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1. Introduction 

In [1], a variational principle of the complementary energy type was developed 
for finitely deformed elastic bodies. Under certain restrictions, the principle can be 
used in conjunction with the potential energy principle to provide bounds on the 

potential energy, and for some deformations the bounds can lead to estimates for 
overall quantities of direct physical interest. 

The problem of the all-around extension of a plane sheet with a circular hole has 
been treated by Rivlin and Thomas [2] who solved the problem numerically and 

compared their solution to experimental results. The problem is one-dimensional and 
most efficiently treated by a direct numerical approach, but it is considered here in 
order to provide experience for more complex problems. In Section 2, the variational 
principles are used to obtain bounds for the total strain energy of the deformed sheet 

for various values of the overall extension ratio for particular strain energy functions. 
The approximate solution of Wong and Shield [3] is used to generate trial functions, 
and accurate estimates for the stress resultant at the outer edge of the sheet are 

obtained. 
Section 3 considers the large extension and torsion of a long elastic cylinder which 

is bonded at the ends to rigid plates. An approach is described for estimating the 
resultant end loads through the use of variational principles. As an illustration, a neo- 
Hookean cylinder with an elliptical cross section is considered. Green and Shield [4] 

have determined second-order effects in the torsion of a finitely extended cylinder for 
an incompressible Mooney material which includes the neo-Hookean material as a 
special case. The results in [4] suggest forms to be used for the trial functions. Accurate 
estimates for the twisting moment and the axial force are obtained for elliptical 
cylinders with axes in the ratios of 2:1 and 4:1 for a wide range of extension and twist. 

2. All-Around Extension of  a Plane Sheet with a Circular Hole 

We suppose that a plane sheet of uniform thickness ho occupies the annular region 
a < r < A in the reference state, where r, 0 are polar coordinates. We assume that the 
material is incompressible, homogeneous, and isotropic. With the major surfaces and 

1) Now at Mead Office Systems, Richardson, Texas, 75081, USA. 
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the edge r = a of the hole traction free, the sheet is subject to a uniform radial 

displacement at r = A, so that a particle initially at (A, 0) is displaced to (pA, 0), where 
is a constant (p > 1). Under these conditions, a particle initially at (r, 0) in the middle 

plane is displaced to the point (p, 0), where p is a function of r only. 
We use the membrane approximation and ignore variations in the deformation 

gradients throughout the thickness. From symmetry considerations, the principal 

directions of strain are radial, circumferential, and normal to the middle plane. 
Denoting the principal extension ratios in these directions by 21, 22, and 23, 
respectively, we have 

21 dp 22 D 2 23 1 (2. l) 
dr r 2122 

and 21, 22 and 23 are functions of r only. The principal strain invariants It,  I 2 are 

1 1 1 
I1 = 22 + 222 + 2 ~ '  I2 = )~-]-1 + 2~-z + 2222. 

We first assume the neo-Hookean form for the strain energy function. The total 
strain energy U(/~) is given by the integral 

F = 2~hoC 1 (I 1 - 3)r dr, 

where Ca is a material constant, and the Euler differential equation associated with the 
functional F provides the equilibrium equation 

in a _< r < A. (2.2) 

The boundary conditions are 

T = 2 h o C l ( 2 1 - ~ ) = 0  at r = a ,  p=l~A a t r = A ,  (2.3) 

where T is the radial stress resuItant measured per unit length of  the undeformed 
middle plane. 

For the present case, the functional ~ in (3.14) .2) becomes 

/;{ q) = 27choC 1 2 2 + 222 + 2 o----2 -- 3 r dt', (2.4) 
21z2 

in which 21, 22 are quantities obtained through (2.1) from a trial function p satisfying 
the second condition in (2.3). This gives an upper bound for U(p) provided the 
inequality in (3.16)* holds. When the terms 1/2~2~, 1/22223 in (2.2) and (2.3) are much 
smaller than unity, the solution i s very close to [3] 

p = #r(1 + a2/r2)/(1 + aZ/A2). (2.5) 

2) Numbers marked with a dagger (t) refer to equations and inequalities in [1]. 
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This suggests that we choose the trial function to be 

12)1' 

ZAMP 

where c is a parameter and c is required to satisfy 

0 < c < A 2 / ( 1  +AZ/a  2) 

in order to have 2 = 1/Z122 finite in a < r _< A. Substituting in (2.4) and evaluating the 
integral, we obtain 

()[( c/<3(1) 1 qb=112 1 -  1 1 - ~  + 1 -  + 
2rchoA2C1 ~- ~2j  2 ~ 2#'*(~z - C) 4 

I C2 ~4C~ 

X (0~ 2 - -  1)  2(~ 2 -- 2C) 2[(c~ 4 - 1)C - ~z(cd - 2C)] 

3~2C { (  2 C ' ~  ( 0 ~ 2 - 1 ) C + ~  2 q'~7, 
q- 4(0~ 2 - -  C ) I n  1 - ~T / / [  ~ +-TTd+-~2Aj j  (2.6) 

where we have set c~ = A/a, C = c/a 2. The parameter C is to be chosen so that the 
functional q5 is minimized. 

With the change of variable ~ = r/a, the functional R* in (3.17)* becomes 

27choA2C 1 ~ ~ + 3 ~ d~ - 211 Z 1 -  Zl,t 2 ~=,  (2.7) 

in which 2> 2 z are required to satisfy (2.2) and the boundary condition 

2~22= 1 a t e =  1. 

This leads to a lower bound for U(#) provided the inequality in (3.19)* holds. Note that 
21 ,  22 are not necessarily quantities derived from a function p through (2.1). The 
approximate solution (2.5) suggests that we take 

1 ( ~ )  1 ( ~ )  
21 3 2 -  K 1 -  , Z 2 2 3 -  K 1 + , (2.8) 

21)~ 2 2122 

where K > 0 is a parameter, and the equilibrium equation and the boundary condition 
are then satisfied. With the forms (2.8), the integral in (2.7) can be transformed into one 
using Z = 1/21)~ 2 as the variable of integration. The details can be found in [5~. 

It can be shown [5] that the second variations of ~ and ud, given by (3.16)* and 
(3.19)*, are positive definite for radial deformations of the neo-Hookean sheet. Hence 
the functions ~ and ~? have local minima at the actual extension ratios ),~, )~2 and �9 and 
-~  provide upper and lower bounds on the total strain energy U(#), as indicated in 
(3.20)*. In a small change 6#, the change in the total strain energy U(11) is equal to the 
work of the stress resultant ar r = A, 

(}U = 2~z#AeS 611, 
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where Sis the stress resultant measured per unit length of the deformed middle plane. It 
follows that 

1 d U  
S = 2n/.t~ 2 d/~ (2.9) 

For I 1 < 12 and 4 < 12 < 100, the strain energy function 

W = Ca{(I1 - 3) + k(/~ v - 3U)/N}, 

where C~ = O.181MPa, k = 0.077, and N = 0.5, approximates the empirical strain 
energy function derived by Shield [6] from experimental results of Treloar [7]. For this 
strain energy function, the functional r becomes 

1 @= 1 2~+22 1 1 1 ~ 
2~hoA2 G j + ~.~,.~ - 3 + X~X~ + ~ + - 3 ~ <,  

where 21 and ~2 are derived from a trial function p such that p = / ~  at ( = ~. We 
choose the same trial function as that for the neo-Hookean sheet and after some 
calculation, we obtain 

1 
27rhoA2C, ~=/ ' t (1-~1~2)I (1-~2)  2 C2~ 3 ( 1 _  l_)q. c~6 

+ 7 o - $ 2/~'(g-- C) 4 

I C2 e4C; 
x (~2_ 1) 2(~2_2C) 2[(~ 4 -  1)C 2-(X2((Z 2 - 2 C ) ]  

3~2C {( 2 C ) [ ( ~ I -  1 ) C + c d  _ ~  k3 u 2 
4(~ 2 -  C)In 1 - ~ -  + ~2)C + ~ 2 j j j  - 2 ~ (  ~ - 1) 

k ( /"9r _ C'~4F ~4C2 _ 2 q 

- t - ~  i~,l 4 " t - - ~ ) L  ! (0~2 C)2~4 .2(~2 _ C) 2 

- 2+  lq (d( .  

(2.10) 
The functional R ~ becomes 

2rchoA2Ct - ~  2 2 + 2 2 - ~ + 3  +2k  '~,'~2 2222 + ~212 + ~222J 

• 212 )}2) 

[( 1 ]} 
k )~  _ _  _ 3u U 2 2 +2~ +~22 (d (  

1 1 1 N-  1 2 13 

( 2 . 1 1 )  
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and if we choose 21, 22 SO that 

(2.12) 

(22--~121~2){1 +k21(2122-t-)~1 +22j J =  

where Kis a parameter, then the equilibrium equation and the condition 2222 = 1 at 
= e are satisfied. 

Numerical calculations were performed on the University of Illinois CYBER 175. 
Upper bounds on U(#) for the neo-Hookean plane sheet and the sheet with the 
empirical strain energy were obtained by minimizing numerically the expressions (2.6) 
and (2.10), respectively, with respect to C. Numerical integration was used to evaluate 
the integral in (2.10). Lower bounds on U(/I) for the neo-Hookean sheet were obtained 
essentially by evaluating the functional (2.7) through numerical integration and 
varying the value of K to maximize the lower bound, but the transformed integral of 
[5] was used. In order to obtain lower bounds for the sheet with the empirical strain 

energy, the equations in (2.12) were solved numerically for 21, ).2 for a particular value 
of Kand  the functional (2.11) was evaluated through numerical integration. The value 
of K was varied to maximize the lower bound. For both of the sheets, values of 
c~( = A/a)  from 2 to 8 were used and calculations were performed at intervals of 0.02 for 

for the range 1.2 _</~ _< 4. The values of the bounds obtained determined U(/~) to 

within 0.5% over the range of/~ considered. In general, the bounds become closer as/~ is 

increased. The mean of the upper and lower bounds was chosen for the value of U(#) 
and numerical differentiation was used to give S through the relation (2.9). Figure 1 

shows the variations of S/hoC1 with/~. If the upper bounds alone or the lower bounds 
alone were used to estimate S, the estimates would differ by not more than 0.6~ from 

the values indicated in Figure 1. 

3. Large Extension and Torsion of a Cylinder 

We consider a cylinder of homogeneous elastic material with length l and cross 
section R 0 with ends bonded to rigid plates which are parallel to each other and 
perpendicular to the axis of the cylinder. We choose the rectangular Cartesian 
coordinate system x~ so that the x3-axis is the line of centroids of the cross sections of 
the cylinder in the reference state and the ends are in the planes x3 = 0, x3 = I. 

The end plate at x3 = 0 is held fixed and the end plate at x3 = / i s  displaced (2 - 1)/ 
axially and rotated through an angle ffl about the x3-axis. We then have the end 
displacement conditions 

f ~ i = x i  o n x  3 = 0 ,  (3.1) 

Yi = ('X'I COS Ol -- XZ sin Ol, Xl sin ~9l + xz cos Ol, 2/) on X 3 ~--- l ,  

where xi and yi are the coordinates of a particle in the reference and deformed states, 
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Figure 1 
Stress resultant at the outer edge for extended plane sheets with a circular hole. 
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respectively. The lateral surface is free from traction and we denote the axial force and 
the twisting moment on the end plates by L and M, respectively. In small changes 60, 
62, the change in the total strain energy U(~k, 2) is equal to the work of the end loads, 

6U= MI 6~b + L162, 

and it follows that 

1 c3U 1 ~ U  
M -  l ,:30' L - l c32 (3.2) 

When the cross section has two axes of symmetry, the resultant load on the ends will be 
the axial force L and the twisting moment M. For  other sections, the location of the 
'natural '  axis of  torsion will depend on the values of  2 and ~O and on the material 
properties, and forces and moments other than L, Mwill be needed on the ends in order 
to maintain the end displacements (3.1). 

The principles in Section 3 of [1] can be used to obtain bounds for the total strain 
energy of  the cylinder, provided the conditions in (3.4) t and (3.12) t are satisfied for the 
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actual deformat ion y~. We assume that  the length of  the cylinder is long enough for 
the end effects to be negligible. Then we may take ' two-dimensional '  trial fields 

for the functional P{ Y~} except in end regions 0 _< x3 -< c and l - c _< x 3 _< l in 
which the fields are adjusted in order to satisfy the boundary  condit ions (3.1). Here 
c is of  order  of  the maximum diameter d of  the cross section. Except in the end regions, 
we take 

Yi = [ ( x l / ~  + u) COS 0 - (x2/x/~ + v) sin 0, 

(xl/xf2 + u) sin 0 + (x2/x~ + v) cos 0, )~x3 + w], (3.3) 

where 0 = O(2x 3 + w)/2 and u, v, w are the functions of  xl ,  x a only. The Cauchy strains 
Cik = Yr,iY~,k derived from (3.3) are independent  of  x 3 and we have 

1 
P{ Yi} = fR W dA, (3.4) 

7 o 

with neglect of  terms of  O(d/l). This gives an upper  bound  for U(0,  2)/l. As an 
alternative to (3.3) we can take the equivalent forms 

Yi = [(Xl/x/~ + u) cos 05 - (x2/xf2 + v) sin 05, 

( x l / @  + u) sin 05 + (x2/%~ -Jr I)) cos 05, •x 3 + wJ, (3.5) 

where 05 = Ox3, and u, v are different functions ofxl ,  x 2 to those in (3.3). These forms 
suggest that  for  the functional  Q{ Yik}, we can take the ' two-dimensional '  trial fields 

Y/k 

A cos 05 - B sin qS, 

A sin q5 W~ + B cos 05 

C cos 05 - D sin 05, 

C sin 05 + D cos 05 

-~0(Y1 sin 05 + Y2 cos 051] 

~( Y1 cos 05 - Y2 sin 05)], 

2 
(3.6) 

where 05 = 0x3. The quantities A, B, C, D, Y1, Y2, W1, W2 are functions ofx~,  x2 only 
and they are to be chosen so that the trial functions Yik satisfy the equilibrium 
equations th roughout  the cylinder and the condi t ion of  zero traction on the lateral 
surface. The functional Q{ Yik} becomes 

- ^ d A x  o" Q{Yik} =I  o~c~yik Yik-- W' dA LjRoaY~3yi J3= 
Then we have 

7 Q{Y~k} = o (OYik JR~ 0Y33 dA, (3.7) 

if we again neglect terms of  O(d/1), and this gives a lower bound  for U(O, 2)/l. The 
integrands in (3.7) are functions of  xl ,  x2 only. 
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For an incompressible material, we take the same trial fields as above and use the 

functionals of Section 4 of [1]. The trial fields Yi for the functional P{ Yi} are required 
to satisfy the condition of incompressibility, and with the forms (3.3) the condition is 

2 1 8u~{ 1 + ~2x2 0~- 2 - 1 = 0. (3.8) 
+ Ox,Jk,/~ ~x, 

With neglect of end effects, the functional QI{ Yi~, P} in (4.21) t leads to 

7 QI { Y,k, P} = Y~k W' o { 0  r,k - + P [ 3  - in (I r ,  sl)] aA 

- 2 f ,  of, C~W'+ }dA, (3.9) [~Y33 PX33 

where the trial pressure P is a function of xl, x 2 only. 

For  a homogeneous cylinder we can alternatively consider an equilibrium state of 
extension and twist in which we have the same state of strain at each section. The 
deformations Yi are then characterized by (3.3) or by (3.5) throughout the cylinder. 

Considering the work done by tractions in small changes c5r 62 on the portion of the 
cylinder initially between x 3 = 0 and x 3 = l and the change in the total strain U(O, 2) 
for that portion, it can be shown [8] that the relations (3.2) still apply. The Cauchy 
strains C;k are independent of x s and they can be expressed in terms of yi.~ and ~,y, 
evaluated on x3 = 0, the explicit dependence on r and y~ occurring only through the 

product eye. (Greek indices range over 1, 2.) Thus the strain energy per unit initial 
volume can be written as 

w = ff~(n,,p, rl~,) = ff'(n,,p, r 

where we have written r h for (Yi)x3 = o. The total strain energy per unit initial length of  
the cylinder is given by the integral 

F{th} = fro 14/ dA. (3.10) 

The Euler differentia/equations and the natural boundary conditions associated with 
the functional F{qi} are equivalent to the equilibrium equations and the boundary 
conditions for the deformed cylinder and they are 

c3x~ ~r/i -- 0 in Ro, - - n p  --- 0 on Co, (3.11) 
~?r/i,p 

where Co is the bounding curve of  the region Ro and na is the unit outward normal on 
Co. In (3.11), t? ffz/~?q3 is zero. With the approach leading to (3.14) 1 and (3.17) 1, we can 
form the functionals P and Q corresponding to the system (3.11) and the resulting 
integrals will be of  the same forms as (3.4) and (3.7). 
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We note that if we differentiate the integral in (3.10) with respect to 0 and use 
(3.11), we can show that 

M = dA = dA, (3.12) 

where - ~ (0 W/otp)ox p indicates an explicit partial differentiation of  1~" with respect to 

(holding 0i.~ and 0= constant). If  we set ~ = Or/i and (~ = g,x~ and transform the 
integral in (3.10), by a similar process we can show that 

= - - x ~ d A .  (3.13) 
M ~ o gx~ 

This formula was obtained previously by Green [9] by a different approach. 
When the strains are the same at each section, the Jacobian [Yi,k[ is equal to 

01,1 01 ,2  --~b02 

A = 02,1 02,2 ~//01 , 

03,1 03,2 

and incompressibility requires A to be unity. For  an incompressible material, we can 
associate a multiplierp with the condition In A = 0 and arrive at equilibrium equations 
and boundary conditions in the form 

(3.14) 

+ p ~ - - - / n p = O  on Co, 
O0~,e / 

where O W/&/3 = c~A/303 = 0. With the approach of Section 4 of  [1], we can form the 
functionals P and Q a corresponding to the system (3.14) and the resulting integrals will 
be of the same forms as (3.4) and (3.9). The formula corresponding to (3.12) is given by 

1 0A 

but (3.13) is unchanged in form. 
In the following, we consider a cylinder of an (incompressible) neo-Hookean 

material with an elliptical cross section 

Ro:~ + b~_< 1 

with semi-axes a and b. The condition (3.4)*, or the condition (4.16)* for an 
incompressible material, under which the functional P{ Y~} has a relative minimum 
implies that the equilibrium state would be stable under dead loading as mentioned 
earlier. The stability of an extended and twisted circular cylinder of neo-Hookean 
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material has been examined by Green and Spencer [10], and they found that when 2 

= I an infinite cylinder is unstable during twisting for all values of the twist ~,. For  2 
= 1.2, the cylinder became unstable at ~a/2 = 1.07 where a is the radius of the cross 
section. Instability on twisting for 2 = 1 is expected because the axial forceL is given by 

1-11] 

L 1 ~2a2 
- 2  

2C1~a 2 22 422 

for a neo-Hookean circular cylinder and is compressive for 2 = 1. For other sections, 
the axial force is [12] 

= ; 7  + 

with neglect of terms of  0(~,4). Here Ao is the area of  the cross section Ro, Io is the 
moment of inertia of the cross section about the centroid and So is the classical 

geometrical torsional rigidity of the unstrained cylinder. For  sections with So/Io less 
than 0.75, twisting with 2 = 1 induces a tensile force initially. For the elliptical cross 
section, we have 

~ a 3 b  3 7z S O 4y 2 
So a 2 + b 2 '  I~ 4 ab(a2 + b2)' Io (1 -}- ~/2)2 

where ~ = b/a, and So/Io is less than 0.75 if 7 is less than 0.577. Thus for sections not too 
close to a circle, we expect that the functional P{ Yi} will have a relative minimum even 

for )o = 1 for a range of ~. 
The functional P{ Yi} is given by 

~ e{Y,} = C,(Yi,kY~,k -- 3) dA, (3.15) 
O 

with neglect of terms of O(d/1). We take (3.3) and choose 

K1 
U = KlXl ,  to - 1 + ,,/2K1 x2, w = - K 2 X l X  2 "+- Kax~x2 + K c x l x  3, 

(3.16) 

where K~, K2, K 3 and K 4 are parameter~s to be chosen so that the functional P{ Y~} is 
minimized. The incompressibility condition (3.8) is satisfied. (The form of w in (3.16) is 
suggested by the expression (3.21) for the warping function correct to 0(~3).) 
Substituting the trial functions into (3.15) and evaluating the integral, we obtain )2( 

C I [ A  0 ~- q - K  1 1 + + 1 + 

• 1 + 7z + 8)~2 1 + x ~ K 1  
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x (1 + 372)k2 + ~ (5 + 27) ~2) 

4 72 1 + 7 k2(9 + 772) _ (3 + 572)k4(k2 - ~ok3) 

72 k~ (7 + 972) 

74 k2(27 + 572) -  ~ ( 5  + 372) (k2-  ~ooy2k4)1 +76 
+ �88 + 72)(k2 - k 2 k  3 - y2kek4 + 3y2kak4) 

74 
k~(5 + 972) 4- 4- 572 ) 4- 22 + 6-~ ~-~ k](9 - 3, (3.17) 

where A0 = ~ab, ~ '  = tpa, k 2 = K2a, k3 = K f l  3, k4 = K4a 3. 

The trial functions Yik, P for the functional Q1 { Yik, P} are required to satisfy 
equilibrium and the boundary conditions on the lateral surface. These require for a 
neo-Hookean material 

0 
- -  ( 2 c l  Yi,  + PX~i) = o 
c~x k 

throughout the cylinder, 

(2C1 Y/k + PXki)nk = 0 on the lateral surface, 

where nk is the unit outward normal on the lateral surface. When (3.6) is used, the 
equations reduce to 

[A + fi(D2 - ~ Y~ W2)/A] + ~ [C - fi(B2 - ~g Y~ W,)/A] 
c~x 1 

= 0 2 Y~ -- f i ~ ( A  W z -- C W O / A  

o [B - P(c2 + OY2W2)/A] + ~ [D + P(A2 + OY2W,)/A] 
c3x 1 

= ~ z Y  2 - f i t~(BW2 - D W ~ ) / A  

_ _  0 
0 [ W ,  + fit~(CY~ + D Y 2 ) / A ]  + ~x2 [W2 - fi~p(AY~ + B Y 2 ) / A  ] = O, 

0x l  

inRo, 

(3.18) 
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[A + t~(D). - O Y~ W;)/A]n~ + [C -/~(BA. - ~ Y~ W,)/A]n z = 0 ] 

[ B - / S ( C 2  + OY2Wz)/A]nl + [D +/~(A2 + 6YzW~)/A]n2 = 0 I on Co, 

[W~ + P~,(CY~ + DYz)/A]n~ + [W2 - Pg,(AY1 + BY2)/A]n2 = 0 

where t3=  P/2Ca, n~ is the unit outward normal on Co, and A is the determinant I Y,.kl, 

i.e., 

A = tpW,(CY,  + DYa) - OWz(AY,  + BYz) + ).(AD - BC). 

The functional Q1 { Yik, P}/l in (3.9) becomes 

c,~ Q I { G ,  P} = {A ~- + B 2 + C 2 + 1) 2 + 02(Y~1 + Y~) + W~ + W~ - ,~  
o 

+ 3 + 2fi(3 - In A) - 22/~(AD - BC)/A} dA. (3.19) 

Green and Shield [4] determined the displacements u, v and the warping function w in 
(3.5) correct to 0(62). Because of symrnetry considerations, u, v are even functions of~9 
and w is an odd function of r for fixed 2, so that w has no second-order terms. The 
results o f [4]  suggest that we choose the quantities A, B, C, D, ]I1, Y2, W1, W 2 and P so 
that 

A +/~(D2 - OY1Wz)/A = Ao + Alx~ + Azx 2, 

c - P(B,t  - ~, Y~ w , ) / a  = B~x , x~ ,  

D + P(A2 + ~,YzW~)/A = Do + D~x~ + Dzx~, 

ml  q- p l p ( C y  1 q- OY2) /A  = ElY2 q- E2x2x2 q- E3x3 ' (3.20) 

w~ - PC,(A Y~ + 8Y~)/A = F,x~ + gax, x~ + g~x~, 

~2y~ _ P~,(AW2 - CWO/A = (2A~ + B~)x~, 

02y2 - fitp(BW 2 - DWO/A = (B 2 + 202)x2, 

where Ao, A1 . . . . .  F 3 are parameters at our disposal. If we let the parameters satisfy 

Ao A2 Ba Ao Bz D1 Do Do 
A, = --a: F, ~ +  b z - aS~Z ' ~z + b z - aZb~. ' D2= - • '  

E 2 - f 2 ,  E2 F 3 _ I ( E 1  FI~ ,  E3 E 2 1 ( E l  f l '~ ,  
= a -~+~5-=  a 2 \ a  z + b  2// a 2 b 2 b 2 _ ~ - + b  2// 

then the equations and the boundary conditions in (3.18) are satisfied. It remains to 
choose the trial pressure/~ and the parameters Ao, B1, B2, Do, El, E2, F~ so that the 
functional Qt { Yik, fi}/C~lis minimized. With the second-order results of [4], the third- 
order warping function can be found from the third and sixth equations in (3.18), and 
we obtain 

!47 = [//Yt~X/(a~2) -~ I//'3p]XlX2 -~ I/f30"X3X2 -}- I/f3"CX1 x3, (3.21) 
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where 

72 ~72 3 (~-4)23  + 8(5 - ~ )  - 2 ( ~  z - 2 )  + - U ~ _ 2 j  
P - (1 +72)a 6(~ 2 +2)25 

2(~2 +2)25_3~23 - 8(~+ 1) - 2 ( a  2 - 2 )  + ~2 _ 2 j  

+ ( 1 - ~ ) + U ( 1  + ~ )  , 

[ 16~ ~, 
a =  6(~2 +2)2~a 3_(~+2)23  +2(~  ~ - 2 )  +~C-~_2j 

Z =6(~2 + 2 )  25a3 ~(~2 __2)23 __2(~2 --2) +~2 - - 2 J  

Here ~' is 6a as before and we have set 

a 2 _ b 2 

a 2 + b 2 

The second-order solutions in [4] and the warping function (3.21) suggest that as an 
approximation for the optimum values of the parameters and the trial pressure we may 
take 

(@ 'k)2 ]-23 + 7(~2 + 2a + 2)], 
A ~  - X~23(~X 2 + 2) 

(O'k) 2~ [723 __ ~2 __ 4~ -- 2], 
B1 =x/~23(72 + 2)a2 

(O'k) 2~ [~23 + 72 _ 4~ + 2], 
B 2 = xfl~d3(~2 + 2)a 2 

( ~  'k)2y2 [23 + ~(__~2 + 2~ -- 2)], 
Do= ~ 2 ~ ( ~  2+2)  

O'k, 1) (6'k)3 E1 = (~'k)3p q-~aak~-  (~2 +2)2Sa ( 72 - 2  + 23) 
(O'/~) 3 
25a3  (o~ q- 1), (3.22) 

(r 2 (0'k)372 
~'kTZ (~- 1)+  2 +  23 ) ( ~ -  1), F1 =(~'k)SP 22 a (~2 +2)25a (~2 _ 2~a 

(~,,~)3~ (4 - 23)(~ - 1) + (4/k)3 E2 = 3(~'k)3a + (~2 + 2)2Sa3 ~ ( 23 + 2~), 
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1.3 

1 ( r  ,~(x~ + xl) + _ ,~2 (x~  - xl) / s = _ X + ~ j  7 3, ~2+2 

+ 2 c~ 2 + 2 + 22 (a2 + b2) ' 

where k is a parameter to be chosen so that the functional Q1 { Yik, P}/Cllis minimized. 
Numerical calculations were performed on the University of Illinois CYBER 175 

(using the routines of IMSL and MSL). Upper bounds on U(~, 2)/l were obtained by 

minimizing expression (3.17) numerically with respect to K1, k2, k3 and k4. In order to 
obtain lower bounds on U(~k, ),)/l, the equations in (3.20) were solved numerically for 
,4, B , . . . ,  W 2 for a particular value o f k  in (3.22). The initial guesses were taken from 

the second-order solution. The functional (3.19) was evaluated by numerical 
integration [13] and the value of k was varied to improve the lower bounds. For  b/a 
= 0.25 and 0.5, values of 2 from 1 to 5 were used and calculations were performed 

at intervals of 0.05 for 6a/2. It was found that the range of ~ for which lower bounds 
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could be obtained by this approach varied with the value of 2. The limiting factor was 

the convergence of the numerical procedure used to solve equations (3.20), routine 

N O N L I Q  of MSL. 

The range of 0 for which lower bounds could be obtained was extended by 

reducing the nonlinear system (3.20) of eight equations to four equations. The 

equations are of the form 

Yik + PXki  ~- Sik (3.23) 

where n o w  Y/k have the values (3.6) with q~ set equal to zero and Xik is the inverse of  Yik. 

Here Sik are determined by the right-hand sides of  (3.20) with the addition of 

S33 = 2 + P(AD - BC)/A.  

It follows that 

YimYkm 4- lP aik ~- SimYkm , YmiYmk Jr- P t~ik -~ SrniYrn k. (3.24) 
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Figure 3 
Axial force for torsion of an extended elliptical cylinder of neo-Hookean material with b/a = 0.5. 
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By taking (i, k) to be (1, 3) and (2, 3) in (3.24) in turn, we obtain four equations which 

are linear in W~, W2, Y1, I12. Solving for these quantities in terms of the other 
unknowns A, B, C, D and substituting the results in the first four equations of (3.20), we 
arrive at four non-linear equations for A, B, C, D. By this approach, lower bounds for 

2 = 1.1, b/a = 0.25 were obtained, and lower bounds for 2 = 1.25 and 1.5 for b/a 
= 0.25 and 0.5 were obtained beyond the range of ~9 for which lower bounds could be 
obtained using the eighth-order system (3.20). 

The values of the bounds obtained determined U(q/, 2)/I to within + 0.38~ and 
sample numerical results are shown in Table 1. The mean of the upper and lower 
bounds was chosen for the value of U(tp, 2)/l and numerical differentiation was then 
used to give M and L through the relations (3.2). In order to determine L, estimates for 

U(~, 2)/l were obtained by the approach described above for values of  2 differing by 
0.01 from the chosen values of 2. Figures 2-5 show the variations of M/OGSo and 
L/AoG with ~pa/2. Here G is the shear modulus for small strains, G = 2C1. Solid lines 
indicate the variations of  M and L for the ranges of ~b for which upper and lower 
bounds for U(tp, 2)/l were used to estimate M and L. If  the upper or lower bounds 

alone were used to estimate M, the estimates would differ by not more than 2.1~ o and 
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Table 1 
2 = 2, b/a = 0.5 

Oa/2 P/CllA o - Q1/CllAo U(O, 2)/CllA o 

0.0 2.0000 2.0000 2.0000 
0.2 2.0238 2.0238 2.0238 4- 0.18 x 10-3% 
0.4 2.0940 2.0939 2.0940 4- 0.33 x 10 2% 
0.6 2.2082 2.2073 2.2077 4- 0.20 x 10-1% 
0.8 2.3634 2.3601 2.3618 4- 0.70 x 10-1% 
1.0 2.5578 2.5481 2.5530 4- 0.19% 

7.2~o for 2 _< 2 and 2 > 3, respectively, from the values indicated in Figure 2 for b/a 
= 0.5. Likewise if the upper or lower bounds alone were used to estimate L, the 

estimates would differ by not more than 1.4% for all values of  2 from the values 

indicated in Figure 3 for b/a = 0.5. Similar remarks with somewhat smaller percentage 

differences apply for the case b/a = 0.25. The broken lines in Figures 2-5 indicate 

values of  M and L calculated from the upper bounds alone. For  2 less than 2, the use of  
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the upper bounds alone is believed to provide reliable results. For 2 = 1 for both values 
of b/a, the process for solving the nonlinear system of equations converged only for 
small values of ~. Shield [14] has examined the extension and torsion of a thin elastic 
strip of neo-Hookean material, and the variations of M and L for the elongated 
rectangular section show strong similarities to those for the elliptical cylinder with 
b/a = 0.25. 

We remark that by taking 'two-dimensional' trial fields for the functionals P and 
Q, we have been in fact dealing with the functionals corresponding to the two- 
dimensional system (3.11) or, for an incompressible material, the system (3.14). We 
emphasize that these two-dimensional functionals may have relative minima even 
when the three-dimensional functionals are merely stationary. The results obtained by 
the 'two-dimensional' approach will be of direct value only for the ranges of ~ and 2 
for which the cylinder remains stable, with no restriction on the class of instability 
modes allowed. 
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Summary 

For some equilibrium states of  a finitely deformed elastic body, variational principles can be used to 
provide bounds on overall quantities ofphysicaI interest. The principles are applied to the problem of the all- 
around finite extension of a plane sheet with a circular hole, and accurate estimates for the stress resultant at 
the outer edge are obtained for various extensions. The finite extension and torsion of an elastic cylinder is 
considered and bounds on the strain energy per unit length are obtained for an elliptical cylinder of  neo- 
Hookean material with axes in the ratios of  2:1 and 4:1. The bounds lead to reliable estimates for the twisting 
moment and axial force. 
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Zusammenfassung 
Fiir gewisse Gleichgewichtszust/~nde eines endlich deformierten elastischen K6rpers k6nnen 

Variatlonsprinzipien verwendet werden, um Schranken ffir globale Gr6ssen von physikalischem Interesse zu 
erhalten. Die Prinzipien werden auf das Problem der allseitigen endlichen Extension einer ebenen Scheibe 
mit kreisf6rmigem Loch angewendet, undes werden ffir verschiedene Extensionen gute Abschfitzungen der 
Resultierenden am Aussenrand gewonnen. Ferner wird die endliche Zug- und Torsionsverformung eines 
elastischen Zylinders betrachtet, und es werden Schranken ffir die Verformungsenergie je L~ngeneinheit ffir 
einen elliptischen Zylinder aus Neo-Hookeschem Material fiir die Achsenverh~iltnisse 2:1 und 4:1 erhalten. 
Die Schranken liefern zuverl/issige Sch~itzungen fiir das Torsionsmoment und die Axialkraft. 
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