way: In the lower half-rectangle $y \leqslant q$: $f = Sh[y_1(x + p)]$; $g = C_1 \sin(y_1 y)$; in the upper half-rectangle $y > q$: $f = Ch[v_2(x + p)]; g = C_2 \cos[v_2(2q - y)].$

g and g_y must be continuous in y for $y = q$, whence

$$
v_1 \cot g (v_1 q) = v_2 \tg (v_2 q).
$$

Then, by (5) of Section 4,

$$
\lambda_1 \geqslant \lambda_1^- = \min \left[\nu_1 \, Cth \, (\nu_1 \, \rho) ; \quad \nu_2 \, Th \, (\nu_2 \, \rho) \right];
$$

a 'good' choice of v_1 and v_2 will realize v_1 Cth(v_1 p) = v_2 Th(v_2 p): we then have

$$
\frac{v_1}{v_2} = \text{tg} (v_1 q) \text{tg} (v_2 q) = Th (v_1 p) Th (v_2 p).
$$

For given p and q, those two transcendental equations determine v_1 and v_2 , whence the lower bound for λ_1 ; but in order to construct the diagram giving, for fixed q, a lower bound for λ_1 as a function of \hat{p} , we choose the quotient v_1/v_2 as a parameter, we calculate ν_1 and then $\not p$, each one from a single transcendental equation.

In conjunction with 10.3.2(c), this shows that, when $p/q \rightarrow 0$,

$$
q\,\lambda_1=\frac{\pi^2}{4}\,\frac{p}{q}+O\left(\frac{p^2}{q^2}\right);
$$

i.e. in our diagram $q \lambda_1 = F(p/q)$ we know the exact tangent at the origin (see Fig. 4).

Upper bounds [from section 5 and from 10. 3.2 (e)] and lower bounds (from section 4, see 10. 3.4) for the example of Figure 3.

BIBLIOGRAPHY

- El/ J. BARTA, *Sur la vibration/ondamentale d'une membrane,* C. R. Acad. Sci. Paris *20d,* 472 (1937).
- [2] T. BOGGIO, *Sull'equazione del moto vibratorio delle membrane elastiche,* Atti Accad. Lincei, ser. 5, 16 (2° sem.), 386–393 (1907).
- L3] G. FICHERA e M. PICONE, *Calcolo per di/etto del pir basso autovalore di un operatore ellittico del secondo ordine,* Rend. Accad. Lincei, ser. 8, *30,* 411-418 (1961).
- [4] O. FROSTMAN, *Potentiel d'dquilibre et capacitd des ensembles,* Medd. Lunds Univ. mat. semin. 3 (1935).
- [5] J. HERSCH, *Sur la /rdquence /ondamentale d'une membrane vibrante: dvaluations par défaut et principe de maximum, Z. angew. Math. Phys. 11, 387-413 (1960).*
- [6] J. HERSCH, *Deux propriétés isopérimétriques des membranes homogènes rectangulaires,* C. R. Acad. Sei. Paris *261,* 2299 (1965).
- [7] J. HERSCH, *Une inégalité isopérimétrique pour les membranes vibrantes sur un «trilatère»*, C. R. Acad. Sci. Paris 261, 2443 (1965).
- [8J J. HERSCH, *Anwendungen der kon/ormen Abbildung au/ isoperimetrische Siitze liar Eigenwerte,* Festband zum 70. Geburtstag von Rolf Nevanlinna, 25-34 (Springer, 1966).
- [9] A. HURWITZ und R. COURANT, *Vorlesungen über allgemeine Funktionentheorie*, 4th ed. (Springer, 1964).
- [10] L. E. PAYNE, *New Isoperimetric Inequalities for Eigenvalues and Other Physical Quantities,* Communic. pure appl. Math. 9, 531-542 (1956).
- [11] L. E. PAYNE and H. F. WEINBERGER, Lower Bounds for Vibration Frequencies of Elas*tically Supported Membranes and Plates,* J. Soc. Indust. Appl. Math. 5, 171-182 (1957).
- [121 E. PICARD, *Traitd d'Analyse,* vol. II, 25-26 (lst ed. : 1893).
- [131 E. PICARD, *Traitd d'Analyse,* vol. III, 116 (1896).
- E141 G. PdLYA and G. SZEG6, *Isoperimetric Inequalities in Mathematical Physics,* Princeton University Press, 1951.
- [15] M. H. PROTTER, *Vibration o/a Nonhomogeneous Membrane,* Pacific J. Math. 9, 1249- 1255 (1959).
- [16] M. W. STEKLOFF, Sur les problèmes fondamentaux de la physique mathématique, Ann. Sei. Ecole Norm. Sup. 19, 455-490 (1902),
- [17] G. Szegö, *Inequalities for Certain Eigenvalues of a Membrane of Given Area*, J. Rat. Mech. Anal. 3, 343-356 (1954).
- [181 G. TEMPLE and W. G. BICKLEY, *Rayleigh's Principle,* Oxford University Press, 1933.
- [19] B. A. TROESCrI, *Free Oscillations o/ a Fluid in a Container,* Boundary problems in differential equations, Univ. of Wisconsin Press, 279-299 (1960).
- [201 B. A. TROESCH, *An Isoperimetrie Sloshing Problem,* Comm. pure appl. Math. 18,319- 338 (1965).
- [21] J. V. WEHAUSEN and E. V. LAITONE, *Sur/ace Waves,* Handbuch der Physik, vol. 9, part 3, 446-778, Springer, 1960.
- [221 H.F. WEINBERGER, *An Isoperimetric Inequality/or the N-dimensional Free Membrane Problem,* J. Rat. Mech. Anal. 5, 633-636 (1956).
- [231 R. WEINSTOCK, *Inequalities /or a Classical Eigenvalue Problem,* J. Rat. Mech. Anal. 3, 745-753 (1954).

Zusammen/assung

Das betrachtete Eigenwertproblem kann aufgefasst werden als dasjenige einer schwingenden Membran mit teilweise festem, teilweise freiem Rand, welche abet nicht im Innern, sondern auf dem freien Randteil Massen trägt. *Die Eigenfunktionen sind harmonisch:* das Stekloffsche Problem mit dem zugehörigen Rayleighschen Prinzip liefert für harmonische Funktionen andere Erkenntnisse als das Dirichletsche Problem mit dem Dirichletschen Prinzip [siehe insbesondere die Ungleichung (3)]. Isoperimetrische Ungleichungen werden dutch konforme Abbildung auf ein Normalgebiet und Anwendung des Rayleighschen Prinzips auf die «verpflanzten» (siehe PóLYA-SzEGÖ [14]) Eigenfunktionen des Normalgebietes hergeleitet.

(Received: January 29, 1968.)