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1. Introduction 

It is well known that the instability in elastic solids occurs at a point of bi- 
furcation or discrete branching point of the equilibrium path. In plastic solids, how- 
ever, a point of bifurcation may be reached before an actual loss of stability. This 
difference arises from the fact that the elastic solid responds identically to loading 
and unloading, while the plastic solid has separate loading and unloading responses. 
As a result of the bilinear stress-strain law, it has only been possible to establish 
sufficient (but not necessary) conditions for uniqueness of the deformation mode in 
plastic solids. The criterion for uniqueness will therefore give the minimum load for 
which bifurcation is possible under prescribed boundary conditions. A familiar 
example is the buckling of straight columns where the bifurcation may occur when 
the load attains the tangent modulus value, although the loss of stability under dead 
loading cannot be expected below the reduced modulus value. Owing to geometrical 
imperfections and other uncertainties, an engineering structure will usually buckle 
at the minimum load for which the bifurcation is theoretically possible. As the de- 
formation continues in the post-buckling range, the load will initially increase with 
increasing distortion. 

The basic principles of uniqueness and stability in elastic/plastic solids are due 
to Hill [1], who derived sufficient conditions for these phenomena under dead 
loading. In a variety of practical problems, however, the loading is of pressure-type 
which has been treated in detail by Chakrabarty [2] for sufficiently general boundary 
conditions. The present paper mainly deals with the plastic buckling of thin cylindrical 
shells of arbitrary length when a gradually increasing external fluid pressure is applied 
to its cylindrical surface. The Ramberg-Osgood equation for the stress-strain curve 
is employed to present the results in a form that will be useful for practical purposes. 
In order to make the paper sufficiently self-contained, the relevant criterion for 
uniqueness for the conventional elastic/plastic solid is briefly discussed. 

2. The Uniqueness Criterion 

Consider a metallic body which is subjected to given traction and traction-rate 
on a part S F and given velocity on a part S v of the boundary, the remaining part Sf 
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being under uniform prescribed fluid pressure. Since the future position of an un- 
constrained boundary is not known in advance, it is convenient to formulate the 
boundary value problem in terms of the rate of change of the surface traction based on 
the initial configuration. The current state of the body is assumed to be completely 
known and this is taken to be the initial reference state in the field equations below. 

Suppose that there are two possible solutions to the problem for given nominal 
traction-rate P~ on SF, velocity v~ on S~ and fluid pressure rate ib on S I .  If the material 
rate of change of the nominal stress is denoted by ~i~, the condition of equilibrium 
may be expressed as 

0 
c3xi (A~ij)=0, A~=I~A~j, (1) 

where l~ is the unit normal to the initial surface element and x i the initial co-ordinates. 
The prefix A denotes the difference between the corresponding quantities in the two 
possible solutions at bifurcation. In view of the given boundary conditions, A ~ = 0  
on  S F and A vj = 0 on S~. The application of Green's theorem for surface and volume 
integrals gives 

~ A~AvjdS=S A$i i ~ ( A v j )  dV. (2) 

The integrand on the left-hand side of the above equation vanishes on S v and S~, 
while on Sy we have [2] 

1 ~ 1. ~ 

since Ap = 0 in view of the boundary condition. The condition for having two possible 
solutions may therefore be expressed as 

~Agi, o~i(Av~)dV-p~Avj[Ig~(AVk)-lj~--~k(AVg,ldSf=O. (4) 

In the constitutive equation for the conventional elastic/plastic solid, the stress- 
rate must be expressed in Jaumann's sense [3]. It corresponds to the material rate 
of change of the true stress a;j with respect to axes which take part in the instantaneous 
rotation of the element, The Jaumann stress-rate 6-~3 is related to the nominal stress- 
rate ~;j by the equation 

Si j  = (~ ij "~ tTij gkk "~ a ik O) j k  - -  tT j k  ~'ik (5) 

where e~j is the true strain-rate and ~% the anti-symmetric part of the velocity gradient 
tensor. It follows from the symmetry of tr~j and eij and anti-symmetry of toij that 

�9 ~ v j  . 

�9 ( 6 )  

= ~ i j  e i j  -~- tTij (~'kk e i j  + 2 e j k  (D k i - -  e j k  ek i - -  O)jk ('Ok i)" 
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From (3) and (6), a sufficient condition for uniqueness may be written as 

1-ddij deij q- ao(Aekk AI;ij + 2 desk d~ki  -- ASjk deki --  At.Ojk A(.Oki)] dV 

-- p ~ A v~ 1-1 k (A '~kj "{- d (.Okj) --  lj A e k k'] d S f  > 0 
(7) 

for all continuous differentiable fields Av~ vanishing on S v. 
The constitutive law for the conventional plastic solid is such that the strain- 

rate is related to the stress-rate by separate linear equations for loading and unloading. 
Thus for isotropic solids, we have 

. V ~ 

'n-  Gkl Ylkl nij~ 

eiJ=l 1 . v . 

when akt nkl >-- O, (8 a) 

when (rkt nkt ~ 0 (8 b) 

where H is the current slope of the true stress-plastic strain curve in uniaxial tension, 
G is the shear modulus and v the Poisson ratio; n~j is the outward drawn unit normal 
to the yield surface assumed to be regular. It is easily shown 1-2] that e~j nij<>0 for 
~o niJ ~ 0. The scalar product of (8) with ely gives 

r 3 G 2 v eEk] 

~ij '~ij = 
V 2 

eij nij >_ 0 

'~ij nij <- O. 

(9) 

Consider now a fictitious solid 1-4] in which the strain-rate is a linear function 
of the stress-rate as given by the first equation of (8) whatever the sign of akZ nkr If ~j 
denotes the stress-rate corresponding to the strain-rate e~j for the linearized elastic/ 
plastic solid, it follows from (9) that 

~ij eij >~ Tij ~ij = 2 G [e~j eij 3 G (e'iJ nij) 2 v 2 ] (10) 
3 G + H  " 4 - 1 ~ V  ekk 

where the equality holds only in the loading part of the current plastic region. 
Let (dij, eij ) and "* * (o-i j, eij ) represent the two possible states at bifurcation in the 

actual elastic/plastic solid. If both these states correspond to unloading, Aeij is 
related to A dij by an equation of type (8 b) while A eij is always related to A ~i~ by an 
equation of type (8a). It follows from (9) that in this case A(rijA%>A'kij A%. For 
all other possible combinations of loading and unloading, it can be shown by forming 
the scalar product of ~* with the relevant equation in (8) that 

[ v ,] 
3 G , nkl-t-l--~-~V t;kkeii (riJe*<2G eiJe* 3 G + H  eijnijekl 
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This inequality, together with that in (10), leads to ~) 

3G (nijAeij)2d_lV_~v(Aekk)2] (11) A~ijAeij>A'~ijAeij=2 G [Aeijdeij 3 G + H  

where the equality holds when both states correspond to loading. 
The sufficient condition for uniqueness of the linearized solid is obviously 

obtained by replacing A #o by A ~o in (7). The inequality (11) then shows that uniqueness 
of the linearized solid also ensures uniqueness of the non-linear elastic/plastic solid. 
If the constraints are rigid, so that vj = 0 there, every difference field Avj is a member 
of the admissible field vj. The uniqueness criterion for the linearized solid under these 
conditions becomes 

S [ri~i ~ij + trii(ekk eli + 2 ejk ~kl--  ejk eki-- 09ik O~ki)] dV 
(12) 

--  p j" [lk (~,k j -Jr- (2)kj) - -  l j ekk'l 1) j dS y > 0 

for all continuous differentiable fields vanishing on Sv. If the functional in (12) vanishes 
for some non-zero field v~, bifurcation in the linearized solid may occur for any 
value of the traction-rate on S F and ib on S I.  In the actual elastic/plastic solid, however, 
bifurcation will only occur for those traction-rates for which there is no unloading 
of the current plastic region. In the buckling type of problems, the plastic modulus H 
is large in comparison with the components of try1 and the terms tri. i I~kk eij and tro e.i k ~'ki 
may therefore be neglected. The bifurcation of the linearized elastic/plastic solid in 
this case corresponds to an eigenstate and the eigenfield makes the functional in (12) 
an absolute minimum. When curvilinear co-ordinates are employed, it is only 
necessary to interpret e~ etc. in (12) as the curvilinear components. 

3. Cylindrical Shell under External Pressure 

Consider a circular cylindrical shell of uniform thickness h subjected to uniform 
external pressure p on the cylindrical surface. If the length l of the shell is not suf- 
ficiently large in comparison with its radius a, the end conditions will have a significant 
effect on the critical pressure for buckling. At a generic point on the middle surface 
of the cylinder, consider a right-handed system of axes (x, 0, r) in which the x-axis is 
along the generator, 0-axis along the tangent to the circumference and r-axis along 
the outward normal to the surface. Let P be a point on the positive r-axis at a distance z 
from the middle surface. According to the customary thin shell theory, the com- 
ponents of the velocity vector v at P may be expressed as 

Vx=U+Z~o,  vo=v-ZOgx,  Vr=W (13) 

~) An inequality identical to [11] has been discussed by the author for the special case of the rigid/ 
plastic solid [5], although this has unfortunately been omitted in reference [2]. The author's attention 
to this omission has been subsequently drawn by R. Hill in a private communication. 
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where (u, v, w) are the velocities at the middle surface and (COx, coo) the rates of rotation 
of the r-axis about  the x and 0 axes respectively measured in the positive sense. 
Within the order of approximation of the shell theory, (co x , COo) are also the appropriate 
components  of the spin-vector to = �89 curl v. The components  of to are expressible in 
terms of (u, v, w) as 

co 1 Ow Ow c o ' = 2 -  Ox 00 x =  a ~ - - v  , coo- O x '  a " 

The velocity field (13) is adequate for calculating all strain-rates except the trough- 
thickness one which would follow from the stress-strain equations. Thus we have 

OU 0 2 W 

g x x - -  OX  Z OX 2 

1 / O r  \ z 
 oo=Tt +w)- 

1 
e x O = ~ _ ( ~  x 1 Ou\  +-a- g g )  - - - -  

~w 

z 0 - v .  
a 0x 

(15) 

The remaining shear strain-rates e,0 and e~, are identically zero, while the non-zero 
components of c% are related to those of the vector to by the equations 

COOx --~ --COxO-~COr, coxr ~ --COrx=COO, COrO --~ --COOr=COx . 

The current state of stress is a uniaxial compression or00= - p a / h  and the non-zero 
components of the unit normal to the yield surface are 

1 
?/00 ~ - - l~-"  llxX ~ r lrr--  /~. 

V 6 

The constitutive law for the linearized solid gives 

v 1 

v 1 1 1 

e,~= ( v 1 v 1 

l + v  . 
ex~ = E %0 



Vol. 24, 1973 Plastic Buckling of Cylindrical Shells 275 

where E is Young's modulus. If we introduce the tangent modulus T= EH/(E + H), 
a short calculation yields 

zu eu = ~:=x ~,,~, + 5too eoo+ 2 "~,~ o e,,o 
(16) 

_ E (o~e~x+2flexxeoo+Te2o+2~2o) 
l+v  , 

where the coefficients (~,/3, 7) are 

4(l+v) 
(5 - 4  v ) - ( 1 - 2  v) 2 TIE 

2 ( 1 + v ) [ 1 - ( 1 - 2  v) T/E] 
f l -  ( 5 - 4 v ) - ( 1 - 2 v )  2 T/E (17) 

(1+v)(1+3 T/E) 
i ; -  (5_4v)_( l_2v)2  T/E" 

Neglecting the small terms in the uniqueness criterion (12), as mentioned in the 
preceding section, the condition for uniqueness of the deformation mode of the 
cylinder may be written as 

(1+ z )  "tueudxdOdz-paj[ .  (co 2 +co2-2cor,%o)dxdO SII 

+PJJ [(~xx +~00) w + UC~ COx] dx dO>O 

to a sufficient accuracy (since p is small in comparison with E), the strain-rates 
appearing in the last two integrals being those for the middle surface. Substituting 
from (14), (15) and (16) into the above integrals and retaining terms that are consistent 
with the basic approximations [6], we have 

j,j.[~(Su'~ 2 8u 8v /Ov \2 1 / 8 v  Ou\2-1 

h 2 [ 1O2w\ 2 82w/02w 8v [c~2w Ov 2 

(18) 
(02W ~V) 2] pa F / S u \  2 l o w \  2 

+2 0(c30 8 (  dCaO-(l+v)~['JLtTg) +t~d-) 

ar 

where C = x/a. In the last integral, use has been made of the fact that the velocities 
are periodic functions of 0. The occurrence of bifurcation is marked by the vanishing 
of the above functional which is also a minimum with respect to variations of u, 
v and w. The Euler-Lagrange differential equations associated with this variational 
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problem are easily derived as 

02u 1 02u 1 02v Ow low 
~ T U ~  2 oo 2 ~(fl+�TggO+fl-y( +q ~, 002 - = 0 ,  (19) 

02// 1 02/) 
(fl+�89 0 ~ - ~  -t 2 0~ z 

1- 02/) 02/) 

/ 0 2v dw\  
- -  

03w  03w ] 
003 1 -(/~ + 2) 0- -U~l  ~09 

(20) 

+w) 
(21) 

03 v 03v 04w 04w 04wl 
+k -(8+2)0(200 7 ~ O g - + ~ 2 - + 2 " " + 1 " t p  )0~2002 t-7ffOi-]=O 

where we have introduced dimensionless parameters 

h 2 
q = ( l + v ) ~  h, k =  12a2. 

In the case of an elastic cylinder, T =  E, a = ~ = 1/(1 - v) and fl = v/(1- v). Equations (19) 
to (21) then reduce to those given by Timoshenko [7] except for certain small order 
terms, the effects of which are insignificant in the final result. The above equations 
provide a generalization of the eigenvalue problem when buckling occurs in the 
plastic range. 

4. Solution for a Simply Supported Shell 

Consider now the special case when the ends of a shell are supported in such 
a way that v = w = 0  at x = 0  and x=l. The condition O2w/Ox2=O at x = 0  and x=l 
must also be satisfied for the linearized solid when the ends are simply supported. 
In actual practice, these conditions will prevent uniform deformation near the ends 
of the shell throughout the application of the pressure. Unless the shell is too short, 
the bending at the edges will be of local character, having no significant effect on the 
critical pressure. The virtual velocity field for bifurcation, satisfying these boundary 
conditions, may be taken in the form 

u = U cos 2 ~ cos m 0 

v = V sin 2 ~ sin m 0 (22) 

w = W sin 2 ( cos m 0 

where m is an integer and 2 an integral multiple of n aft; U, V and W are arbitrary 
constant velocities. Using this velocity field, we find that equations (19) to (21) are 
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satisfied for all values of ~ and 0 provided the following conditions are fulfilled: 

[(ct 2 2 + ~ ) - - q m  2] U- ( f l+ �89  (a) 

22 

(23) 
+[Tm+km{(2+fl)22+Tm2}] W=O (b) 

- ( f l+q)2U +[Tm+km{(2 +fl)22 + Tm2}] V 

+[7-q(m2-1)+k{c~24+2(l+fl)22m2+Tm4}] W=O. (c) 

This system of homogeneous equations will have non-trivial solutions for U, Vand W 
only if the determinant of their coefficient vanishes. It is interesting to note that the 
matrix of the determinant is symmetric. The determinantal equation is simplified by 
observing that q and k are small in comparison with unity so that the terms involving q2, 
k 2 and q k may be neglected. The equation may therefore be written in the form 

A + B k = c q  (24) 

where 

A=524, 6=ctT- f l z=4( l+v)2(T/E) /[ (5-4v) - (1-2v)2(T/E)] ,  (25) 

B = [ct 24+ 2 ( 5 -  fl) 22 m 2 + ~ m 4] [~t 24+ 2 (1 + fl) 22 m z + y m 4] 

- 2  m E [(2 + fl) 22 +y  m 2] [(2 6 - f l )  22 -q- y m 2] +(2 22 +7 m2)( 2 622 +Y m2) (26) 

C --- (m 2 - 1) Eo~ 24 + 2 (6 - f l )  22 m z + 7 m4] + 22 (2 fl 22 - y m2). (26)' 

Since the critical pressure given by (24) increases with 2 the least pressure will 
correspond to 2 = zr all. If the length of the tube is greater than twice its diameter, 
the ratio 22/m 2 will be a small fraction and we may omit all terms containing 2 z 
and 24 in the expressions for B and C. The equation for the critical pressure therefore 
becomes 

524 
+ k y ( m  2 - 1) 

q =  ]) mg(m 2 -- 1) 

or (27) 
p a 4 TIE lr 4 a 4 (m 2 - 1) (1 + 3 T/E) h 2 
E h -  I + 3 T/E m4(m2-1) l 4 q ( 5 - 4 v ) - ( 1 - 2 v )  z T/E 12a z 

in view of (17) and (25). Equation (27) may be regarded as the true tangent modulus 
formula for the buckling of thin tubes under uniform external pressure. When the 
tube is very long, the first term on the right-hand side of the above equation may be 
neglected and the least value of the critical pressure then corresponds to m = 2. The 
critical pressure in this particular case has been found earlier by Chakrabarty [2] 

ZAMP 24/18 
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and Dubey [8]. For  shorter tubes, m = 3 may give a lower value of the critical pressure 
than that given by m = 2 and the condition for this to happen is 

7~ 4 a 4 27 E (1 + 3 T/E)  2 h 2 

1 ~ >  5 ~  ( 5 - 4 v ) - ( 1 - 2 v )  2 TIE a 2 " (28) 

As the length of the tube further decreases, a value will be reached such that the critical 
pressure for still shorter tubes is lower for m = 4  than for m=3.  For  exceptionally 
short tubes, however, the validity of equation (27) becomes doubtful. 

It is interesting to note that the left-hand side of equation (27) is lIE times the 
critical compressive stress a. For  a given stress-strain curve, T is a known function 
of a and equation (27) can be solved by trial and error to obtain the critical stress 

and hence the critical pressure for bifurcation. 
Substituting for (u, v, w) from (22) into the uniqueness criterion (18) and using 

the critical value of q given by (27), we find that the eigenfield that makes the functional 
vanish corresponds to 

V = m a p ,  W= ( ~  22 -mZ)  a p ~ _ - m Z  ap (29) U =2ap ,  

where p is an arbitrary constant. It is evident that for a very long tube, U is negligible 
in comparison with V and W and the eigenmode corresponds very closely to plane 
strain [2]. 

As mentioned before the critical pressure for the actual elastic/plastic tube 
(with no imperfections) cannot be lower than that given by equation (27) derived for 
the linearized solid. However, the pressure at bifurcation in the case of the actual 
non-linear solid must continue to increase in such a way that there is no incipient 
unloading of the tube. This condition may be stated as e 00 < 0 to a close approximation, 
the velocity field being any linear combination of the above eigenfield and that 
corresponding to a uniform radial contraction. In view of (15), (22) and (29), the loading 
condition becomes 

p a  z ~ x  
Th t---pm2(m2 - 1) sin ~ -  cos m 0 > 0 .  a 

This will be satisfied everywhere in the tube if 

p a > m2 (m 2 _ l )  p h (30) 
Th - 2a 

where p is taken to be positive. The tube may therefore buckle in a range of possible 
ways when the pressure reaches the value given by (27) and the rate of change of 
pressure at the bifurcation is always positive. Similar results have been obtained by 
Batterman [9] for a thin spherical shell under external pressure, without the use of 
the uniqueness criterion. 
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5. Discussion of Results 

Equation (27) is based on the assumption that the critical compressive stress 
exceeds the yield stress of the material. For  thinner tubes, buckling will occur in the 
elastic range where T= E. The critical pressure for all possible tube geometrics can, 
however, be calculated from a single formula if the stress-strain curve is represented 
by the Ramberg-Osgood equation 

~ = ~  1 + ~ -  - -  (31) 
\Oo I ) 

where a o and n are empirical constants. The curve predicted by this equation has an 
initial slope E and the secant modulus decreases to 70 per cent of its initial value when 
a = a 0 ,  for all values of n >  1. The tangent modulus according to this equation is 
given by 

7 \ a o ! J (32) 

Thus for a given value of a o, the strain-hardening increases as the value of n de- 
creases; the non-hardening material corresponds to n = ~ .  

Inserting the above expression for TIE in equation (27) and 'noting that the left- 
hand side of this equation is alE, a relationship between the critical stress and the 
shell parameters is obtained. The resulting equation is most conveniently solved 
by assuming a value of alE for a given value of I/a and calculating the corresponding 

1,0 

1.2 

~ 0.8 
D_ 

0: 

Figure 1 
Variation of the critical stress with 0tl ! 
the shell thickness. 

,% --3 

I I # . i  
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/111/I I/" p 11 ~ i l l  /1~$ ~ 

,'C,:; 

(If l n=3 
I I  / .v- Q.~o. / . / "  <50/E: o.0o 

2 3 4 
(h/a) 2.10 3 
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value  of h2/a 2. The ca lcu la t ion  may  be con t inued  with an  a p p r o p r i a t e  integral  value 

of  m, but  a s tage will be reached  when m mus t  be increased  for lower  values of a lE  to 

get the largest  value of  h2/a 2. F o r  very long tubes,  of  course,  the value of m is a lways 2. 

F igu re  1 shows the results  of the ca lcu la t ion  for several  values  of l/a, t ak ing  n - -3 ,  

v = 0 . 3  and  ao /E=0 .001 .  These  curves a p p e a r  as sol id lines, while the b r o k e n  lines 

c o r r e spond  to the elastic solut ion.  It is to be no ted  that  for th icker  tubes  the solid 

curves are apprec iab ly  be low the b r o k e n  ones, indica t ing  the occurrence of plas t ic  

buckl ing  which is often exper imenta l ly  observed.  

A formula  for the plast ic  buck l ing  of thin tubes has been  ob ta ined  earl ier  by 

Bi j laard  [10] and  G e r a r d  [11], using the to ta l  s t rain theory  of  plasticity.  Such cal- 

cu la t ions  are  of doubt fu l  val idi ty  and  no a t t empt  has been m a d e  here to compare  the 

present  results with those  of the above  authors .  
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Summary 

The problem considered here is that of a thin-walled circular cylindrical shell whose external surface 
is submitted to uniform fluid pressure. The condition under which bifurcation will occur in the shell 
beyond the elastic limit is examined and the true tangent modulus formula for the plastic buckling is 
established. Numerical results are presented for the critical pressure, covering both elastic and plastic 
ranges of buckling. 

Zusammenfassung 

Einige Betrachtungen tiber das Verzweigungsproblem einer dtinnen Kreiszylinderschale mit homo- 
gen verteiltem Aussendruck fiihren zu einem exakten Ausdruck f'tir die kritische Last im elastisch-plasti- 
schen Bereich. Verschiedene numerische Resultate ffir die kritische Last im elastischen sowie im plastischen 
Bereich werden angegeben. 
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