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Zusammen/assung 

Die Thermodynamik der richtungsorientierten Medien wird mit Hilfe der Clausius- 
Duhem-Ungleichheit und des Prinzips der materiellen Objektivitg~t untersucht. Ein be- 
sonderer Fall der Materialsymmetrie wird diskutiert. 
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Extremal Principles and Isoperimetric Inequalities for some 
Mixed Problems of Stekloff's Type 

By JOSEPH HERSCH, ETH, Ziirich 
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1. We consider a plane domain G with boundary  _F. The 'mixed Stekloff problem' 
we are here concerned with is tha t  of a vibrating homogeneous membrane  without  
masses in G, but  carrying masses along F :  linear density ~(s) ~> 0; the ' total  mass'  is 
M = f r  ~ ds ; moreover, we suppose tha t  our membrane  is elastically supported along 
F :  elastic coefficient k(s). - We have the eigenvalue problem: 

Ou 
A u = O  in G, On- + E k ( s ) - 2 ~ ( s ) ] u = O  along / ' .  (1) 

(O/On is the outer normal  derivative.) 

2. For  the classical Stekloff problem with k(s) - O, the eigenvalues are noted # 
rather  than 2; the first is/~1 = 0. This problem has been considered by  several authors 
[10, 16, 23]. Some closely related problems have been considered by  TROESCH [19, 201 
and by  WEHAUSEN and LAITONE [21]. 

WEINSTOCK E231 showed that,  among all simply connected domains with analytic 
boundary  and assigned total mass M = f r  ~ ds, the circles with constant  linear 
density ~ along F yield the largest second eigenvalue it2, i.e. 

2~ 
/~2~ M" 

His proof uses conformal mapping and is very similar to tha t  of SZEG6 E17] for the 
corresponding isoperimetric inequali ty concerning free simply connected membranes 



~ Uds : O, 

l~z 

Therefore 
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with homogeneous mass distribution in their interior: t'2 <~ ~ P2/M with p ~ 1.8412. - 
WEINBERGER [22] avoided the use of conformal mapping and thus extended Szeg6's 
inequality to multiply connected membranes and to higher dimensions; as he indicates 
in the same paper, Szeg6 and Weinberger jointly noted that  Szeg6's proof (based on 
conformal mapping) actually yields, for simply connected plane free homogeneous 
membranes, the stronger isoperimetric inequality #~1 + #~1 >~ 2 M/ap  2. 

Exact ly in the same way, we now remark that,  for the Stekloff problem, WEIN- 
STOCK'S proof [23] of the inequality #~ ~ 2 :~/M actually yields the sharper iso- 
perimetric result 

/s ~_ #~-1 ) M 

Among all simply connected domains with analytic boundary carrying an assigned total 
mass M, the circles with constant linear mass density along their circumference yield the 
Smallest value of #~ 1 + #~ 1. 

Indeed: Given a two-dimensional linear space of functions, which we call L2, its 
'inverse Rayleigh trace' TRinv[L2] is by  definition [8] equal to R[vl] -1 + R[v2] -1, 
where v~ and v 2 are any two functions in L2, 'orthogonal in the Dirichlet-metric':  
D(vl, v2) = O, R[v] is the Rayleigh quotient D(v)/ fir e(s) v2 ds and D(v) is the Dirichlet 
integral f f  grad 2 v dA" dA = dx dy is the element of area. - Now 

G 
/,~1 + / ~ 1  = Maxz ~ TRinv[L2 ] 

i f  we restrict L~ by the condition that  each function v in it should be orthogonal to the 
constant 1 'in the ~-norm', i.e. fir ~(s) v ds = 0. - As Weinstock (using Szeg6's method) 
has shown, there exists a conforrnal mapping w(z) of the domain G = G~ onto the 
unit circle ]w I <  1 such that  ~ r ~ w d s = O  (ds= Idz[); let w =  U + i V ;  the 

cartesian coordinates U and V of the w-plane are themselves eigenfunctions of the 
Stekloff problem in the circle with Q - 1, corresponding to the double eigenvalue 
#o = t,o = 1 ; U(z) and V(z) are the ' t ransplanted'  [14] functions in G,, and they satisfy 
all orthogonality conditions: 

f p V ds = O , DG~ (U, V ) = DM<I (U , V ) = 0 .  

l~z 

f e U 2 ds f ~ V ~ ds 

/z~ 1 + i~  ~ >/TRinv  [L(U, V)] = R[U] -~ + R[V] -1 - r~ r z 
z)G~ (u) + Da~ (V) 

I f  I f  M = ~ q ( U  ~ + V ~) ds  = - -  q d s -  
YL 7~ 

.U z F z 

3. We now come back to our 'mixed Stekloff problem' (1) with elastic support 
k(s) at the boundary. Then the Rayleigh quotient is 

D(~) + .f k(s) ~ us 
R[v] = r 

r o(s) ~,~ ds 
F 
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The first  eigenvalue 21 is no longer zero;  it  is charac ter ized  b y  Rayle igh ' s  pr inc ip le :  
21 = Minv R[v]. 

Fol lowing PICARD'S lines (cf. I13, 18]), we now prove e lementa r i ly  tha t  an eigen- 
function u of c o n s t a n t  s i g n  necessarily realizes the Minimum of the Rayleigh quotient 
R[v]. 

Indeed,  let  v be any  cont inuous  and  piecewise der ivable  funct ion;  

grad  2 v - d iv  g rad  u = grad  2 v + ~-~ grad  s u - 2 g rad  v �9 g rad  u 

= (grad  v v )~ u g rad  u ~> 0 ; 

whence b y  in tegra t ion  in G: 

/ -  v 2 ~)u  
0 <~D(v)--_~) u ~ d S : D ( v ) + ~ k ( s ) v  2 d s - 2 ~ ( s )  v sds .  (2) 

F F F 

This last inequality is true regardless of the signs of k(s) and of ~(s); i f  q(s) >/O, i t  
follows t ha t  R[v] >/2 = R[u], thus  2 = 21 and  u = u,  is thefirst  eigenfunction. - We  
used essent ia l ly  t ha t  u is harmonic and has constant sign. 

Remark. - Let  u be any  harmonic funct ion of constant sign in G; we have b y  (2) : 

f v ~ Ou O(v) > ~ ~ ds. (3) 
F 

This inequa l i ty  contains  Dirichlet's principle: if v = u on the  b o u n d a r y / ' ,  then 
D(v) >~ f u  Ou/On ds = D(u). - (On the  o ther  hand,  the  admiss ible  choice v = const  
implies f i r  1/u Ou/On ds <~ O, which follows also from the  fact  t ha t  
A I n u  = d iv  (grad u/u) = - g rad  s u/u s <~ O, I n u  is superharmonic . )  

Fur the rmore ,  if u and  Ou/On have the same sign on the pa r t  o f / '  where v .  0, 
then inequa l i ty  (3) also implies Thomson's principle for vec tor  fields p = g rad  u 
wi thout  sources:  b y  Schwarz '  inequal i ty ,  we then  have 

0o (f ) 
v 2 0u v -On ds v p . n d s  2 [ .  

D(v) >~ ~ u On ds >~ Ou -- 
c~ u ds ~f p~ cZA 

F On . I  G 

(n is the  outer  normal) ,  v 
I n e q u a l i t y  (3) can be t r ans formed  into a somewhat  sharper  form b y  in t roducing  

into i t  the  funct ion v + e (c = constant)  ins tead  of v; the  op t ima l  cons tant  is 

f v O u  / f l O u  
cop ~ = - -u- bh- ds u on ds 

F F 

and  it  gives the  inequa l i ty  

v~ Ou u On ds 

f D(v) >~ u On ds + 1 0 u  ' 
r - - f  u g n d s  

I '  

the  add i t iona l  t e rm on the  r ight  is non-negat ive .  

(3') 
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4. The method of one-dimensional auxiliary problems [2, 3, 5, 11, 12, 151 applied to 
the mixed Stekloff  problem. 

4.1. Leading idea, motivation 

In order to obtain lower bounds for the first eigenvalue ~1, we have to apply 
Rayleigh's principle not to the given problem itself, but to some auxiliary problems. 
Now we consider as auxiliary problems vibrating strings in G, some parallel to the 
x-axis, the others to the y-axis, and with end points Po, P1 o n / ' .  Those strings carry 
no masses in their interior; each one carries two point masses: m 0 at Po and m 1 at P1; 
they are elastically supported in their interior. 

As in I51, we shall avoid the resolution of an infinity of auxiliary problems by 
choosing beforehand their first eigenfunction (it must have constant sign), and only 
then determine the one-dimensional problems themselves. 

Let us choose two positive funct ionsf  and g in G : f ( x ,  y) > 0 continuous in x and 
twice partially derivable with respect to x (but not necessarily continuous in y) ; and 
g(x, y) ~ 0 continuous in y and twice partially derivable with respect to y (but not 
necessarily continuous in x). 

We further suppose that  the following condition is fulfilled: 

[xx ~yy + ~ 0  in a l l G .  (4) 

For every segment through G, parallel to the x-axis and with extremities P0 and P1 
on the b o u n d a r y / ' ,  f ( x ,  y) is the first eigenfunction of an auxiliary vibrating string 
with the elastic coefficient u(x) = f ,x(x, y)/ f(x,  y) and the masses m 0 = -fx(Po)/f(Po),  
m I = + fx(P1)/f(P1) and the correspgnding (first) eigenvalue is ] = 1. Indeed, f has 
constant sign and satisfies 

/,,, - n(x) 1 = o; - L(Po) - 1.  mol(Po)  = 0 and /x(Pl) - -  1" roll(P1) -- O. 

(One should be careful that  m 0 or m 1 may  here be negative ; but the formal calculation 
in 4.2 remains valid in this case.) 

Similarly, on every segment through G, parallel to the y-axis, g(x, y) is the first 
eigenfunction of an auxiliary string and corresponds to the eigenvalue ~ = 1. 

The following formal calculation is equivalent to applying the one-dimensional 
Rayleigh principle (more precisely: Picard's method for its proof, see Section 3) 
to each auxiliary string. 

4.2. Formal calculation 

Let again u = ul(x, y) be the first eigenfunction of the given Stekloff problem (1). 

uy - -  y uy g 

now assuming that the following 

T~ + ~ •n ] u2 ds 

_ = (  gy )2 gyyu2 ; g~ u 2 gy_~ u 2 u v g u u y + #  g ~ u  -- - 

integrals have a sense, we obtain 

o 

§ o ; 
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since u is harmonic, D(u) = f u  Ou/c)n ds = f[,~l q(s) -- k(s)] u 2 ds, whence 
F F 

4~ ~(s) - k(s) + o~ + -g o~JJ 
1" 

the integrand cannot be everywhere negative:  therefore, if O(s) ~ O, 

0 .  + ~ (5) 

In particular, if we have chosenf  = g (positive, continuous and twice differentiable, 
satisfying Af  • 0), 

1 0! 
~1 ~ muff { q{ls)[k(s) + ~ On ]}' (5') 

which is the analogue here of the BARTA inequali ty [1] for vibrat ing membranes.  
Fur thermore,  if by  chance we have chosen exact ly f = g = Ul(X , y), then 

k (s) + ~- o/  = 4 ~  (s) 
/ On 

so we have equali ty in (5) and (5'); hence 

Max/>  o in f r [  : . [k(s) + / ;  (5") 1 
4 i  

g > o  

/xx gyy - - + - - < o  
l g 

Remark .  - We note the ra ther  trivial inequalities 

f k(,) ds 
k(s) ~ 41 ~.~ F K 

in f r  q ~ )  f ~(s) ds -- M ; (6) 
I '  

the inequali ty on the right follows immediately from Rayleigh's principle applied to 
the function v - 1 ; the inequali ty on the left follows from (5') applied to f - 1. 

Physical interpretat ion:  the upper bound K / M  in (6) becomes actually the first 
eigenvalue of the problem when one augments  to infinity the modulus of elasticity of 
the membrane;  the lower bound on the left, when one reduces the modulus of elasticity 
to zero. Both  inequalities thus express monotony.  

In particular,  if k ( s ) =  c Q(s) with a constant  c, then 4~ = c and Ul = const. 
(Special case: the classical Stekloff problem : k(s) - O, the first eigenvalue is then zero.) 

4.3. Vector formula t ion  

As was done in [5] for vibrating membranes,  we construct,  to each pair of admis- 
sible functions f ,  g, the vector  field p = (-- f , / f ;  --  gv/g) ; the condition (4) becomes 
div p - p~ = -- f , ~ / f  - gvv/g > / 0  and the lower bound (5) becomes 

41 ~ infr  { q ~ s ) [ k ( s ) - - P "  n]}.  
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Direct pro@ - We consider a vector  field p in G, of which we assume : 
(i) The first component  of p must  be continuous in x and partially derivable with 

respect to x, the second component  continuous in y and partially derivable with respect 
to y; 

(ii) the condition 
d i v p  - p2 ~> 0 (4') 

must  be fulfilled; 
(iii) the integrals following below must  exist. 
Let  once more u = ul(x, y) be the first eigenfunction of the given problem (1). Then 

grad 2 u + div (u ~ p) = grad 2 u + 2 u it). grad u + u 2 div p 

= (grad u + u p )  2 + u  s (d ivp  - i)2) > / 0 ,  

whence, if we may  integrate, 

f{0u } 0 <~D(u) + f u Z p  . n t i s =  U O n + U 2 p . n  d s =  f { 2 1 q ( s ) - - [ k ( s ) - - p . n ] } u 2 d s ;  
1" 1" 1" 

the integrand cannot be everywhere negative, whence, if ~)(s) ~> 0, 

21>~ inf1" { q;) [k(s) - p . n] }. (5") 

If  we introduce the vector field p = -- grad u/u, we have equality, whence 

21 = Maxa,v, _,~ > o infr  {q~si [ k ( s ) -  p . n  I }. (5 TM) 

5. We shall henceforth restrict our consideration to the case where k(s) = + oo 
along a 'fixed'  par t  / 'o of the boundary  F, while k(s) = 0 on the 'free' remaining 
boundary  F a = / ' - / 1 0 .  I t  is then sufficient to consider only masses ~(s) along F1 
(masses along F 0 cannot vibrate and therefore play no role in the problem). 

Ou 
A u = O  in G, u = 0  along F0 ,  0 ~ - 2 0 ( s )  u = 0  along. F a.  

We first consider a 'trilateral' T, i.e. a Jordan  domain with three designated 
boundary  points. Let  the Jordan  arcs a, b, c be its 'sides'. We assume a mass distribu- 
tion ~(s) along c, but  no masses along a and b. Total  mass" M c = f q(s) ds. Let 2 a be the 

C 

first eigenvalue of the problem with fixed side a (k = oo), free sides b and e (k = O) : 

Ou Ou 
A u = O  in T, u = O  along a ,  o n = O  along b,  ~ - 2 a ~ ( s )  u = O  along c.  

Let  2b be the first eigenvalue when b is fixed, a and c free. 
We shall prove the isoperimetrie inequali ty 

(1 
~,a + ~b Mcc > --~. (7) 

Proof. - Let the given trilateral T be in the complex z-plane; we map  it conformally 

on to the circular sector S:  ~2 + 972 < 1, ~ > 0, 97 > 0 of the ~ = ~ + i97-plane in 
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such a way  that  ~(a) (the image of a) is the real interval ~: 0 < $ < 1, ~(b) the imagi- 
na ry  interval ~: 0 < ~ / <  1, and #(c) the circular arc ~: ~ = e i~, 0 < ~ < ~/2. This 
mapping is possible, since all trilaterals are conformally equivalent. 

The corresponding problems in $" with constant mass density ~(~) = 1 along 3, have 
respectively the first eigenfunctions u ;  = ~ and ~ $ ,  and the same corresponding 
first eigenvalue ~ = (l / t)  O~/Or = (1/~) 2/1 = 1; here M ;  = ~/2, so tha t  for S we have 

= ~ ~2 ~2 equali ty in (7). We note tha t  ~ u~ = + = 1 along ~, and D(~ ) = D ( ~ )  = ~/4. 
We now ' t ransplant '  the functions ~; and ~ on to the given trilateral T:  U(z) = 

~t(~(z)), i.e. 
U~(z) = ~](z) and Uo(z) = ~(z); 

again U~ + U~ = 1 along c; since Dirichlet's integral remains invariant under conformal 
transplantation, D(U~) = D(Ub) -- ~/4. l i t  follows also this way:  D(U~) = D(~l(z)) = 
f / [d~/dz]  2 dA~ = f / d A r  = z~/4.~ 
r g 

Now we apply Rayleigh's  principle twice: 

1 1 4 f 4 
2 ~ < R [ U ~ ]  and Xb < R[Ub], Z~ + G >/ ~ J O  (U~ + U~) ds . . . .  z~ M~; 

c 
this is (7). 

I t  is readily seen tha t  we have equality not only for the particular rectangular 
sector ~, but  for all circular sectors with constant  mass density along the circular arc c' 
we even have equali ty for any trilateral a b c, provided the masses along c are those 
obtained by  the (unique) conformal mapping onto ~'. 

Inequal i ty  (7) can be compared with the more general one 

3 
(]~-1 _~_ 2b  I _~_ 2C 1) M _ I  ) yg , 

obtained in [7, 8] for all nonhonlogeneous membranes on a trilateral a b c, of total 
mass M, fixed in turn along each one of the three 'sides' a, b, c (extremal membrane:  
homogeneous membrane on a tr irectangular spherical triangle). In  our present 
situation all the masses are on the boundary  arc c, ;t~ = 0% hence (221 + 2~ 1) M -1 >~ 3/~, 
which is less precise than our specific bound  (7). 

Example. - Consider the rectangle - p, O, i ~/2, - p + i ~/2 (in the complex 
z-plane) as a trilateral with the designated points - p, O, i ze/2, the side a being the 
segment - p, O ; c the segment O, i ~/2; b the rest of the boundary ;  ~ - 1 along c, 
M = z/2. We have the first eigenfunctions u~ -- Ch (x + p) siny and u b = Sh (x + p) cosy 
with the corresponding first eigenvalues 2~ = Th p and ~0 = Cth p ; (~1 + 2/1) M-~ = 
(Cth p + Th p) 2 /z  >~ 4/zr in agreement with (7). Asymptot ical ly  we have equality 
when p -> e~' this is not  astonishing: a half-strip can be considered as a circular 
sector with infinite radius and vanishing aperture. 

6. We now consider the following mixed Stekloff problem on a doubly connected 
domain D of the z-plane, bounded by  the Jordan  curves / ' 0  a n d / ' 1  : 

Ou 
A u = O  in D,  u = 0  along 17o, On ;~(s)  u = 0  along /'1 

(all masses are on/ '~) .  Total  mass: M = f e(s) ds. 
F~ 
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The modulus # of D can be defined by  conformal mapping ~(z) on to a circular 

r i n g / ) :  1 < I~[ < R,/~ = (1/2 ~) In R. 

The corresponding problem i n / )  with/a0: [ ~[ = 1,/~1: I ~1 = R, and constant  mass 

density ~ ~ 1 along 11~, total  mass M = 2 z R, has the first eigenfunction ~ = In I~1 
and the first eigenvalue 

l 1 1 . 

- -  R l n R  - -  2 ~ R #  - M # '  

we shall prove, for the first eigenvalue ~ = 41 of our arbi t rary  D, the inequali ty 

1 (8 )  
~" ~ M ~ '  

Proof. - We transplant  u on to D" U(z) = u(~(z)) �9 U 0 along 110 and U = In R 
along 111; since the Dirichlet integral remains invariant  under  conformal t ransplanta-  
tion, D(U) = D(~t) = 2 z In R;  by  Rayleigh's  principle, 

~.~ D(U) 2 a l n R  1 i.e. (8). 
f ~ U 2 ds (lnR) 2M M # '  

/'1 

Remark. - Inequal i ty  (8) also immediately follows from Rayleigh's  principle applied 
to the harmonic function v in D satisfying v = 0 on 110 and v = 1 on I '1: D(v) = 1/1~, 
thus 2 ~< R[v] = D ( v ) / f  ~ v 2 ds = 1/MI~. (In fact, U = v in R.) 

/'1 

We have equality for all circular rings with ~ = const along 111, and even for any 
doubly connected domain D with an adequate mass distribution e (obtained by  conformal 

mapping onto the conformally equivalent circular r ing / ) )  along the flee boundary  
curve 11]- 

Inequal i ty  (8) can be compared with the more general one (2r~ + Jtr~) M-1 >~ 8 #/~2, 
obtained in I6, 81 for all doubly connected nonhomogeneous membranes  of modulus # 
and total  mass M, fixed alternatively along each of the boundary  curves (extremal 
membrane:  straight cylinder with homogeneous mass distribution). In  our present 
situation, all the masses are on / '1, ~v~ = o~, hence 2v, ~< ~2/8 M #, which is less 
precise than our present specific bound (8). 

Corollary. - I t  follows tha t  the modulus # of a given doubly connected domain D 
can be characterized as 

#-1 = Max~hoi~ ~ o! o(s) ~lo,g r ,  ('~1 M )  , (9) 
or in other words:  

The inverse modulus #-1 of a doubly connected domain with boundary curves I" 0 
and 111, is equal to the largest total mass M = fir, ~ ds that 111 can carry, while the f irst  
eigenvalue,~l of the mixed Stekloff problem (with f ixed 1"o) does not become inferior to unity. 

This characterization is analogous to tha t  of I)E LA VALLI~E POUSSlN and FROST- 
MAN I41 for the Capacity in space as the least upper bound of the masses the set can 
carry while its potential  does nowhere exceed unity.  - Contrarily to the usual ways of 
Potential theory, we here give a characterization in terms of an eigenvalue (and not  of 
an energy or a potential), and we consider the Stekloff  problem (instead of a Dirichlet 
problem) to obtain theorems on harmonic functions. 
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I t  is wor th  ment ioning  t ha t  the  res t r ic t ion to everywhere  posi t ive  masses ~(s) can 
be d ropped:  let  h be any  posi t ive harmonic  funct ion in D, vanishing  a l o n g / ' 0 :  it  is 
then  the first  eigenfunction to the  mass dens i ty  ~ = (l/h) Oh~On along /,~, wi th  
corresponding first  eigenvalue 21 = 1. The dens i ty  r m a y  well change sign; we have 

1 f l  Oh Max~h=~ -h- ~ ds . # 
h=O along l"o i" 1 
h > 0  along F x 

(9') 

This follows immed ia t e ly  from inequa l i ty  (3), in which we set u = h and  introduce for 
v the  harmonic  funct ion with  b o u n d a r y  values zero on -No and one on ['1 : then D (v) = 1//~. 
The Maximum is a t t a ined  for h = v. - This va r ia t iona l  problem is, of course, invar ian t  
under  conformal  mapp ing  of the  domain  D. 

The same is true in 3-space and can be used as a characterization of  Capacity: let  D 
be a three-dimensional  domain  wi th  b o u n d a r y  su r faces / ' o  a n d / 1 ;  then  

ff�88 0h dS 4 71 C = Maxah= o i. D On " 
h = 0 along 1" 0 F1 
k > O  along 1" 1 

(9") 

7. The following problem is closely re la ted  to the  preceding one. We consider a 
'quadrilateral' Q in the  z-plane, i.e. a Jo rdan  domain  with  four des ignated  bounda ry  
points ;  let  a, b, c, d be its 's ides ' .  We  consider the  mixed  Stekloff  problem with f ixed 
side a (k = oc), free b, c, d (k = 0) and  all masses ~(s) along c (~ = 0 along a, b and d); 
side c lies opposi te  to side a. 

A u  = 0 in Q, u = 0 on a, Ou/On = 0 along b and d, Ou/On - 2 ~(s) u = 0 along c. 
Tota l  mass '  M c = f ~(s) ds. 

c 

The modulus/~ =/*ac of Q can be defined b y  conformal  mapp ing  onto a rectangle  

in the ~ = ~ + i ~  p lane:  - p , O ,  i q ,  - p + i q ;  ~(a) = ~ i s  the  segment  - p + i q ,  
- p; ~ the  segment  p, O; ~ the  segment  O, i q; ~ the  segment  i q, -- p + i q; then 
# = p/q. 

The corresponding mixed  Stekloff  problem in /} wi th  ~ = 1 along 3, M ;  = q, has 
first  eigenfunction ; = ~ + p wi th  the  corresponding first  eigenvalue ~. = 1/p = 1/M;I~. 
We shall prove tha t ,  for our a r b i t r a r y  quadr i la te ra l  Q and a mass  dens i ty  ~(s) along c, 

1 
2 

Proof. - We t r ansp l an t  ~ on to Q: U(z) = fi(~(z)) = ~(z) + p;  D(U)  = D(~t) = p q; 

b y  Rayle igh ' s  principle,  2 ~ REU 1 : p q/p2 f ~ ds = q/p M c : 1 / M  c I ~. 
c 

Remark.  - As in Section 6, inequa l i ty  (8') also immed ia t e ly  follows from Rayle igh ' s  
principle appl ied  to the  harmonic  function v in Q which solves the  mixed  Dirichlet-  
Neumann  p rob lem:  v = 0 along a, v = 1 along c, Or~On = 0 along b and d: D(v) = 1/#ac, 

thus  2 ~< REv] = D ( v ) / f  Q v 2 ds = I lMc  i ~. (In fact,  U = p v.) 
c 

As is readi ly  verified, we have  equality for all rectangles  and  for all sectors of 
circular  r ings (c = circular  arc), wi th  ~ = const  along c; we even have equa l i ty  for 
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every quadrilateral  with an appropriate mass density 9(s) on c (obtained by  conformal 

mapping on to /? ) .  
Inequal i ty  (8') can be compared with the more general one (221 + 271) M 1 >~ 8#/az2, 

obtained in [6, 8] for all nonhomogeneous membranes  of total  mass M on a quadri-  
lateral of modulus # =/*ac, fixed in turn  along a and along c (extremal membrane :  
homogeneous rectangle). In  our present situation, all the masses are on c, 2c oo, 
hence Z = 2a ~< ~z2/8 Mc/4 which is less precise than our specific bound (8'). 

Corollary. - As in Section 6, it follows tha t  the modulus #a~ of a given quadrilateral  
a b c d can be characterized as 

~gl  = Maxchoic e o/0(s)along~ (~1 21/]c) (9") 

The inverse modulus #;• of a quadrilateral a b c d is equal to the largest total mass 
Mc = f Q ds that the side c can carry while the first eigenvalue ,~ of the mixed St&lof t  

c 

problem (with a fixed; b, c and d free) does not become inferior to unity. 
As we did in Section 6, we again note here tha t  the restriction to everywhere 

positive masses can be dropped:  the modulus #~c can be characterized by  

i / 1  Oh 
- -  Max~h~o in O t7 ~ ds . (9 w) 

/*ac ~h/bn = 0 along b and d 
h 0 along a 
h>0 along c 

This again follows from (3). The Maximum is at tained by  the functions h which are 
constant  along c. 

In  particular, if the sides b and d are horizontal  segments and a is a segment on the 
y-axis, we m a y  choose h = x; since Ox/On = Oy/Os, we obtain 

> f d y  c 

which is a well-known superaddit ivi ty proper ty  of moduli ([%, P. 608). 

8. In  an arbi t rary  quadrilateral Q with sides a, b, c, d and given mass distribution 
~(s) along c, we now consider two mixed Stekloff problems: 

(i) Au = 0 in Q, u - -  0 along a and b, Ou/On = 0 along d, Ou/On--) .~(s)  u = 0 
along c; first eigenvalue 2~b. 

(ii) d u  = 0 in Q, u = 0 along a and d, Ou/On = 0 along b, O u / O n -  20(s) u = 0 
along c; first eigenvalue 2~d. 

In  the conformally equivalent rectangle /~ (see Section 7) with q -  ~z/2, #a~ = 

Iza'2 = p/q = 2 p/~ and ~ - 1 along ~, M 7 = Jz/2, we have the following first eigen- 
functions of problems (i) and (ii) : ;a~ = Sh (~ + p) sinr] and uaa = Sh (~ + p) cos~?; 
~g ~2  uag+ u~a = Sh ~ p on ~; D(;ag ) : D(7,aa ) = az/4 fop iSh 2 (~ + p) + Ch ~ (~ + p)] d~ = 

oz/4 Sh p Ch p; ~.aa -= 1a7, = Cth p = Cth z~ m ; / 2 ;  (1/i;~ + 1/i~a) 1/M7 = (4/=) Th = m; /2 ;  
we shall prove that ,  for our arbi t rary quadrilateral  Q, 

( 1  1 ) 1  4 ( 2 - )  = ~o~. (10) 
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Pro@ - We t ransplan t  ; ;3  and ~ on to Q: U~(z) = u;g(~(z)) and U~e(z) 
~ ( ~ ( z ) ) ;  U~(z) vanishes on a and b, Use(z) on a and d; D ( U ~ )  = D(5~g) 
(~/4) Sh p Ch p ~ D ( ~ )  = D(U~e)" U ~  + U~e -- Sh ~ p on c. We apply  Rayleigh 's  
principle twice : 

(2) 1 1 1 1 Mc Sh 2 p 4 M~ Th p = ~ ~ Th # ~  . 

Again, it is readily seen tha t  we have equality for all rectangles and for all sectors 
of circular rings (c = circular arc), with ~) = const along c; and even for every quadri-  
lateral with appropr ia te  mass distr ibution ~(s) on c (obtained by  conformal mapp ing  

on to /}) .  
Inequal i ty  (10) can be compared  with  the more general one 

(t5~ + 2~ ~ + 2[d ~ + 2~ ~) M -~ ~> 16 ~-2 (# + ~-~)-a ,  

obtained in [6, 81 for all quadri lateral  nonhomogeneous membranes  of modulus/~ and 
tota l  mass M, fixed in turn  along each pair  of adjacent  sides (extremal membrane :  
homogeneous rectangle again). In  our present  situation, all the masses are on c, 
2b~ = 2~a = oo, hence 

(~1 _~ ~adl) M~-I ~ 16~_~#  (1 + #2)-~. 

Since, whatever/~,  there are Stekloff problems giving equal i ty  in (10), our specific 
bound (10) is necessarily sharper  for all/~ ( >  0): 

Zh ( 2  ]~) ~ 4 i~ l + / z  2. 

Limit  cases: 
(a) ~ac + oc: The side a disappears, the quadri lateral  is reduced to the trilateral 

b c d (with masses along c): (10) becomes (2; 1 + 221) M71 ~> 4/~; this is (7) of Section5. 
In te rpre ta t ion  for the ext remal  domains:  the rectangle becomes a half-str ip 

sector with angle zero; the sector of a circular ring with a = smaller circular arc, 
becomes a circular sector (extremal domain  of Section 5). 

(b)/~ac --~ 0: If b and d both  tend to disappear,  we obtain asymptot ical ly ,  f rom (10), 
the same inequali ty 2 421 M21 > 2/~ac, i.e. ,~a < 1/Mc#,~, as from (8') in Section 7. 

9. We now consider a quadri lateral  Q (sides a, b, c, d) and given mass distribu- 
tions 9a(s) along a and ~c(s) along c ; M ,  = f O~(s) ds ; Mc f r ds; ~ = 0 along b 
and d. ~ c 

Let  2b be the first eigenvalue with u = 0 along b (fixed) and Ou/On = 0 along d 
(a, c, d free) ; and let he be the first eigenvalue with the same mass  distributions along 
a and c, but  with d fixed and a, b, c free. 

In  the conformally equivalent  rectangle /? with q = ~/2 (see Sections 7 and 8: 
I~a~ = I ~  = p/q = 2 p/X) and with ~ ~ ~ = const along ~ and ~ - ~ = const along ~, 
we have the following first eigenfunctions of both  problems:  

u ~ = C h ( ~ : - ~ o )  sin~/, u ~ = C h ( ~ - - ~ o )  COS~], 
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where ~o is determined by 

- Th (-- p - ~o) T h ( - -  ~0) , i . e .  

Sh (p + 2 ~o) + Sh p Sh (p + ~o) Ch ~o Th (p + ~o) 
Sh (p + 2 ~o) -- Sh p Sh ~o Ch (p + ~o) Th ~o 

whence 

a - ~  Shp Sh (p + 2 *o) - a + (11) 

C h ~ ( - P - - ~ o ) =  C h ~ ( p + ~ o ) ;  and along c, 

whence, by Rayleigh's principle applied twice, 

f q~ U~ ds + f o, U~ ds 
1 1 a c 

u~ + u ~ :  Ch~ ( -  s = Ch~ ~o; 

f q~ U~ ds + f o~ U~ ds 
c~ C 

D(U~) (12) 

M a C h  ~ ( p +  ~o) + M c C h  ~ ~o 2 ]Via [1 + Ch ( 2 p +  2 ~o)] + Mc [1 + Ch (2 ~o)] 
sh p Ch (p + 2 ~o) 

~-- Sh p Ch (p + 2 ~o) 
4 

Let us choose ~o such that this bound be best possible" we obtain easily the optimal 

value ~o: 
Sh (p + 2 io) - M~ -- Mc Sh p" (11') 

M~TM~ 

this is not astonishing: it corresponds to transplanting the eigenfunctions ~% and Ud 

of the rectangle R with ~:~ ~ M~:M~, see (11); this rectangle realizes equality, our 
bound will therefore be exact. 

When we introduce (11') into (12), we obtain, decomposing 

1 1 
~ +  ~ ~ 

(a) Special case M~ = 0: 

1 i 4 ( 2 )  2b + -1~ ~ ~ M~ Cth [z~ . 

L imi t  case a --~ point, i.e./,~, + o~ : 

1 1 4 

we obtain again (7) of Section 5. 
(b) Special case M~ = M,:  

1 1 4 M~ Cth ( ~  ) 

2 p + 2 ~ o = ( P + 2 ~ o ) + p  and 2 ~ 0 = ( P + 2 ~ 0 ) - - p :  

2 ~ + + M y  + (Ma- M~)~ ~-~ 

S h (-2-~ (123 

(12") 

(12") 

with the corresponding first eigenvalue ~ = Th ( -  ~o)lY. 
We choose arbitrarily ~0 (i.e. ~ :~), we construct h~ and ~ ,  and we transplant both 

those functions on to the given quadrilateral Q: Ub(Z ) = ~(~(z)), Ud(Z ) = ~(~(Z)); 
D(Ub) = D(~;) = ~/4 S h p  Ch (p + 2 ~o) = D ( ~ )  = D(Ud). Along a, we have U~ + U~ = 
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(c) If  M a and Mc are not  known separa te ly ,  bu t  only the  to ta l  mass  M a + Mc = M 
is given, we obta in :  

_ b  ..~ ~d  ~ ~ 1 2 M Cth ( 4  I~ac) .' (12IV) 

equa l i ty  can here only be real ized when M~ = M~ = M/2. 

10. Some Examples 

10.1. An Application of Section 9 

We consider a mixed  Stekloff  problem in a given square of side s; as ind ica ted  in 
F igure  1 this  square is to be considered as a quadr i l a te ra l  such t ha t  all four 's ides '  
mus t  have the same length.  

Since in this  case we have #ac = 1, Ma M C = s and ~b = 2~, i t  follows from (12") 
of Section 9 t ha t  

:rg 7g 

with equality if the four designated points defining the quadrilateral coincide with the 
vertices of the square. 

10.2. An Application of Sections 4 and 7 

We consider a mixed  Stekloff  problem in the  square -- 1 ~< x, y ~< 1 (Fig. 2). 
This square is to be considered as a quadr i l a t e ra l  with the four designated points 
1, i, --  1, - i. The modulus  # of this  quadr i la te ra l  is equal  to 1//~, therefore # = 1. The  
to ta l  mass is M = M c = f @ ds = 2. By  (8') of Section 7, 

c 
1 1 

~'~< Me/* = 2-" 

(More generally, we have here an extremal property quite similar to the foregoing 
example 10.1.) 

a fY 
. . . . . . . . .  o-- . . . . . . . . . . . . . . . . . . .  -o 7 . . . . . . . . . . . . . . . . .  �9 

:C 

b 
F i g u r e  1 

s i d e b - - / ~ - o o , @  0 ;  s i d e d - - - k - - 0 , 0 = 0  

s i d e s a  . . .  a n d e  . . . . .  k - 0 , @ - -  1 

11 
F i g u r e  2 

s i d e  a - -  k = o 0 ,  ~o = 0 ;  s i d e s  b a n d  d - - - k ~ 0 ,  @ = 0 

s i d e e  . . . . .  k = 0 , @ = l  

A lower bound  for 21 can be constructed,  as ind ica ted  in Section 4, using e.g. the  
following simple functions f(x, y) and g(x, y) : 

s q u a r e x < 0 ,  y < 0 : f = A  ( x +  1); g = A ( y + l ) ;  
s q u a r e x >  0, y < 0 : f = B c o s [ k ( x - 1 ) ] ; g = C C h E k ( y +  1)]; 
s q u a r e x % 0 ,  y >  0 : f = C C h E k ( x +  1)1; g = B c o s [ k ( y - 1 ) ] ;  
s q u a r e x >  0, y >  0 : f = D + E x ;  g = D §  
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for the x-continui ty of f (and the y-cont inui ty  of g), we mus t  have  A = B cosk and 
D = C Ch k; for the x-cont inui ty  of fx (and the y-cont inui ty  of gy), we mus t  have  
A = B k s i n k a n d E = C k S h k .  

Since f and g should not  vanish inside the square, A, B, C, D must  not  vanish, 
t h u s k t g k = 1 ,  k_~0.8603 . 

f and g satisfyfxx/f + gySg = 0, condition (4) is satisfied. We therefore have  by  (5) : 

[fx Ox gy Oy] E 1 
21/>infc  ~ O-n + g O~ I) + E 1+ (k Th k)-t ~- 0"3746 " 

We have  thus obta ined 
0.3746 ~< 21 ~< 0.5 . 

10.3. An  Application of Sections 4 and 5 

10.3.1. We consider a mixed Stekloff problem in the rectangle displayed in Figure 3. 
This rectangle is to be considered as a tr i lateral  (in the sense of Section 5) with the 
three designated points 0, 2 i q and -- p + i q. One 'side'  a of this tr i lateral  is fixed, 
while side b is free and without  masses, whereas side c (on the imaginary  axis) is free 
and carries all masses. Total  mass:  M = M~ = 2 q. 

fY 
-p+ziq r ............... -~2iq 

I 

-p+iq[ i 

-P " ~ O--y 

Figure 3 

s i d e a - - k - o o , ~ - 0 ;  s i d e b - - - k ~ 0 , ~ o = 0 ;  sidec . . . . .  k = 0 , ~ - i  

Limit  case p = o~ (half strip) : First  eigenfunction ul(x, y) = e ~'/4q sin (~ y/4 q) ; 
corresponding first eigenvalue 

1 0Ul x--0 ~ 0.7854 
21 -- ul Ox 4 q -- q 

10.3.2. Elementary upper and lower bounds, due to monotony. 

(a) The modified problem:  left segment  x = - - p  complete ly  fixed, has higher 
eigenvalues, whence 21 < (at/4 q) Cth (~ p/4 q). 

(b) The modified problem: left segment  x = -  p complete ly  free, has lower 
eigenvalues, whence 2a > (~/4 q) Th (:~ p/4 q). 

(c) The modified problem: the whole lower half-rectangle y <~ q completely  fixed, 
has higher eigenvalues, whence ~,1 < (~r/2 q) Th (:z p/2 q) = 2 +. 

10.3.3. Application of Section 5. 

Since we have  clearly 2a = 2b = 21 and here M c = 2 q, our inequal i ty  (7) gives s imply 

0.7854 

!a much  sharper  bound than  10.3.2 (a)]. - Therefore we know: 21 is a maximum when 
p ~ ~ .  
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10.3.4. Application of Section 4 (one-dimensional auxiliary problems). 

We choose simple functions f (x ,  y) and g(x, y) in the following way:  In  the lower 
half-rectangle y ~< q: f = Sh Evl (x + p)] ; g = C 1 sin (vl y) ; in the upper half-rectangle 
y > q: f = Ch[v2 (x + p)]; g : C 2 c o s [ v 2 ( 2 q - y ) l .  

g and gv must  be continuous in y for y = q, whence 

vl cotg (vl q) = v2 tg (v~q). 
Then, by  (5) of Section 4, 

;t 1 >~ 2~- = min Iv1 Cth (vl P); v2 Th (v~ p)]; 

a 'good'  choice of vl and v~ will realize vl Cth(vl p) = v~ Th(vz p): we then have 

vl = tg (v~ q) tg (v2 q) = Th (v~ p) Th (v2 P). 
V2 

For given p and q, those two transcendental  equations determine Vl and v~, 
whence the lower bound for 21; but  in order to construct  the diagram giving, for fixed 
q, a lower bound for 21 as a function of p, we choose the quotient  vl/v2 as a parameter,  
we calculate v~ and then p, each one from a single transcendental  equation. 

vl/v ~ chosen p/q calculated q X~ calculated 

1 oo a /4  ~ 0.7854 
1/2 1.5658 0.7284 
0 1.3945 0.7171 
i 1 0.688 
2 i 0.579 0,636 
3 i 0.380 0.553 
4 i 0.280 0.470 
--~ i OO + 0 (Yg2/4) (p/q)  + o(p2/q 2) - ~  0 

In  conjunction with 10.3.2 (c), this shows that,  when p/q + O, 

~ P + O  q ; t l =  4 q q2 

i.e. in our diagram q 21 = F(p/q) we know the exact tangent  at the origin (see Fig. 4). 

q~ ~ asyrnptot~ and upper tzund 
.~ ,t + 

g 

o 1o " 

Figure 4 

Upper bounds [from section 5 and from 10. 3.2 (e)] and lower bounds (from section 4, see 10. 3.4) 
for the example of Figure 3. 
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Zusammen/assung 
Das betrachtete Eigenwertproblem kann aufgefasst werden als dasjenige einer schwin- 

genden Membran mit  teilweise festem, teilweise freiem Rand, welche abet nicht im Innern,  
sondern auf dem freien Randteil Massen tr~gt. Die Eigen/unktionen sind harmonisch : das 
Stekloffsche Problem mit dem zugeh6rigen Rayleighschen Prinzip liefert fiir harmonische 
Funktionen andere Erkenntnisse als das Dirichletsche Problem mit dem Dirichletschen 
Prinzip Esiehe insbesondere die Ungleichung (3)1. Isoperimetrische Ungleichungen werden 
dutch konforme Abbildung auf ein Normalgebiet und Anwendung des Rayleighschen 
Prinzips auf die <~verpflanzten~ (siehe PdLYA-SZEG6 [141) Eigenfunktionen des Normal- 
gebietes hergeleitet. 
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