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1. Introduction 

The analysis of the dynamical behaviour of granular materials has been one of the 
most interesting subjects in the fields of civil engineering and chemical engineering. 
However, granular materials are very complicated in structure and composition, and a 
consistent treatment of the dynamical problem is extremely difficult. To characterize 
the motion of granular materials, the rotational motion of particles [1, 2], the 
micromotion [3, 4] and the motion of void[5] have been introduced as the internal 
variables. 

The aim of this paper is to describe the characteristic motion of granular materials 
in fully fluidized state. We observe that the dissipation processes for energy of fully 
fluidized granular materials differ from those of usual continua such as gas or liquid. In 
the case of gas or liquid the momentum transfer is produced by the thermal motion of 
molecules and there is the close relation between the coefficient of viscosity and the 
temperature. On the other hand, in the case of granular materials the momentum 
transfer occurs by particle collision, the scale of which is far larger than those of 
molecules, hence there is no direct relation between the momentum transfer process 
and the temperature. The energy corresponding to the random motion of particles will 
be converted into the thermal energy ultimately, and the relaxation time of this 
process will not be negligibly short, particularly in loose granular materials. In [6], we 
have introduced a new internal variable corresponding to the random motion of 
granular particles (quasi-thermal motion). In this paper we deduce the constitutive 
equations of random motion by using a simple kinematical model of collision of 
granular particles. Our constitutive equations have similar properties to those of fully 
developed turbulence and are coincident with Bagnold's relation [7, 8] when the 
assumption of local equilibrium for quasi-thermal motion is made. To investigate the 
characteristics of equations, steady and one-dimensional gravity flow is solved. 
Velocity profiles similar to those of experiments [9] are predicted by the theory. 

2. Field Equations 

To make the problem simple, neither the rotational motion of particles nor the 
motion of voids, etc., are considered in this paper. We introduce a new internal variable 
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corresponding to the random motion of granular particles. Basic field equations are 
obtained by using the usual procedures [12]. 

The mass conservation equation is 

co,p + cOi(vJp) = 0, (1) 

where p is the mass density and v i the mean velocity, and abbreviations have been made 
use  of :  

c~, = 3/Ot and (?; = cO~cOx< (2) 

The equation of balance of momentum is 

p(O,{ + v; 8j v i) : ay aJ' + p f i  (3) 

where o -u a n d f  i are the stress tensor and the body force, respectively. The equation of 

balance of random motion energy is [-6] 

p(O,e~ + v J cOjez) = (ri~Jvu, i) - (?jq{ - 7, (4) 

where e~ is the specific energy of random motion and a~J is the stress allotted to the 

production of random motion, q~ and 7 are the flux vector of random energy and the 
body sink of random energy, respectively. In statistical description, the specific energy 
of random motion e~ will be given by <6 z. 6z>/2, where 64 is the random velocity or 
fluctuating velocity and < > denotes the ensemble average. 

The equation of balance of internal energy is written in the similar form to Eqn. 

(3), 

p(c~te + v j Oje) = ff~iv(j,i ) - cOiq ~ + 7, (5) 

where e is the specific internal energy and ~ the dissipative stress and q~ the usual heat 
flow. Since the total mechanical work is (rlJvu,0, a u = a~] + a~ j is satisfied. In the above 
the energy of random motion is introduced as the transient energy state in the 
dissipation process of fully fluidized granular materials. The dissipation process of our 

material model is illustrated in Figure 1. 

- j  ~ 
h (7. j) 

(usual dissipation 
of energy) 

MECHANICAL WORKS(~v(i , j  ) ) 

~ V ( ~ , ] )  ~roduction of random 
motion energy) 

RANDOM MOTION ENERGY 

motion energy} 

INTERNAL ENERGY 

Figure 1 
Energy dissipation process of fully fluidized granular materials. 
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3. Constitutive Equations 

Let us obtain the constitutive equations by using a simple kinematical model of 
the microscopic behaviour of granular particles. The energy dissipation processes of 
granular materials are caused by the frictional force and the collisions of particles. The 
motion of particles will be very complicated and it is impossible to describe, hence the 
model shown in Figure 2 is used. A particle moving with the velocity ~5~ is considered 
and it is assumed to collide with its neighbouring particles, which are replaced by a 
spherical wall. The gain of kinetic energy of the particle considered is calculated and, 
by comparing with Eqn. (3), the constitutive equations are obtained. 

Now, let us deduce the relation of velocities of the particle before and after the 
collision with the surface. Considering the usual granular materials contain adhesive 
materials as water films, a fraction (1 - c 0 of the granular particles is assumed to be 
reflected from the surface, while the fraction c~ adhere to the surface (similar parameters 
to c~ are used as the simplest theoretical models of interaction molecules with a surface 
in the kinetic theory of gases [15]). Then the velocity of the particle after the collision 
will be given as 

- -  + (1 - ( 6 )  

where go is the velocity of the surface and g~ the velocity of reflected particles, which is 
determined as follows. Let ga be the velocity of the particle and h be the unit vector in 
the direction of the velocity (i.e., g~ = yah). The unit normal vector of the wall surface is 
denoted by ~. In the reflection particles are assumed to slip in direction of wall surface. 
From the momentum conservation relation, the following will be satisfied. In 
direction 

fo~ v~(~ .  ~)~ - f~ f ( t ) / m *  dt  = (v~i �9 ~)~, (7) 

/I random reflection 

// cO w~al ~ (velocity of\\ 

,' / I, 
imaginary sphere 

\\\ " b 

\ \  / 

\\ i / 

Figure 2 
Kinematical model of collision of granular particles. 
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where a force - ~f(t) is assumed to act during impact (0 < t < to). The component of 
~z perpendicular to ~ is given by v#~- (6 - ~ )  and in ~-(6 - ,7~) direction the following 

equation will be satisfied 

;i ~ v~-(5 - ~ )  - ~. (6 - ~ )  # f ( t ) /m* dt = tT". (6 - ~7), (8) 

where the frictional force is assumed to be linear in f ( t )  (Coulomb's friction law) and # 
is the coefficient of friction. Since the function f ( t )  is not determined without more 
microscopic consideration, we use the following empirical relation of collision 

E ( ~  - zT,.o)' ~]/[(~7;~ - ~7o~ ) �9 ~2 = - e, ( 9 )  

where e is the coefficient of restitution. Substituting the above relation into Eqn. (7), we 

obtain 

i ~  dt = (1 + e)(tT~ - ~) .~ .  (10) 

Summarizing Eqns. (7), (8) and (10), the velocity of the particle after a collision with 

the surface is given in the following form, 

~i --- ~ + (1 - ~ ) { ~  - (1 + 0 [ ~  + ~ ( ~  - ~ ) ] ( v ~ .  ~ - ~ . ~ ) } .  (11) 

The random motion of granular particles will be generated only in shear field, hence 
the particle is assumed to be located in shear field. Let D~j be the velocity gradient 

tensor of the field, then the relative velocity of the spherical wall surface to the center 

will be given by 

zT. = D .  (b~), (12) 

where b is the radius of an imaginary sphere. In the calculation, only the relative 
velocity is available, whence we may consider that the velocity of particle is g~ (random 

velocity) and the velocity of the spherical wall is given by Eqn. (12). 
Now, let us calculate the gain of kinetic energy during a collision with the spherical 

wall. The direction of random velocity is assumed to be isotropic in the meaning of first 
approximation (the random velocity will have a preferred direction in the direction of 
flow, however the calculation including the effect of anisotropy is too difficult with the 
present level), and since the collision of particles will be the random reflection, the 
orientation of the wall ~ is also assumed to be isotropic, Then, the gain of kinetic energy 
of one particle during a collision is calculated by 

AE~ = (1/2)m*(((tT. g]}~}e - v~), (13) 

where m* is the mass of particle (i.e., in this paper we consider the identical granular 
spheres), and ( }~ denotes the statistical average with respect to ,7 which varies in the 
space of ~. ~ _> 0, and ( }e is the statistical average with respect to g which varies in 
whole space. The calculation of ((z7 z �9 va}~)e is done as follows. Let if, ~1, ~2 and ~3 be 
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the scalars defined by 

-= g ~ ,  0~ = ~ . D . g ,  02 = g . D - &  03 = ~ D ~ D &  (14) 

then the velocity of  the particles after collision is writ ten as 

t7 i = ~bD.t~ + (1 - c0{va~ - (1 + s)(vz r - b~q)[~ +/~(g  - r (15) 

and the inner p roduc t  g2. g~ is 

~7~. tT~ = (~b) 2 - 03 + 2o~(1 - ~)b 

• {v~0~ - (1 - ~)[(r + ~,~0~ - # ~ q ) , ~  - (0~ + #0~ - #~01)b0d} 

+ (1 - c02{v~ - 2 ( 1  + e)va[r + # ( 1  - r ( - b0~) 

+ (1 + e)z[1 + #z(1 - ~2)3(v]~2 - 2bv~k~ + b202)}. (16) 

In calculating the statistical average with respect to ~, the following fundamenta l  
relat ions are used: 

f 
f~/2 ( ~ %  = ( 1 / 2 ~ ) .  ~ . a c o  = 

do 
(r = 1/(k + 2) .& 

and 

cosk 0-sin O dO = 1/(k + 1), 

(~k~f}~ = (6 + kgg)/[(k + 1)(k + 3)], 

(~ko~}o = (~kf)~-D.~q = 02/(k + 1), 

(r = Ck?~)~: (D'g)(D'~)  = (03 + kO2)/[(k + 1)(k + 3)]. 

(17) 

Using these relations, the statistical average of  g;-g;, is calculated as 

(~71" gl}~ = (c~b)203 + 2e(1 - ~)b-C1(g) + (1 - e)2. C2(~), 

C1(~) _= v~02 - (1 + e)v~02(1/3 + / ( 4 )  + (1 + e)b[~,3/3 + (3022 - 03)/8], 

C2(~) = v~ - 2(1 + e)v,(1/3 +/~/4)(v a - b02) (18) 

+ (1 + e)2[vx(1/3 + 2/~2/15)(v~ - 2b02 ) 

- (2/15)(pb~b2) 2 + (1/3 + 4#2/15)bZ~3 ]. 

In calculating the statistical average with respect  to & the following fundamenta l  
relations are used: 

(1 )e  = 1, 

(~,~}~ = a / 3 ,  

(~b2)e = D 1 / 3 ,  O l  ~ Oil, (19) 

( ~ t 3 )  ~ = D 2 / 3  , D 2 ~ D i j D i j  , 

( ~ ) ~  = (D~ + 2D2)/15 , 
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wh6re D is assumed to be a symmetric tensor. Using the above relations, we have 

((V a" V~)~)~ = (gb)2D2 + 2c~(1 - e)bC1 + (1 -,3{)202, 

C, ~ [1 - (1 + e)(1/3 + t.t/4)]vaD~ + (1 + e)(1/9 + p/120)bD2 + labOr~40, 

Cz -~ [1 - 2(1 + e)(1/3 + #/4) + (1 + e)2(1/3 + 2/~z/15)]v 2 (20) 

+ (2/3)(1 + e)[1/3 + #/4 - (1 + e)(1/3 + 2#2/15)]bvaD~ 

+ (1/9)(1 + g)2(1 + 161~2/25)b2D2 + l~b2D~/40. 

Now, let us consider the collision frequency of granular particles. How should we 
take the radius of the imaginary sphere? In usual cell model methods [10, 11], if N is 
the number density of particles, then the space allotted to one particle will be given by 
l /N,  the radius of  which will be b = (3/4rcN) 1/3. However in case of the collisions of 
granular particles, we think that the radius determined by the above is meaningless 
because even in packed state, b > a holds, where a is the particle radius. Therefore, we 

determine the radius of imaginary sphere by another method. It is natural to consider 
that the mean distance between the centers of neighbouring particles is proportionate 
to ( l /N )  */3, where Nis the number density of particles. Since Nis proportionate to the 
mass density p, the mean distance L can be written as 

L = Csp(l/p) 1/3, (21) 

where Csp is the proportional constant determined by the statistical properties of the 

distribution of particles (e.g., in cubic array systems, Csp = (4rcm*/3)I/3a, where m* and 
a are the mass and the radius of particle). In the flow of fully fluidized granular 
materials, a certain statistical distribution of particles will be realized, and we assume 

that the statistical distribution is not altered by the change of mass density p. Let p* be 
the mass density of the packed state of granular materials, then the condition 

2a ~- Csv(1/p*) 1/3 (22) 

will be satisfied as the particles touch with each other in packed state. Eliminating Csp 

from (21), we obtain the formula 

L ~- 2a(p*/p) 1/3. (23) 

We therefore take the radius of the imaginary sphere to be L/2. This selection satisfies 
the condition that as p--+ p*, then b-+ a. Since the particle velocity is b" a, the collision 
frequency of the particle is approximately given by v;j2(b - a). 

We can now calculate the total gain of energy of random motion. In a unit volume, 
N particles are contained and the absolute values of random velocities are assumed to 
be uniformly given by v~. Multiplying AE~ by the number density N and the collision 
frequency, the total gain of energy of random motion per unit time per unit mass is 

AE = (1/4)pv~/(b - a)[(QT~, zT~)~)~ - v2], (24) 
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where p = m * N  was used. Substituting Eqn. (20), AE is obtained as 

A E  = (1/4)pv~/(b - a)[Ko v2 + K l v D j j  + K2b2DijDi j  + K3b2(Dj )2] ,  (25) 

where Ko, K1, K z and K 3 are the constants defined by 

K o = (1 - c0[1 - 2(1 + e)(1/3 +/~/4) + (1 + e)2(1/3 + 2#2/15)3 - 1, 

K1 -= (2/3)(1 - ~){~[1 - (1 - e)(1/3 + #/4)] + (1 - cr 

• [(1 - e)(1/3 + #/4) - (1 + e)2(1/3 + 2/~2/15)]}, (26) 

K 2 - ~2/3 + a(1 - a)(1 + e)(2/9 +/~/60) + (1 - a)/(1 + e)2(1/9 + 16/~2/225), 

K 3  = (1 /5 ) /~ (1  - ~ ) [ c q 4  - ( 2 / 4 5 ) / ~ ( 1  - ~ ) (1  + e ) 2 ] .  

The total gain of  energy of random motion per unit time per unit mass may 

correspond to the right-hand side of  Eqn. (4). Comparing the right-hand side of  Eqn. 

(4) with AE, we obtain the following constitutive equations: 

a~ij = q)(p)[Klv~ 6ij + b(p)v~(K2v,a  ) + K3vS,s 6ij)], (27) 

7 = - KoqJ(P)v~/b(P), (28) 

where (I) and b are the functions of  p and are defined by 

�9 (p) = (1/4)p/[1 - (p /p . ) l / 3 ] ,  b(p) -- a (p* /p)  ~/3. (29) 

We note that, in order to deduce the constitutive expression for flux vector of  random 

energy, q~, we must consider another kinematical model, one which has the effects of 
random velocity gradient c?~v~�9 included. 

4. Equations of Fully Fluidized Granular Materials 

In the previous section we obtained approximate forms of the constitutive 
equations for a~ j and 7, which relate these quantities to the random motion of granular 

particles. In order to describe the motion of granular materials, we must investigate the 
form of dissipative stress a~ J. In the case of  packed granular materials we obtained [13], 

using a simple model in which the particles have been approximated by a series of 

parallel layers, the dissipative stress caused by the frictional force between the particles. 

In the case of  fully fluidized granular materials the packing is loose and a model similar 

to that of  dense packing model cannot be used. There are still some ambiguities at the 
present stage in modeling the complicated motion of  granular materials, however, we 
think that the effects of  the dissipative stress in fully fluidized state will be less than in 
the packed state. In this paper we neglect the dissipative stress, which corresponds to 
assuming that the dissipation process of  energy occurs as follows: 

Mechan ica l  W o r k  --~ Energy  o f  Random M o t i o n  -+ Thermal  Energy .  
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Substituting (27) and (28) into the conservation equations of Section 2, we obtain 
the following a set of governing equations for fully fluidized granular materials. The 
mass conservation equation is (1). The equation of balance of momentum is 

+ = + + p f ' ,  (30) 

where pz and 6~J are defined by 

p~. - - K I O v ~ ,  (31) 

~i~ = bOv~(K2v(i,j ) + K3v! j 6ii). (32) 

In Eqn. (4), the specific energy of random motion e~ must be expressed in terms of the 
internal variable vx. Since the uniformity of random motion of particles has been 
assumed in calculating the constitutive equations, it will be natural to assume 

e z = (1/2)va z, (33) 

then the equation of balance of random motion energy (4) is written as 

p(~tV2 Jr- V j ~jl)it ) = rb[Klv~V~s + b(g2l)(rn,n)V(m,n ) Jr- g3(v,Ss) 2 -t- KovZ/b]. (34) 

In most problems the change of internal energy has negligible effects on the motion of 
materials, hence we neglect Eqn. (5) in our considerations. 

We notice that these equations have the close resemblance with those of 
turbulence. In the turbulent theory (see, for example, [14]) the following facts are well 
known: 

a) the mean dissipation of the turbulent energy per unit time per unit mass is 
s ~ (Au)S/L,  

b) the turbulent viscosity is/~ ~ p L  Au, 
c) the variation pressure is Ap ~ p(Au) 2. 

It may be easily shown that, if b/(1 - p /p , ) l / 3  and va are replaced with L and Au in our 
constitutive equations, similar relations hold in the present theory. 

In the case of the local equilibrium of random motion (c~tv~ = c3iv x = 0) and a 
simple shearing motion (i.e., 3zv 1 r 0, all other components are zero), we obtain from 
Eqn. (34) that v,  ~ b(O2vl). 

Substituting this relation into (31) and (32), the pressure px and the stress 6~ are 

p~ ~ bZ(~zvl )  2, ~ J  ~.~ b2(~zv l )  2. 

These relations suggest the same functional dependence as the semi-empirical 
constitutive equations obtained by Bagnold [7, 8]. 

5. Steady One-Dimensional Gravity Flow of Granular Materials 

Let us consider the gravity flow of granular materials bounded below by the fixed 
granular bed inclined at an angle 0 to the horizontal (Figure 3). Since the equations are 
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Figure 3 
Steady one-dimensional gravity flow of granular materials. 

complicated nonlinear partial differential equations, the solutions will not be easily 

obtained with the exception of some special cases. When the flow is assumed to be 
steady and parallel to the fixed plane, we can solve the equations. 

In case of the steady and one-dimensional flow, ~t = 0 holds and the variables are 
the functions of y only. The conservation equation of mass (1) is satisfied automati- 
cally. The equation of balance of momentum is rewritten in the following forms: 

(1/2)/(2 d(~bv~vx,y) /dy  + pg sin 0 = 0 (in the x direction), (35) 

where vx,y = d v J d y ,  and g is the constant of the gravity force, and 

Kld(q)v~) /dy  - pg  cos 0 = 0 (in the y direction). (36) 

The equation of balance of random motion is, from Eqn. (34), 

(1/4)K2~b(v~,y)  2 + Ko~ v ~ / b  = 0. (37) 

On substituting vx,r given by Eqn. (37) into Eqn. (35), the following equation is 
obtained: 

d(Cbv])/dy = - pg sin O/(Igolg2) 1/2, (38) 

where [Ko[ is the absolute value of K0, which always takes a negative value. In case of 
cohesionless granular particles (7 ~ 0), K I is also negative. Comparing Eqn. (38) with 
Eqn. (36), we see the solution of steady one-dimensional flow problem exists if and only 
if the angle 0 takes the value defined by 

tan 0* = (IKoIKz)I/2/IKI[. (39) 

Let us obtain the solutions in case of 0 = 0". The thickness of granular materials 
is assumed to be constant. The boundary conditions are given at y = 0 and y = ~. At 
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0 Figure 4 
Profiles of the velocity and the random motion. 

the free boundary y = ~, we may put, neglecting the effects of  air, 

vx ,y=0  a t y = ~ .  (40) 

At the boundary y = 0, though there are some ambiguities, we put 

v x = 0  a t y  = 0. (41) 

Since the profile of mass density p(y) is not determined by the equations, we assume p is 

the linear function of y, 

p = p*[1 - (Ap/6y)y], (42) 

where, at y = 0, p = p* is assumed and -(Ap/Ay) is the density gradient in the 

direction of y. Then v~ and v~ are obtained by Eqn. (36) and Eqn. (37): 

v~ : M1[)5(1 - fi)]1/2, (43) 

L vx = M 2 [P(1 - )5)] 1/2 d P, (44) 

where ~ - Y/l, and M~, M2 are constants defined by 

Mt - [9 cos O*(Ap/Ay)/(3lKll)] j/2. ~, M2 ~ (2/a)(lKol/g2)l/2~M1. (45) 

In Figure 4, the solution of steady flow (Eqn. (43), (44)) is illustrated. The velocity 

profile has the close resemblance of those of  experimental works [9]. 

Conclusions 

We have so far investigated the equations of  fully fluidized granular materials. To 

describe the characteristic motion of granular particles, we have introduced a new 
internal variable corresponding to the random motion. The constitutive equations 
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relating to the random motion have been obtained by using a simple kinematical model 
of the microscopic behaviour of granular particles. Our constitutive equations have the 
similar properties of those of turbulence, and in the case of local equilibrium for the 
random motion, our constitutive equations coincide with Bagnold's relations. To 
investigate the characteristics of equations, steady and one-dimensional gravity flow 
has been solved and similar velocity profiles to those of experimental works have been 
obtained. We think that some aspects of complicated behaviour of granular materials 
are described by our equations. 

We note that the analysis of the dynamical behaviour of granular materials has 
just started and many interesting developments can be expected in the future. 
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Abstract 

Equations for fully ttuidized granular materials are proposed and are solved in a simple case. In fully 
fluidized granular materials, the granular particles slip or collide with each other and energy is dissipated. In 
describing the energy dissipation process characteristic to granular materials, a measure of random motion 
of granular particles is introduced as a new internal variable. We derive the constitutive equations by using a 
simple kinematical model of the collision of particles. The set of equations for fully fluidized granular 
materials obtained has properties similar to the equations that describe turbulence. For reasonable 
assumptions, these equations predict the results of Bagnold, namely that the shear and normal stress depend 
upon the square of the velocity gradient. In case of steady one-dimensional gravity flow the calculated flow 
profiles resemble experimental ones. 

R6sume 

Des 6quations pour des mat~riaux granules enti~rement fluides sont propos6es et r6solues dans un cas 
simple. Par le frottement et les collisions des particules entre elles, de P6nergie est dissip6e. Pour d6crire 
t'6nergie de dissipation, on introduit une mesure du mouvement al~atoire des particules comme nouvelle 
variable intense. Un module cin4matique simple de la collision des particules permet d'4tablir les ~quations. 
Ces 6quations ont des propri&6s semblables aux 4quations de la turbulence. Sous des hypoth6ses 
raisonnables, elles prhdisent les r6sultats de Bagnold, ~, savoir que l'abrasion et la tension normale d6pendent 
du gradient de la vitesse. Pour un flux de granit6 stable, les profils de flux calculus ressemblent ~_ ceux obtenus 
exp6rimentalement. 
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