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Minimum Induced Drag of Wings 
with Given Lift and Root-Bending Moment 

By Armin Klein, Motoren- und Turbinen-Union Miinchen GmbH, and S.P. Vis- 
wanathan, Aerospace School, Georgia Tech., Atlanta/Georgia, USA 

1. Introduction 

It is a well known fact that wings with elliptic spanwise loading have minimum 
induced drag for given lift and wing span. If the span is taken as a free parameter, 
different loadings will, however, be optimum with respect to induced drag, their 
shapes depending on the auxiliary conditions imposed. From the practical point 
of wing design the span is restricted by structural considerations. Hence the most 
reasonable circulation-distribution would be that one which yields minimum total 
drag at cruise if the structural weight of the wing is given besides its lift. This opti- 
mization problem is an extremely difficult one. Even the much easier task to determine 
the minimum not for the total drag but for the induced drag alone, requires additional 
simplifications. Such a solution is due to Prandtl [1]. He assumed that the weight of 
the spars is everywhere proportional to the local bending moment, and he derived 
the optimum spanwise lift-distribution which pertains to this condition. Prandtl 
showed also that for a certain span the induced drag attains then an absolute minimum 
which is by about 11 ~ lower than the corresponding value for elliptic loading. As an 
alternative to Prandtl's problem, a solution is derived in the present paper for wings 
for which the lift and the root-bending moment that is produced by the spanwise 
lift-distribution are given. Prandtl's assumptions do viz. not hold good for swept 
wings. However, for the high-aspect ratio wings with comparatively small sweep 
of transport aircraft it seems to be the root-bending moment of the lift which to a 
large extent determines the required structural weight at cruise ([2]). In such a case 
the present solution may prove to be a better approximation for the actual fundamen- 
tal problem than Prandtl's. 

2. Prandtl's Solution 

Assuming a direct proportionality between the weight of the spars and the local 
bending moment, Prandtl [1] showed that the induced drag of such wings is de- 
termined, besides by their lift, by the moment of inertia of their spanwise lift-distri- 
butions. The mathematical formulation of Prandtl's problem consisted therefore 
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in making the induced drag 

1 

Di =4po o V 2 s 2 j" y(r/) eq (r/) 
0 

(1) 

of such wings a minimum by prescribing the lift 

1 

L=2po~ V2 s 2 ~ y(q)dq 
0 

(2) 

and the moment of inertia 

1 
Lr 2 = 2 p~ V 2 s 4 ~ y (q) q2 dq. (3) 

0 

In these equations r is the radius of gyration of the lift-distribution, 7 is the circulation 
F referred to the span 2 s and the undisturbed speed V~o of the flow, t/is the spanwise 
coordinate referred to the semi-span s, ~i(t/) the distribution of the flow angle induced 
by the circulation 7(q) far behind the wing, and Po~ is the density of the fluid. The 
first part of the problem was then to determine, by application of variational prin- 
ciples, the spanwise loading ~(t/) which gives minimum induced drag for any pre- 
scribed span. Thus Prandtl had to solve for 

1 

6D, = 2 S 67 (q) ~, (q) = 0 (4) 
0 

with the auxiliary conditions 

1 

6L = ~'6~(~)d~=O, (5) 
0 

1 

6(LrZ) = S 67(q) t/2 dq =0.  (6) 
o 

The solution reads 

7(q)=TR[1 4(a2-1)2a2_ 1 tl 2] l / 1 - q  2, (7) 

where YR is the loading at the wing root and o = sis e is the ratio between the semi- 
span s of the wing and the semi-span s e of a wing with the same structural weight 
having elliptic spanwise loading. This loading induces a velocity-distribution which 
far behind the wing varies parabolically along the span. 

With eq. (7) the induced drag becomes, if referred to the elliptic-loading value, 

D~ 40-4-6tr2 +3  
Die 0" 6 (8)  

ZAMP 24/56 b 
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The relations eqs. (7) and (8) as presented here differ somewhat from those originally 
derived by Prandtl who did not use the ratio a explicitely. The form chosen in the 
present paper is, however, more comprehensive. 

The second part of Prandtl's problem consisted in finding the absolute minimum 
of the induced drags within the solutions obtained by variational principles. This 
minimum occurs at o-= 1.2247, for which DffDie=0.8889, where Die is the induced 
drag of the wing with elliptic loading having the same structural weight within the 
approximations made. The corresponding optimum loading is 

7opt (r/) = 7R (1 - r/2) 11/]-_ q2. (9) 

3. Solution for Prescribed Wing-Root Bending Moment 

As an alternative to Prandtl's solution the spanwise loading is derived in the 
following of wings, for which the root-bending moment MR, besides the lift, is given. 
In this case the mathematical statement of the problem as formulated in the previous 
chapter is retained with the exception of eqs. (3) and (6) which have to be replaced by 

1 

M R = 2 p ~  V~ s 3 ~ 7(r/) r/dr/ (10) 
0 

and 
1 

6M~r = ~ 6y(r/) r~ dr~ =0.  (11) 
0 

From eqs. (4), (5) and (11) it follows that 

c~i(r/)= C1+ C2 Ir/[. 

This means that the required circulation-distribution produces a downwash which 
varies linearly along the span. This downwash, referred to V~o, is found as a solution 
of the integral equation 

~ , ( r / ) = ~  i 1 dy(r/') dr~' Cl+C2lr/I, (12) 
- 1 dr/' r / -  r/' 

which is established by application of Biot-Savart's law. This solution reads 

d7(r/) 
(2 C1 / C 2 r/log t- . (13) 

4C 2 \ l - r /  2 1 - I / I - r / 2  const 

dr/ = + ~ '  llfi~-~ 2 ~ 1 + ~  ] 1/T---r/2 

The value of the constant is determined from the condition 

d~(-r /)  d~(r/) 

dr/ dr/ 
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to be - (2C1+4C2/r0 .  If we now integrate the above expression for dT(r/)/dr/, we 
obtain 

7(q)= 1 [21/1 _r/2 (r t C1+ C2)_ C2r/2 log 1-1/12_5,~__~-r/2] (14) 
rc l + v , -- rl J" 

In deriving eq. (13), use has been made of the well-known solution of an integral 
equation in aerofoil theory, which is similar to ours. The chordwise circulation- 
distribution of a lifting two-dimensional symmetrical aerofoil of finite thickness 
can be expressed by the distribution which represents the lifting flat plate and an 
additive term which depends on the section shape. This additive term produces a 
chordwise loading A Cp(x). For incompressible flow the normal velocity A w which 
the additional circulation induces on the chord-line is obtained from 

1 1 dx' 
aw(x)= -T~-~ o ~ - A C p ( x ' )  x - x '  " 

The solution of this equation is 

4 1 - x  1 ' 1 /  x' dx' 
- A C p ( x ) = ~ ~  ~ o d w ( x ) _ _ l - x '  x - x ' '  

(see Weber [3]). 
Similarly the solution of eq. (12) is 

2 I-r~ +1 1 /  r/' dr/' 
d T ( r/ ) = ~ ] ~ - -  _51( C1-k C 2 l r/ l rl ~ / -1- r/ ' tl -- rf m 

The integral can be solved in a closed form so that eq. (13) is obtained. 
The constants in eq. (14) are determined in the following manner: 7(r/) according 

to eq. (14) is introduced into eqs. (2) and (10) for the lift and the wing-root bending 
moment, and these relations are equated to those of the corresponding wing with 
elliptic loading of semispan s e in a flow with the same free-stream dynamic pressure. 
The integrals occurring in the two resulting equations turn out to have the following 
values: 

1 1 

Sr j-r/1/m_r/2 dr/_  o dr /=~-;  o - ~ '  

1 1 - 1 / 1  __r/2 7~ 1 
r/2 log dr/= - - - -  ~ /,]3 log 

o 1 + ~  6 ' o 

Solving for the two constants gives 

C1 = ~ - ( 9 o - -  8), 

C 2 -  3re 7Re (O--- 1). 
O-3 

1 + ~  dr/= 

(15a) 

(15b) 
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The ratio between the circulations 7Re and 7R at the roots of the wings with elliptic 
loading (i. e. for o-= 1) and with the loading specified by eq. (14) is then obtained as 

7Re 0"3 
~s - 3o- -2"  (16) 

Eq. (14) can then be finally expressed as 

[ ~ _ ~  3 ( a -  1) 72 log 1 - 1 / 1 - 7 2 ]  7(7)=~R 3 a - 2  1 ~- - l /~ - - -~J  (17) 

For a = 1, this relation reduces to that for elliptic loading. All the circulations ac- 
cording to eq. (17) induce an angle of attack which varies linearly along the span. It 
is found from eqs. (12), (15a), (15b), and (16) to be 

YR [90"-- 8 -- 3 n ( a  - -  1) q] .  (18) 
ei(7)= 2(3a--2)  

For elliptic loading, a = 1, eq. (18) reduces to e~e = yRe/2. 
The second part of the problem is to determine, among the loadings specified by 

eq. (17), the particular loading which provides the absolute minimum for the induced 
drag and to find the corresponding value of a. This is easily accomplished by intro- 
ducing 7(q) and e~(q) from eqs. (17) and (18) into eq. (1) and dividing by the value for 
the wing with elliptic loading. The result is 

D i 6 2 + 8 ( 1  --0") 2 
O~e - a4 (19) 

_4_1.333.  The re- This function has its minimum (DJDie)opt=~2=0.844 at O-opt- ~ -  
spective values of Prandtl's [ 1] optimum loading are (DJD~e)opt = 0.889 at aop t = 1.225. 
The relation for 7 (7) at a = 4 is 

e 
Yopt (")= ~R [ L 1 l~l~--q2 + 2  - log 

1+ 1VT~-~2J " 

It is shown in Figure 1 together with Prandtl's optimum loading [1] and with elliptic 
loading. In Figure 2 the relation eq. (19) is plotted. We see that the "minimum" of 
the induced drag at aov t =~  is actually a point of inflexion. However, for values 
a > ~ the lift at the wing tip becomes negative and our solution is hence not valid 
any more. In this respect the same considerations apply that Prandtl discussed in 
[1]. His induced-drag relationship according to eq. (8), which is included in Figure 2, 
has viz. also a point of inflexion instead of a genuine minimum. 

Comparison of the curves in Figures 1 and 2 shows that the spanwise loading 
derived in this paper departs even more from elliptic loading than Prandtl's. This 
results in even smaller induced drags. The absolute minimum occurs at a larger 
span-ratio a than in Prandtl's case. 
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Comparison of three different optimum spanwise loadings. (~) Elliptic loading. ~) Prandtl's optimum 
loading, eq. (9). (~) Optimum loading of present investigation, eq. (20). 

D L 
~'e 

1~oo 

o,96 

0,92 

oj88 

0,84 

o,a( 
1,oo 

/ 
"I 

1,04 1,08 hl2 hi6 

2 
/ 
( 

I 

1 

I 
i 

t,20 I~24, ~,28 

f 
I 
i 

1,32 7,36 

~opt 
1,#0 

O" 

Figure 2 
Induced drag versus span ratio ~r = sis e. 1 Prandtl's solution, eq. (8). 2 Solution of present investigation, 
eq. (19). 
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Summary 

The spanwise aerodynamic loading of wings having minimum induced drag is derived for prescribed 
lift and root-bending moment. This problem is an alternative to Prandtl's solution for the case that the 
lift and its moment of inertia about the longitudinal axis of the aircraft are given. 

Zusammenfassung 

Es wird die Zirkulationsverteilung iiber der Spannweite hergeleitet, die fiir TragfliJgel mit gegebenem 
Auftrieb und Biegemoment an der Fliigelwurzel den minimalen induzierten Widerstand ergibt. Dieses 
Problem stellt eine Alternative zu der L6sung dar, die L. Prandtl fiJr den Fall angegeben hat, dass der 
Auftrieb und das yon ihm um die Flugzeugl~ingsachse erzeugte Tr~igheitsmoment gegeben sind. 
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