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Zusammenfassung

Die Thermodynamik der richtungsorientierten Medien wird mit Hilfe der Clausius-
Duhem-Ungleichheit und des Prinzips der materiellen Objektivitit untersucht. Ein be-
sonderer Fall der Materialsymmetrie wird diskutiert.
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Extremal Principles and Isoperimetric Inequalities for some
Mixed Problems of Stekloff’s Type

By Josepu HerscH, ETH, Ziirich
and LAWRENCE E. PayNE, Cornell University, Ithaca, N.Y., USA

1. We consider a plane domain G with boundary I". The ‘mixed Stekloff problem’
we are here concerned with is that of a vibrating homogeneous membrane without
masses in G, but carrying masses along I™: linear density p(s) > 0; the ‘total mass’ is
M = 55 10 ds; moreover, we suppose that our membrane is elastically supported along
I': elastic coefficient &(s). - We have the eigenvalue problem:

Au=0in G, 2 1 [ks)~Ao(s)]u="0 along T (1)

(0/0n is the outer normal derivative.)

2. For the classical Stekloff problem with %(s) = 0, the eigenvalues are noted u
rather than A; the first is 4, = 0. This problem has been considered by several authors
[10, 16, 23]. Some closely related problems have been considered by TroEscH [19, 20]
and by WEHAUSEN and Lartone [21].

WEINSTOCK [23] showed that, among all simply connected domains with analytic
boundary and assigned total mass M = 99 rods, the circles with constant linear
density p along I’ yield the largest second eigenvalue u,, i.e.

M < Zﬁn .

His proof uses conformal mapping and is very similar to that of Szeco [17] for the
corresponding isoperimetric inequality concerning free simply connected membranes
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with homogeneous mass distribution in their interior: u, << 7 p*(M with p ~ 1.8412. -
WEINBERGER [22] avoided the use of conformal mapping and thus extended Szegé’s
inequality to multiply connected membranes and to higher dimensions; as he indicates
in the same paper, Szegé and Weinberger jointly noted that Szegé’s proof (based on
conformal mapping) actually yields, for simply connected plane free homogeneous
membranes, the stronger isoperimetric inequality u;? + u;t > 2 M/ap?.

Exactly in the same way, we now remark that, for the Stekloff problem, WEIN-
STOCK’s proof [23] of the inequality u, < 2 m/M actually yields the sharper iso-

perimetric result

- - M
Pyt =

44

Among all simply conmected domains with analytic boundary carrying an assigned total
mass M, the civcles with consmnt linear mass density along their circumference yield the
smallest value of us + ug

Indeed: Given a two-dimensional linear space of functlons which we call L,, its
‘inverse Rayleigh trace’ T Rinv[L,] is by definition [8] equal to R[v,]™! + R[v,]%,
where v, and v, are any two functions in L,, orthogonal in the Dirichlet-metric’:
D(v,;, vy) = 0, R[v] is the Rayleigh quotient D(v f o(s) v?* ds and D(v) is the Dirichlet
integral /{ grad?vdA; dA = dx dy is the elernent of area. - Now '

G

ps '+ pg t = Max; TRinv[L,]

if we vestrict Ly, by the condition that each function v in it should be orthogonal to the
constant 1 ‘in the g-norm’, i.e. $; o(s) v ds = 0.— As Weinstock (using Szegd’s method)
has shown, there exists a conformal mapping w(z) of the domain G = G, onto the
unit circle |w| << 1 such that fngwds =0 (ds=|dz]); let w=U+1¢V; the
cartesian coordinates U and V of the w-plane are themselves eigenfunctions of the
Stekloff problem in the circle with ¢ =1, corresponding to the double eigenvalue
43 = pu3 = 1; U(z) and V{(z) are the ‘transplanted’ [14] functions in G,, and they satisfy
all orthogonality conditions:

9§9Uds:0, ggeVds:O, D (U, V) =Dy, (U, V) = 0.
r

Therefore
9§ o U2ds 55 o V2ds

—1 -1 . _ -1 -1 _. PZ Fz
/’LZ +M3 > TR’WW [L<U: V)] - R[U] + R[V] - DGz (U) + -DGz (V)

1 1 M
=;9§Q(UZ+V2)ds:;9§st=;

3. We now come back to our ‘mixed Stekloff problem’ (1) with elastic support
k(s) at the boundary. Then the Rayleigh quotient is

v) + 1; k(s) vt ds

Rv] =
_95 o(s) v ds
r
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The first eigenvalue 1, is no longer zero; it is characterized by Rayleigh’s principle:
A, = Min, R[v].

Following PICARD’s lines (cf. [13, 18]}, we now prove elementarily that an eigen-
Sunction u of constant sign necessarily realizes the Minimum of the Rayleigh quotient
Rlv].

Indeed, let v be any continuous and piecewise derivable function;

. (v? y? v
rad? v — div (— grad #) = grad2v + = grad?« — 2 —grad v - grad »
g 7 8 g e B 78 g

v 2 .
= (gradv - ;grad u) =0;
whence by integration in G:

0<Mﬂ—¢§%h:DM+¢k@ﬁk~Z¢WWW& @)

r

This last inequality is true vegardless of the signs of k(s) and of o(s); if p(s) > 0, it
follows that R[v] = A = R[u], thus A = 4, and u = #, is the first eigenfunction. — We
used essentially that « is harmonic and has constant sign.

Remark. — Let u be any harmonic function of constant sign in G; we have by (2):

D(v) = 56 % o - (3)

This inequality contains Dirichlet’s principle: if v = u on the boundary I, then
D(v) = 95 u Ou/On ds = D(u). — (On the other hand, the admissible choice v = const
implies §, 1/u 0u/on ds < 0, which follows also from the fact that
AIn u = div (grad uju) = — grad? #ju? < 0, In u is superharmonic.)

Furthermore, if # and 0u/0n have the same sign on the part of I" where v + 0,
then inequality (3) also implies Thomson’s priunciple for vector fields p = grad u
without sources: by Schwarz’ inequality, we then have

v Ou

0 9% 4\ vp - nds\
o Ui al (e

u On ou 2
v D dA
r ‘9914 on ds ({f

(n is the outer normal). r

Inequality (3) can be transformed into a somewhat sharper form by introducing
into it the function v + ¢ (¢ = constant) instead of v; the optimal constant is

v Ou 1 ou
Copt = ﬁ;ﬁ“/fﬁ%“
Ir

__I'
D(U)>¢vz‘mds-|—(ﬁﬁf:‘_g:d;)2

uw On 1
r ‘-'%; dS

r

and it gives the inequality

; (3"

Dl
S}&

the additional term on the right is non-negative.
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4. The method of one-dimensional aunxiliary problems (2, 3, 5, 11, 12, 15} applied to
the maxed Stekloff problem.
4.1. Leading idea, motivation

In order to obtain lower bounds for the first eigenvalue 4,, we have fo apply
Rayleigh’s principle not to the given problem itself, but fo some auxiliary problems.
Now we consider as auxiliary problems vibrating strings in G, some parallel to the
x-axis, the others to the y-axis, and with end points P,, P; on I". Those strings carry
no masses in their interior; each one carries two point masses: m, at P, and m, at P,;
they are elastically supported in their interior.

As in [5], we shall avoid the resolution of an infinity of auxiliary problems by
choosing beforehand their first eigenfunction (it must have constant sign), and only
then determine the one-dimensional problems themselves.

Let us choose two positive functions f and g in G: f(x, y) > 0 continuous #» x and
twice partially derivable with respect to x (but not necessarily continuous in y); and
g(x, ¥) > 0 continuous 4» y and twice partially derivable with respect to v (but not
necessarily continuous in x).

We further suppose that the following condition is fulfilled:

fi;f+é’§£<o in all G. 4)

For every segment through G, parallel to the x-axis and with extremities P, and P,
on the boundary T, f(x, v) is the first eigenfunction of an auxiliary vibrating string
with the elastic coefficient x{x) = f, . (x, ¥)/f(x, ) and the masses my; = — f,(Po}/f(Py),
my = + f.(P)/f(P,) and the corresponding (first) eigenvalue is 1 = 1. Indeed, f has
constant sign and satisfies

foo— #¥) [=0; —[Pg) —=1-me[(Py) =0 and f(Py) —1-mf(P)=0.

(One should be careful that m, or m, may here be negative ; but the formal calculation
in 4.2 remains valid in this case.)

Similarly, on every segment through G, parallel to the y-axis, g(x, ¥) is the first
eigenfunction of an auxiliary string and corresponds to the eigenvalue ] = 1.

The following formal calculation is equivalent to applying the one-dimensional
Rayleigh principle (more precisely: Picard’s method for its proof, see Section 3)
to each auxiliary string.

4.2. Formal calculation

Let again # = u,(x, y) be the first eigenfunction of the given Stekloff problem (1).

M_(f;u2)x_u—2f;uu+;: %Mzz(ux_[;%)z_f;fug;

now assuming that the followmg mtegmls have a sense, we obtain

D(u) — ‘95(7‘7"%4—?3%) u?ds = //[(% ——u) (uy—%u)z

_ (f;f _|_§’§q)uz] dd >0;
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since u is harmonic, D(u) = fu Ou/on ds = $ Ay 0(s) — k(s)] u? ds, whence
' r r

I?g{}qg(s) - [k(s)-i-f?x% —f—%—%]}ﬁds >0;

the integrand cannot be everywhere negative: therefore, if p(s) > 0,

2> infp{ [#(s) + f7 >y & g%]} (5)

1
e(s)

In particular, if we have chosen f = g (positive, continuous and twice differentiable,
satisfying Af < 0),

ey o} 1) g

which is the analogue here of the BARTA inequality [1] for vibrating membranes.
Furthermore, if by chance we have chosen exactly f = g = u,(x, ), then

10
B+ o = e o),
so we have equality in (5) and (5'); hence
: 1 fx 0% | gy Oy "
Jy = Max, _, 1nfp{—(rs)— [#6s) + bt M]} (5")
g>0
x| g%y <0
Remark. — We note the rather trivial inequalities
§ k(s) ds
g F() r K
f <A<t =
M ey S fosyas M’ ©)

the inequality on the right follows immediately from Rayleigh’s principle applied to
the function » = 1; the inequality on the left follows from (5') applied to f = 1.

Physical interpretation: the upper bound K/M in (6) becomes actually the first
eigenvalue of the problem when one augments to infinity the modulus of elasticity of
the membrane; the lower bound on the left, when one reduces the modutus of elasticity
to zero. Both inequalities thus express monotony.

In particular, if %(s) = cp(s) with a constant ¢, then A, = ¢ and #; = const.
(Special case: the classical Stekloff problem: k(s) = 0, the first eigenvalue is then zero.)

4.3. Vector formulation

As was done in [5] for vibrating membranes, we construct, to each pair of admis-
sible functions f, g, the vector field p = (— f,/f; — g,/¢); the condition (4) becomes
divp — p*= — f..If — g,,/¢ = 0 and the lower bound (5) becomes

Ay > inf, (L [k(s) — p - m]).
ofs)



Vol. 19, 1968 Extremal Principles and Isoperimetric Inequalities 807

Direct proof. — We consider a vector field p in G, of which we assume:

(i) The first component of p must be continuous ¢» x and partially derivable with
respect to x, the second component continuous 4# y and partially derivable with respect
to vy,

(i1) the condition

divp —p? =0 (4)
must be fulfilled;

(i) the integrals following below must exist.

Let once more # = u,(x, ) be the first eigenfunction of the given problem (1). Then

grad? # + div (42 p) = grad?u + 2u p - grad u + w2 div p
= (grad # + » p)? +u® (divp — p?) =0,
whence, if we may integrate,

0 < Du) + fuzp-nds—_-%{w%ﬁ-fﬂp . n}ds: 5{5{11@(5)—[k(s)—p-n]}uzds;
r F r

the integrand cannot be everywhere negative, whence, if g(s) = 0,

. 1 "
3> inty s k9 — p - ml). ' (5")
If we introduce the vector field p = — grad u/u, we have equality, whence
. 1
Ay = Maxy, 5 _ pes o infp {ag) [k(s) — p - "]}- (5")

5. We shall henceforth restrict our consideration to the case where &(s) = + ¢
along a ‘fixed’ part I, of the boundary I', while 2(s}) = 0 on the ‘free’ remaining
boundary Iy = I' — I',. It is then sufficient to consider only masses p(s) along I
(masses along I'y cannot vibrate and therefore play no role in the problem).

Au=0 in G, =0 along I, Ao(s)u=0 along I7.

u
S
We first consider a ‘trilateral’ T, i.e. a Jordan domain with three designated
boundary points. Let the Jordan arcs a, b, ¢ be its ‘sides’. We assume a mass distribu-
tion p(s) along ¢, but no masses along a and b. Total mass: M, = [ o(s) ds. Let A, be the
first eigemvalue of the problem with fixed side a (k = o0c), free sides b and ¢ (k= 0):

Au=0 in T, u=0 along a, Z—Z=O along b, g%~lag(s)u:0 along c.

Let A, be the first eigenvalue when b is fixed, a and ¢ free.
We shall prove the isoperimetric inequality

(+%) > = (7

Proof. - Let the given trilateral 7" be in the complex z-plane; we map it conformally
on to the circular sector S: &2+ 52 << 1, £> 0, > 0 of the { = & + i y-plane in
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such a way that {(a) (the image of a) is the real interval a: 0 << & <C 1, £(b) the imagi-
nary interval 3: 0 << % << 1, and ¢(c) the circular arc Cil=e6",0< o< st/2. This
mapping is possible, since all trilaterals are conformally equivalent.

The corresponding problems in S with constant mass density (o) = 1 along ¢, have
respectively the first eigenfunctions u; = # and u; = &, and the same corresponding
first eigenvalue [ = (1/&) 0&/0r = (1/£) £/1 = 1; here My — m/2, so that for S we have
equality in (7). We note that #3 = u} = 9% + & = l along ¢, and D( ) = D(u;) = n/4.

We now ‘transplant’ the functions %; and #; on to the given trilateral 7: U(z) =
u(L(2)), i.e.

Ud#) = m(z) and  Uy(z) = &(2);

again UZ + U% = 1 along c; since Dirichlet's integral vemains invariant under conformal
transplantation, D(U,) = D(U,) = =f4. [1t follows also this way: D(U,) = D(x(2)) =
/T/ |dljdz|?dd, = [[dA; = z[4.]

5

Now we apply Rayleigh’s principle twice:

< RU) and B <RGL p4p>t [o@+vhas -ty

this is (7).

It is readily seen that we have eguality not only for the particular rectangular
sector §, but for all circular sectors with constant mass density along the circular arc ¢;
we even have equality for any trilateral a b ¢, provided the masses along ¢ are those
obtained by the (unique) conformal mapping onto S.

Inequality (7) can be compared with the more general one

G4+ 27 2 M =

obtained in [7, 8] for all nonhomogeneous membranes on a trilateral a b ¢, of total
mass M, fixed in turn along each one of the three ‘sides’ a, b, ¢ (extremal membrane:
homogeneous membrane on a trirectangular spherical triangle). In our present
situation all the masses are on the boundary arc¢, 4, = oo, hence (4,1 + A; 1Y M1 = 3/x,
which is less precise than our specific bound (7).

Example. — Consider the rectangle — 4, O, i /2, — p + i =/2 (in the complex
z-plane) as a trilateral with the designated points — p, O, ¢ zz/2, the side a being the
segment — p, O; ¢ the segment O, ¢ 7/2; b the rest of the boundary; ¢ =1 along ¢,
M = 7/2. We have the first eigenfunctions #, = Ch (x 4 p) siny and u, = Sh (x + p) cosy
with the corresponding first eigenvalues A, = Thpand A, = Cth p; (A7 + ) M1 =
(Cthp + Th ) 2[m = 4/n in agreement with (7). Asymptotically we have equality
when p —> oo; this is not astonishing: a half-strip can be considered as a circular
sector with infinite radius and vanishing aperture.

6. We now consider the following mixed Stekloff problem on a doubly connected
domain D of the z-plane, bounded by the Jordan curves Iy and I7:

Au=0 in D, #=0 along I, %—Z@(S)M:O along I

(all masses are on I7). Total mass: M = g§ o(s) ds.

I,
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The modulus p of D can be defined by conformal mapping Z(z) on to a circular
ring D: 1< [Z| < R, u= (1/27) In R.

The corresponding problem in D with foz &l =1, flz |{] = R, and constant mass
density ¢ = 1 along ]’;, total mass M = 2 @ R, has the first eigenfunction % = In ||

and the first eigenvalue
1 1 1

Z:RlnRz 2a R pu =M,u,;

we shall prove, for the first eigenvalue A = 4, of our arbitrary D, the inequality

1
A< M 8
Proof. — We transplant % on to D: U(z) = «({(z)); U = 0 along I'yand U = In R
along I';; since the Dirichlet integral remains invariant under conformal transplanta-
tion, D(U) = D(u) = 2 m In R; by Rayleigh’s principle,
DU) _ 2alnR 1 .

Ty

Remark. — Inequality (8) also immediately follows from Rayleigh’s principle applied
to the harmonic function v in D satisfying v = 0 on I’y and v = 1 on I';: D(v) = 1/u,
thus 2 < R[v] = D(v)/ § p v*ds = 1/My. (In fact, U = vIn R.)
I,

We have eguality for all circular rings with ¢ = const along I}, and even for any
doubly connected domain D with an adequate mass distribution p (obtained by conformal

mapping onto the conformally equivalent circular ring D) along the free boundary
curve I7.

Inequality (8) can be compared with the more general one (Ar! + A7) M1 = 8 u/a?,
obtained in [6, 8] for all doubly connected nonhomogeneous membranes of modulus y
and total mass M, fixed alternatively along each of the boundary curves (extremal
membrane: straight cylinder with homogeneous mass distribution). In our present
situation, all the masses are on I, Ay = oo, hence 1, << 7?/8 M u, which is less
precise than our present specific bound (8).

Corollary. — It follows that the modulus y of a given doubly connected domain D
can be characterized as

pt = Max I M), 9)

choice of o(s) along I'y (
or in other words:

The inverse modulus u=' of a doubly conmected domain with boundary curves I
and Iy, is equal to the largest total mass M = f 1,0 ds that I'y can carry, while the first
ergenvalue A, of the mixed Stekloff problem (with fixed I'y) does not become inferior to unity.

This characterization is analogous to that of DE LA VALLEE PoussiN and Frost-
MAN [4] for the Capacity in space as the least upper bound of the masses the set can
carry while its potential does nowhere exceed unity. — Contrarily to the usual ways of
Potential theory, we here give a characterization in terms of an eigenvalue (and not of
an energy or a potential), and we consider the Stekloff problem (instead of a Dirichlet
problem) to obtain theorems on harmonic functions.
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It is worth mentioning that the restriction to everywhere positive masses p(s) can
be dropped: let # be any positive harmonic function in D, vanishing along [I7: it is
then the first eigenfunction to the mass density g = (1/4) 0h/On along [, with
corresponding first eigenvalue 4; = 1. The density ¢ may well change sign; we have

1 0k

1
; - Ma'XAh 0inD 7 on

h=0along I'y T,
h>0along I'y

ds (99

This follows immediately from inequality (3), in which we set # = 4 and introduce for
v the harmonic function with boundary values zero on ['yand one on I} : then D(v) =1/u.
The Maximum is attained for 4 = v. — This variational problem is, of course, invariant
under conformal mapping of the domain D.

The same 1s true in 3-space and can be used as a chavacterization of Capacity: let D
be a three-dimensional domain with boundary surfaces I'y and I';; then

1 ()h "
47 C=Maxy, ¢4 p //h on @ 9%

h=0along I'y 7
h>0along I'y

7. The following problem is closely related to the preceding one. We consider a
‘quadrilateral’ Q in the z-plane, i.e. a Jordan domain with four designated boundary
points; let a, b, ¢, 4 be its ‘sides’. We consider the mixed Stekloff problem with fixed
side a (k = o), free b, ¢, d (k = 0) and all masses p(s) along ¢ (¢ = 0 along «, b and d);
side ¢ lies opposite to side a.

Au=01in Q, v =0 on a, Ou/On = O along b and 4, 0u/0n — A o(s) # = O along c.

Total mass: M, = [ o{s) ds.

The modulus u = u,, of ) can be defined by conformal mapping onto a rectangle
Rinthe = & + iy plane: — $,0,iq, — p + i q; {(a) = a is the segment — p + 7 g,
— #; b the segment — p, O; ¢ the segment O, ¢; & the segment 7 ¢, — p + i ¢; then
m=1/q. N

The corresponding mixed Stekloff problem in R with ¢ = 1 along ¢, My = ¢, has
first eigenfunction # = & - p with the corresponding first eigenvalue ] = 1/p = 1/M~ u.
We shall prove that, for our arbitrary quadrilateral Q and a mass density g(s) along ¢,

1 ’
2 < Mc Mac. (8 )
Proof. — We transplant # on to Q: U(z) = u({(2)) = £(2) + p; D(U) = D) = p q;

by Rayleigh’s principle, A << R[U] = p ¢/p? [pds = g/p M, = 1/M  pu.

Remark. — As in Section 6, inequality (8') also immediately follows from Rayleigh’s
principle applied to the harmonic function v in Q which solves the mixed Dirichlet-
Neumann problem: » = 0 along a, v = 1 along ¢, 0v/0n = O along b and d: D(v) = 1/u,.,
thus A < R[v] = D@)/f o v?ds = 1M, u. (In fact, U = p v.)

As is readily verified, we have equality for all rectangles and for all sectors of
circular rings (¢ = circular arc), with ¢ = const along ¢; we even have equality for
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every quadrilateral with an appropriate mass density p(s) on ¢ (obtained by conformal
mapping onto R).

Inequality (8') can be compared with the more general one (A;1 + ;1) M1 > 8 u/=?,
obtained in [6, 8] for all nonhomogeneous membranes of total mass M on a quadri-
lateral of modulus g = y,,, fixed in turn along a and along ¢ (extremal membrane:
homogeneous rectangle). In our present situation, all the masses are on ¢, A, = oo,
hence 4 = 4, << #%/8 M, u, which is less precise than our specific bound (8').

Corollary. — As in Section 6, it follows that the modulus g, of a given quadrilateral
a b ¢ d can be characterized as

M(;cl = Maxchoice of o(s) along ¢ (}’1 Z‘/Ic) : (9/”)
The tnverse modulus u,' of a quadrilateral a bcd is equal to the largest total mass

M, = [ o ds that the side ¢ can carry while the fivst eigenvalue A, of the mixed Stekloff

problem (with a fixed; b, ¢ and 4 free) does not become inferior to unity.
As we did in Section 6, we again note here that the restriction to everywhere
positive masses can be dropped: the modulus g, can be characterized by

i Max ;g0 7 on ds . (97)
OnjOn =0 alongband d
h=0along a
h=>0 along ¢

This again follows from (3). The Maximum is attained by the functions /4 which are
constant along c.
In particular, if the sides b and d are horizontal segments and « is a segment on the

y-axis, we may choose & = x; since 0x/0n = 0y/ds, we obtain
1 dy
oo = ) ¥

c

’

which is a well-known superadditivity property of moduli ([9], p. 608).

8. In an arbitrary quadrilateral Q with sides 4, b, ¢, d and given mass distribution
o(s) along ¢, we now consider two mixed Stekloff problems:

(i) Au=01in Q, u =0 along a and b, Ou/on = 0 along 4, Ou/0n — Lo(s) u =0
along c; first eigenvalue 4,,.

(ii) Av =0 in Q, u = 0 along 4 and d, Ou/on = 0 along b, Ou/0n — Lo(s) u =0
along c; first eigenvalue 4,,.

In the conformally equivalent rectangle R (see Section 7) with g = n/2, u, =
= plg=2p/n andp =1 along ¢, My = nf2, we have the following first eigen-
functions of problems (i) and (ii): #y; = Sh (£ + p) siny and uz3 = Sh (& + p) cosyn;
W+ Wy = SKEp on & Dlizy) = Dliezg) = /4 [ [SH* (§ + p) + Ch (£ + )] d&
wif4 Shp Chp; Azz = Nza= Cthp = Cth v puzz|2; (dz5 + 13z 1Mz = (4[m) Th 7w p5/2;
we shall prove that, for our arbitrary quadrilateral Q,

(vl = 2 () o
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Proof. ~ We transplant %3 and ugy on to Q: U,,(2) = #33(0(2)) and U, ,(z) =
uz3(L(2)); U,,lz) vanishes on a and b, U,,lz) on a and d; D{U,,) = D(uy;) =
(=/4) Sk p Ch p = D(uzy) = D(U,,); U2, + U2, = Sh? p on c. We apply Rayleigh’s
principle twice:

11 Lo, M, Sh? p
> =
Z-ab lad R[Uab] R[Uad] %l: S p Ch P

~tMTnp=1u Th(G tar)

Again, it is readily seen that we have equality for all rectangles and for all sectors
of circular rings (¢ = circular arc), with ¢ = const along ¢; and even for every quadri-
lateral with appropriate mass distribution g(s) on ¢ (obtained by conformal mapping

on to R).
Inequality (10) can be compared with the more general one

Qi+ 2+ 2+ 2 ) M7 > 16772 (u + p )

obtained in [6, 8] for all quadrilateral nonhomogeneous membranes of modulus 4 and
total mass M, fixed in turn along each pair of adjacent sides (extremal membrane:
homogeneous rectangle again). In our present situation, all the masses are on ¢,
Ape = A.q = 00, hence

Ao + 2 ) M7t = 1672 (14 w?)t.

Since, whatever u, there are Stekloff problems giving equality in (10), our specific
bound (10} is necessarily sharper for all y (> 0):

R

Limit cases:

(@) 4e. > oo: The side a disappears, the quadrilateral is reduced to the trilateral
b ¢ d (with masses along ¢): (10) becomes (A;1 + A7) M1 > 4/m; this is (7) of Section 5.

Interpretation for the extremal domains: the rectangle becomes a half-strip —=
sector with angle zero; the sector of a circular ring with 4 = smaller circular arc,
becomes a circular sector (extremal domain of Section 5).

(b) w,. — 0:If b and d both tend to disappear, we obtain asymptotically, from (10),
the same inequality 22,1 M1 > 24,,, i.e. A, < 1/M_ pu,,, as from (8) in Section 7.

9. We now consider a quadrilateral Q (sides a, b, ¢, d) and given mass distribu-
tions p,(s) along a and g (s) along ¢; M, = /Qa ds; M, = /gc ds; p = 0 along &
and 4.

Let 4, be the first eigenvalue with » = 0 along & (fixed) and 0u/0n = 0 along d
(a, c, d free); and let 2, be the first eigenvalue with the same mass distributions along
a and ¢, but with 4 fixed and a, b, ¢ free.

In the conformally equivalent rectangle R with q = 7|2 (see Sectlons 7 and 8:
Mas = Mo = Plq = 2 p|n) and with ¢ = & = const along @ and § = y = const along ¢,
we have the following first eigenfunctions of both problems:

uy=Ch (£ — &) sing, uy=Ch (& — &) cosy,
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where &, is determined by
—Th(—p— &) _ Th{— &)

= — , i.e.
& y
Shp+2& +Shp _ Ship+ & Ch& _Thip+ &) _ &
Sh(P+250)_ShYb ShEOCh(P+§0) Thfo 77’
whence
_a=9
h(p+28) =5 L Shp (1)

with the corresponding first eigenvalue 1 = Th (— &)/7.

We choose arbitrarily &, (i.e. &:y), we construct #; and %y, and we transplant both
those functions on to the given quadrilateral Q: U,(z) = #;(((2)), Ual2) = u3(C(2));
D(U,) = D(itz) = /4 Shp Ch (p + 2 &) = D{itz) = D(U,). Along a, we have U; + U=
Ch?(—p — &) =Ch2(p+ &); and along ¢, U;+ Us= Ch?(— &) = Ch* &;
whence, by Rayleigh’s principle applied twice,

fgaUgds+/chfds fgaUst+/ch§ds
1 1 a P . a c
b T DT + D(Uy) (12)

:MaChz(j)—I—Eo)—!—McChZS(,: 2 [1+Ch(27b+250)]+M[1+Ch(2§0)]
® ShpCh(p+2&) woRp Chip 2

Let us choose &, such that this bound be best possible; we obtain easily the optimal
value &,:
Sh{p+2 50) M;{—Tllj Shp; (11°)

this is not astonishing: it corresponds to transplanting the eigenfunctions u; and 4,

of the rectangle R with a:p = M, M, see (11); this rectangle realizes equality, our
bound will therefore be exact.
When we introduce (11') into (12), we obtain, decomposing

2p+285=(p+2&) +p and 2&=(p+2&) —p:

Lo 2 M) (L) + | O 4 M) (M, 2 582G )

3 A 7
7 Sh (—'2_ :uac) (12 )
(a) Special case M, = 0:
”
h + z M Cth( M) (12")
Limit case a > point, i.e. y,, > co:
1 1 4
i + P > ; M,
we obtain again (7) of Section 5.
(b) Special case M, = M,:
1 1 m
ot > > 1M, cm( fhac) - (12"
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(c) If M, and M are not known separately, but only the total mass M, + M, = M

is given, we obtain: 1 1 2 "
. IV

2;+E>;Mcth(~4~lua€), (12 )

equality can here only be realized when M, = M_ = M/2.

10. Some Examples
10.1. An Application of Section 9

We consider a mixed Stekloff problem in a given square of side s; as indicated in
Figure 1 this square is to be considered as a quadrilateral such that all four ‘sides’
must have the same length.

Since in this case we have y,, = 1, M, = M_ = s and 1, = A, it follows from (12")
of Section 9 that

T 7T
A < 55 Th 5
with equality if the four designated points defining the quadrilateral coincide with the
vertices of the square.

10.2. An Application of Sections 4 and 7

We consider a mixed Stekloff problem in the square — 1 <<,y <1 (Fig. 2).
This square is to be considered as a quadrilateral with the four designated poinis
1,4, — 1, — 4. The modulus u of this quadrilateral is equal to 1/u, therefore y = 1. The
total mass is M = M, = [ g ds = 2. By (8'} of Section 7,

1 1
Zl < m = - 2’ .
(More generally, we have here an extremal property quite similar to the foregoing
example 10.1.)

d 4

gooseees e Y . o O ey
3 : i ! :
H I ! :
3 l
H [ H
: t :
H - [ .

: I I ¥
: i
:
. ]
H4 . )
: U i

b
Figure 1 Figure 2
sideb—4% =00,0=0; sided-—~%=10,0=0 sidea——£%=00,p=0; sidesbandd-—-%=0,0=0

sidesa ... andc«-..: k=0,0= side ¢ «vvx- k=0,0=1

A lower bound for A, can be constructed, as indicated in Section 4, using e.g. the
following simple functions f(x, y) and g(x, ¥):

square x < 0,y << 0: f=4 (x4 1); g=A{y+1);

square x > 0, y << 0: f= Becos[k(x — 1)]; g = C Chlk (v + 1)];

square x << 0,y > 0: f=C Chlk (x + 1)]; g = Bcoslk (y — 1)];

square x > 0,y > 0: f= D + E x; g=D+ Ey;
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for the x-continuity of f (and the y-continuity of g), we must have 4 = B cosk and
D = C Chk; for the x-continuity of f, (and the y-continuity of g,), we must have
A= Bksinkand E = Ck Shk.

Since f and g should not vanish inside the square, 4, B, C, D must not vanish,
thus ktgk =1, £ ~ 0.860,.

fand g satisty f, [f + g,,/g = O, condition (4) is satisfied. We therefore have by (5):

- fx 0% gydl]_ E_ L
21>1nf0[70%+?0n SDYE T 1y RTHET

We have thus obtained

~ 0.3746 .

0.3746 < 4, < 0.5.

10.3. An Application of Sections 4 and 5

10.3.1. We consider a mixed Stekloff problem in the rectangle displayed in Figure 3.
This rectangle is to be considered as a trilateral (in the sense of Section 5) with the
three designated points 0, 24 ¢ and — p + ¢ g. One ‘side’ a of this trilateral is fixed,
while side b is free and without masses, whereas side ¢ (on the imaginary axis) is free
and carries all masses. Total mass: M = M, = 2g4.

V
P ~e2lq

|
L :
'P*”li

_p QU_X,

Figure 3
sidea— % =00,0=0; sideb---k=0,0=0; sidec--..- k=0,0=1

Limit case p = oo (half strip): First eigenfunction u,(x, y) = " sin(n v/4 q);
corresponding first eigenvalue

1 ou, n _ 0.7854
= -7~

ul 0x |x-0 4gq q

10.3.2. Elementary upper and lower bounds, due to monotony.

(a) The modified problem: left segment x = — p completely fixed, has higher
eigenvalues, whence 4, < (/4 q) Cth (7 p4 q).

(b) The modified problem: left segment x = — p completely free, has lower
eigenvalues, whence A, > (w/4 ¢) Th (7 p/4 q).

(c) The modified problem: the whole lower half-rectangle y < ¢ completely fixed,
has higher eigenvalues, whence 4, << (72/2 ) Th (7w p[2 q) = A7

10.3.3. Application of Section 5.

Since we have clearly 1, = 4, = A, and here M, = 2 ¢, our inequality (7) gives simply

o< T 07854
Y q

[a much sharper bound than 10.3.2(a)]. — Therefore we know: 4, 7s a maximum when
p = oc.
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10.3.4. Application of Section 4 (one-dimensional auxiliary problems).

We choose simple functions f(x, y) and g(x, ) in the following way: In the lower
half-rectangle y <C q: f = Shly, (x + $)]; g = C, sin{»; ¥); in the upper half-rectangle
y > g f = Chivy (v + p)1; g = Cycos[, (29 — ).

g and g, must be continuous in y for y = ¢, whence

vy COtg (v19) = v,ytg (v59).
Then, by (5) of Section 4,

A = A7 =min [», Cth (v, p); vy Th (v, 9)];

a ‘good’ choice of »; and v, will realize v, Cth(v, p) = v, Th(v, p): we then have
=t 00 q) tg 02 9) = Th (1 ) Th (12 7).

For given p and ¢, those two transcendental equations determine », and v,,
whence the lower bound for 4,; but in order to construct the diagram giving, for fixed
g, a lower bound for 4, as a function of p, we choose the quotient »,/», as a parameter,
we calculate »; and then p, each one from a single transcendental equation.

/v, chosen #lg calculated g A; calculated

1 [ nf4 ~ 0.7854

1/2 1.5658 0.7284

0 1.3945 0.7171

i 1 0.688

23 0.579 0.636

34 0.380 0.553

41 0.280 0.470

>ioo >0 (n2/4)( pla) + O(p%g?) - O

In conjunction with 10.3.2(c}, this shows that, when p/¢ > 0,
2 2
ah=% L ro(f);
i.e. in our diagram ¢ 4, = F(p/q) we know the exact tangent at the origin (see Fig. 4).

A
f 7 / / asymplate and ypper bound
A

jower bounds

05

e

g 05 10
Figure 4

Upper bounds [from section 5 and from 10. 3. 2 (c)] and lower bounds (from section 4, see 10, 3. 4)
for the example of Figure 3.
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Zusammenfassung

Das betrachtete Eigenwertproblem kann aufgefasst werden als dasjenige einer schwin-
genden Membran mit teilweise festem, teilweise freiem Rand, welche aber nicht im Innern,
sondern auf dem freien Randteil Massen trigt. Die Eigenfunktionen sind havmonisch: das
Stekloffsche Problem mit dem zugehoérigen Rayleighschen Prinzip liefert fiir harmonische
Funktionen andere Erkenntnisse als das Dirichletsche Problem mit dem Dirichletschen
Prinzip [siehe insbesondere die Ungleichung (3)]. Isoperimetrische Ungleichungen werden
durch konforme Abbildung auf ein Normalgebiet und Anwendung des Rayleighschen
Prinzips auf die «verpflanzten» (siehe PoLva-SzeEGO [14]) Eigenfunktionen des Normal-
gebietes hergeleitet.
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