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On the Problem of Uniqueness under Pressure Loading

By JacasanpHU CHAKRABARTY, Dept. of Civil Engineering, Middle East Technical
University, Ankara, Turkey

1. Introduction

Consider a typical boundary value problem for an arbitrary solid in which traction
and traction-rate are prescribed on a part Sy of the surface and velocity prescribed
on the remainder S,. If changes in geometry are taken into account, the problem
does not necessarily possess a unique solution and a bifurcation therefore results at a
certain stage of the deformation. It is, however, possible to have a stable bifurcation
with the load increasing with continuing deformation. This was first indicated by
SHANLEY [1] in relation to the failure of inelastic columns.

For a wide class of non-linear solids, a sufficient condition for uniqueness may be
obtained by linearizing the constitutive law connecting the strain and stress-rates [2].
Under certain boundary conditions, bifurcation in the linearized solid may occur for
any value of the traction-rate when the varying parameter (load or modulus) attains
a critical value. In the actual non-linear solid, bifurcation may still occur at the same
value of the varying parameter, though only for a certain range of values of the
traction-rate. The so-called convected derivative of the Kirchoff stress previously
employed [2] in this context to describe the constitutive law is, however, unsatisfactory
for a general class of solids.

Although load-type sensitivity in relation to bifurcation has long been recognized
for both elastic and plastic solids, very little useful general consideration has been
given in the literature to load-types other than dead-loading. In the present investi-
gation, the practically important case of pressure-type loading is considered for solids
of arbitrary constitutive law under sufficiently general boundary conditions. A saffi-
cient condition for uniqueness is discussed for the important special case of conven-
tional plastic solids.

The theory is illustrated with examples and the tangent modulus formula for the
critical external pressure of long thin tubes is corrected.

2. Boundary Conditions

Since the future position of the surface is not known in advance when geometry
changes are taken into account, it is convenient to formulate the boundary conditions
in terms of the rate of change of nominal traction (i.e. rate of change of traction based
on the initial configuration).

Let %; be the instantaneous co-ordinates of a typical particle with respect to a
fixed rectangular Cartesian frame of reference and a; the co-ordinates at some initial
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state. If /, is the unit vector in the direction of the outward normal to the initial
surface element 459, the vector surface element at the initial state is

dS) =1,dS°. (1)
If this vector becomes 4S5, at the instant under consideration, then [3]
9" dai ;o
de—~g—W,dei 2)

where p® and g are the densities at the particle in the initial and instantaneous states
respectively.
If the boundary surface is subjected to a uniform fluid pressure p, the load
currently acting on the surface element is
AP = —pdS, = —p (ﬂf 0“’) L, dso
7 7 o Ox

J
in view of equations (1) and (2).
Denoting by F; the load per unit initial surface area (i.e. the nominal traction),
the boundary condltlon becomes
0° Oa;
"“p(g'ax>li‘ (3)
The nominal traction-rate is obtained by taking the material rate of change given
by the operator
D9 9
i = of T ox,
where v, is the instantaneous velocity of the particle and ¢ the time scale.
Now,

D (Q“’ . 0 Do % oy 4)
Dt Q)—_—ozﬁD'tiﬁgi £ (
in view of the equation of continuity
Do Ovg
Dt Te 0:(,: =0

Also,

Q(Oai) _ 0 (Dai) _ Ovg Oay
0xj 0x; \ Di ij ox,

Since the initial co-ordinates do not change during the motion, Da,/Dt = 0 and

D  Oa; . Ovg  Oa;
o | axj) T 0w ox G

Taking the material derivative of (3) and using (4) and (5), we have

DF; o da; (Dp
Dt e Ox;

0vg 0" Oa; Ou
0 s g € g

If the initial state is taken as that at the instant considered, o® =p and 4, = ;.
Denoting the rate of change by a dot, we finally obtain the nominal traction-rate as

= bbb ) ©)
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It is to be noted that the part of the nominal traction-rate given by only the first
term can be prescribed?).

3. General Consideration of Bifurcation

Consider a body (of arbitrary constitutive law) subjected to prescribed nominal
traction-rate on Sy and velocity on S, the remaining part of the boundary S, being
submitted to a uniform fluid pressure p. The current state of the body is assumed to
be completely known and this is taken as the initial reference state in the field
equations below.

If s;; denotes the material rate of change of the nominal stress and g; the body
force rate per umit initial volume, the equation of equilibrium and the boundary
condition are

%S/ +g—0, (7)
F =5, il (8)

J

where I*] is the rate of increase in nominal traction and /; the outward drawn unit
normal to the surface at the initial configuration.

The material rate of change of the true (Cauchy) stress, denoted by o;;, is related
to s;; by {3] ¢ —d g ﬁvi+0."@k_ (9)

i = 0 T Ok T, T T gx,

where ¢;; is the initial stress and v, the initial velocity.

If there is more than one solution of the problem for given boundary conditions
and body-force rate, equations (7)~(9) provide

0 .
ox, (ds;) =0, (10)
AF, =1, 4s,;, (11)

- 7 0 0
As;; = Aoy — 0y, A (dv;) + oy o, (dvy) (12)

where the prefix A denotes the difference of the corresponding quantities in the two

solutions.
Application of Green’s theorem to integrals for surface S and Volume V' yields

l 3
~ .y () A 0 A 0 A dI/ ( )
=/ [AO‘M — Oj 0%, (4v)) + a;; Fx; ( 'Uk)] 0, { 1)].)

in view of equations (10)—(12).
On the part S, of the boundary, the nominal traction-rate is given by (6), so that

AF; = p [b o= () — 4 7 (o) 14)

1} An incorrect expression for I; was given by HiLr [11].
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on S,, and it follows that
0
/AF dodS =4 | T2 o () =1 i (Av)] 40, s, (15)

since the integrand on the left hand s1de vanishes on Sy (where AFJ =0) and S,
(where Av; = 0).
Introducing the true strain-rate

6ij = *’2

1 07)1 0'Uj
( ox, T Oxz.)

we obtain from equations (13) and (15),

/ [A(r Aerj =01 g (A0) Av,) + — (v,

oj( wo

(16)

’oi,. (Av)| av l
1 [t g )~ ()%(Avk)]zlvjdsf:(),]

the boundary condition outside S, being arbitrary.

If the part of the boundary not submitted to fluid pressure is fully constrained,
Av; = 0 on this part of the boundary and the surface integral in (16) can be formally
extended over the entire surface of the body. Transformation of the surface into
volume integral by Green’s theorem then furnishes the result

/[A&ij Aeij - (Gij + ?61';‘)
(17)
% {0% (Av,) 7)% (o) + 55— (du) - (4o >H v —0.

Bifurcation can occur only if this equation is satisfied for some non-zero continuous
differentiable field representing 4v; and hence vanishing on S,.

For the special case of rigid/plastic solids, an analogous equation was obtained
by HirLr [4].

In actual applications, recourse must be made to the constitutive law connecting
the stress-rate?) and the strain-rate. However, the above stress-rate ¢, (referred to
fixed axes) is not suitable for the purpose, because it does not vanish in the event of a
rigid body rotation. The most suitable definition of stress-rate satisfying this require-
ment is the one originally given by JaumanNn [5]. It is written as

‘.Tijzailf_“ikwjk—ojkwik (18)
where w,; is the antisymmetric part of the velocity gradient tensor, namely

N 1" ( 02),; . 7()7)]'
P57 2 Vog, ‘0,7,)'

From symmetry of ¢;; and ¢,; and antisymmetry of w,; it is easy to show that
Aé;ida = Ao,;; Ae;; + 2 0, s Agi Awy (19)
which gives the leading terms in equations (16) and (17).

%) The stress-rate may depend also on higher rates of deformation,
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It is to be noted that Jaumann’s definition corresponds to the material rate of
change of the true stress with respect to axes which take part in the instantaneous
rotation. Itise,; (not c'r;j} that entersinto the constitutive law. The so-called convected
derivative of the stress used by HiLL [2] is unsatisfactory and is likely to introduce
errors of unknown magnitude in real solids, particularly plastic solids [6”.

It is easy to see that an addition of the quantity p §,; to the current stress tensor
o;; leaves equation (19) unchanged. Equation (17) then furnishes the following
theorem:

Theorem: If a body is parily constrained and the vemaining surface vs submitied
to a uniform fluid pressurve P, the condition for the occurrence of bifurcation, irvespective
of the constitutive law of the material, is the same as that without the pressure, provided
the styess state is assumed as that in which the actual normal stvesses in the body are
wmcreased by the amount p.

If in the conventional tensile test of a certain solid, bifurcation occurs when the
tensile stress reaches the value o, the above theorem indicates that an application of a
uniform {luid pressure p on the lateral surface of the specimen reduces the tensile
stress to ¢ — p at bifurcation. If the deformation of the solid is substantially un-
affected by a uniform hydrostatic pressure, the amount of uniform strain before
bifurcation therefore remains unchanged.

4, Uniqueness in Conventional Plastic Solids

Consider a conventional elastic/plastic solid for which the plastic part of the
strain rate is given by the plastic potential rule, while the elastic part is given by the
generalized Hooke’s law. Assuming an elastic isotropy, the constitutive law for an
element currently at the yield point may be written as

. N 3 . .
l e (GU Ty Okk O“-) + g Or e My, When oy g =0, l
(20)

ij - 1 . v . .
1 26 (95— Gerdu) » when G my <0

where H is a positive scalar denoting the rate of hardening. It coincides with the
current slope of the true stress-strain curve (without elastic strain) in uniaxial tension
when the material is also plastically isotropic. #,; is the outward drawn unit normal to
the regular yield surface (with #,, = 0} in a nine-dimensional stress-space. G is the
shear modulus and v Poisson’s ratio.

It follows from (20) that

3G+ H :
—5c i it when ¢;; n;; = 0,
gj M =
1 . .
]'Z'G‘Uz‘j‘”u: when ¢;; #,; <0

so that ¢, n,; Z 0 for o;; n,; Z 0. When g;; n;; >0, the scalar product of (20) with
&;; gives

. 3G . v o
6,;8;=26G [eij T Yoy (g m)% + 1—2% skkJ (21)



Vol. 20, 1969 On the Problem of Uniqueness under Pressure Loading 701

where the last term is identically zero for an incompressible solid. When ¢,; n,; <0,
the second equation of (20) gives

P

0 ,]—ZG[eue,]ﬁ— ), e}ik]. (22)

Consider now a fictitious solid whose constitutive law is given by the first equation
of {20), regardless of the sign of ¢ u;;, whenever an element is currently plastic.
Since the strain-rate is then a unique linear function of the stress-rate, the new solid
may be regarded as a linearized elastic/plastic solid.

If the true stress-rate corresponding to the linearized solid is denoted by ;;, the
rate-equation of this solid is
1 . v - 3
Eij = 5 (Tz'j Ay Trx 6:’1) + - 2H Tu Mgy My g (23)

for an element currently in the plastic region and it follows from (21) and (22) that

Oijij = Tij &
24)
26 280 (
:m[Heijaij+3G{£ij8ij 2} — 2, elzzk

where the equality holds only in the loading part ot the plastlc region.

In any elastic region, 7;; completely coincides with 0 . and hence

('r” & 1 € ~2G(8 T —ekk)

It is to be noted that the normal component of 7;; tangential to the elastic/plastic
interface must be discontinuous.

From (16) and (19) a sufficient condition for uniqueness of the linearized solid
may be written as

/[Ai’ij Ae;; + 045 (Aegy Aeyy + 2 Ae; Awy ) — o (Av ) 7 (Avk)] av

ij .
0 J

p/[k 0 (Avy) — J 0 (AUA)] v de>O

for all continuous differentiable fields Av; vamshmg at the constraints.
If the constraints are rigid so that v; = 0 there, every difference field is a member
of the admissible field v;. The above criterion then becomes

u/l:iij €; 1+ 04; (EM‘B T 2ep e — g:,i ng)] v l

vy dux ;
_p/lkOTj—j 5 )v dS;>0
for all continuous differentiable fields vanishing on S,.
In view of the inequality in (24), uniqueness of the linearized solid also ensures

uniqueness of the non-linear elastic/plastic solid. If some non-zero field »; makes the
functional in (25) vanish, bifurcation in the linearized solid may occur for any value

(25)

of the traction-rate on Sy and gﬁ on S,, since this field need not represent an actual
mode. In the actual elastic/plastic solid, however, bifurcation occurs only for those
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values of the above quantities which correspond to no unloading of the current
plastic region.

Splitting the tensor 0v;/0x, into the symmetric part ¢;, and the anti-symmetric
part w;, and noting that

dl)i ()Uk
Oij 0w, 0w, 0ij (&5 Epi + Wjg )
(the other triple products cancelling one-another), the uniqueness criterion may be
written in the alternative form
/ T8+ 0y (&xx &+ 2 EipWg; — &8y — Wiy ;)] AV 1
” . (26)
_ ﬁ/ [ (e + wp;) — 4 &) v, 45, >0, !

which is most convenient for practical applications in any curvilinear coordinate
system?®). v, ; is related to the spin-vector @ = (1/2) curl v by the equation

Wij = —Cijk WD
where ¢, is the permutation symbol. More explicitly,
0 —Wg W,
w;; = Ws 0 —w, (27)
—w, 0

Two important special cases will be considered below.

(i) The plastic modulus / is large in comparison with the components of o,;.
In this case, the terms o;; ¢;; &, and o;; &;; &, in (26) are negligible in comparison
with similar terms in the strain-rate components occuring in (24). The uniqueness

criterion (25) then reduces to
/[T“ u"‘%;( ik Wi — jkwki)] dV—f’/[lk (gkj+w}:j) _ljakk] Uy dsf>0 {28)

which is essentially similar to that given by Pearson [7] for classical elastic solids.
Indeed, by letting H tend to infinity in (24) the elastic constitutive equation is
recovered.

It may therefore be concluded that bifurcation of the linearized elastic/plastic solid
in the present case corresponds to an eigenstate and the eigenfield makes the functional
n (28) an absolute minimum.

(ii) It is sometimes useful to regard the material as rigid/plastic in which the shear
modulus G is infinitely large. In this case, the strain-rate vector is entirely normal
(though not necessarily outward) to the yield surface and also g, = 0; hence 7, ¢;; =
(23) H ;5 &;;.

When the principal axes of the strain-rate coincide with those of the stress,
the scalar product o, ¢;, w,, identically vanishes and the uniqueness criterion (25)

3) Provided &, ete. are interpreted as the curvilinear components.
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reduces to
frg .
/ [‘3‘ H‘sij Ei; — 04 (Ejk & T wjkwki)] av — P/ Ly (ekj + wkj> Yy dsf >0 (29)

with the understanding that either the stress or the velocity is known in any rigid
region. The above criterion is essentially the same as that obtained elsewhere 8]
for the rigid/plastic body treated on its own merit.

5. IMlustrative Examples
a} Cylindyical Shell Under External Pressure

As a first example for the application of the preceding theory, consider a thin-
walled circular cylindrical shell subjected to a uniform external pressure p. If the
cylinder is sufficiently long, it is safe to neglect axial strain-rate in the choice of
admissible field for the investigation of bifurcation [7]. Using cylindrical co-ordinates
(7, 0, x) in the radial, circumferential and axial directions respectively, the velocity
field may therefore be taken in the form

z

U.=w, ”0:v+’R

fv—w), wv,=0 (30)
where 7z is the radially outward distance from the middle surface of radius R. The
quantities v and w are periodic functions of 6 and represent the velocity of the middle
surface.

The above velocity field corresponds to the usual thinshell approximation and is
adequate for calculating all strain-rate except the through-thickness one. The shear
strain-rates ¢,, and ¢,,, which are conventionally negligible, actually vanish in this
case. A straightforward calculation furnishes

eo= 3 [0+ 0) — & v,

)
I
™

xﬁzgrx:‘srﬁ:()’

LU —
—
w
—_
~—

(v—w), w,=ws=0

with a minor approximation.

When the pressure acts on the lateral surface, the current state of stress is a
uniaxial compression in the circumferential direction and the unit normal to the
vield surface has the non-zero components (assuming isotropy)

e, L _ 2
Ry = Wy = % » Ngeg = — 3

and the constitutive equation (23) gives

v 1 .
brr = _(E * ﬁ) oo <
1y - v 1 .
fo0= [+ ar) oo — (5 + 7)) B

0= — (% + le) g+ (% + 4%) Toe

o] =
|
s
-
S e—
=
=
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where E is Young’s modulus. Introducing the tangent modulus

EH
T=5im>
a short calculation yields
Z:z'j &; = Tag o9 = 4 E ejy
where
B 1+ 3 T/E
A= s W - 2 TE (322)
If the cylinder has closed ends and the pressure is all-round, the value of 1 is modi-
fied. The state of stress is then a pure shear (with superimposed hydrostatic tension)

and the non-zero components of #,, are

J

n,, = E Ngg = — ! #n,, =0
rr VE » 6 Vé ’ xx
Using the constitutive equation, a calculation similar to above furnishes
4 T/E
1= TE (32b)

34 (1 —48 T/E "

Since $/E is only of order (#/R)® at the bifurcation (where ¢ is the current uniform
thickness), it is evident that the criterion (28) is appropriate in the present context.
Considering a unit length of the cylinder, the criterion becomes

[ G E &5yt 05507 dzdl +p [ (egyv, + 0,75),.0d0 > 0
to a sufficient accuracy, for both the loading conditions.

Substituting for ¢4 and w, from (31) and observing that ¢,,5 = —p Rff, the
critical pressure is obtained as

[0+ w2 do + (212 RZ)Y(w + w")? do
pe At . 6 6
E TR M T
[T(w — o) w' — (v + w) w] d6
0
The minimum value is very closely obtained by setting w = —v’ and v = Sin26.
Hence the critical pressure is
c A g 2)\3 i
vl 53)

where A is given by {32).

Tt follows that in the elastic range (7 = E), 1 has the well-known value 1/(1 — %)
for both loading conditions. In the plastic range, however, the critical pressure for
the second case is somewhat lower than that for the first case?). The tangent
modulus formula [9], which uses the elastic value of 2 but replaces E by T in (33),
underestimates the critical pressure for all values of v << 0.5. The tangent modulus
value coincides with the closed-end value for » = 0.5.

4) Except for very small values of Poisson’s ratio.
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In view of the remarks in Section 4, the critical pressure of the elastic/plastic
cylinder (with no imperfection) cannot be lower than that given by (33). However,
the pressure must increase in such a way that there is no incipient unloading of the
cylinder at the bifurcation. The velocity field at the bifurcation is any linear combina-
tion of the eigenfield (given by v = Sin20, w = —2 Cos26) and that corresponding
to a uniform contraction, such that g,, < 0.

b) Cylindrical Bar Under Lateral Pressure

As a second example, consider a circular cylindrical bar of radius a subjected
to a uniform fluid pressure p on the lateral surface. The ends of the bar are supported
in such a way that they are free to move axially during the deformation.

Since the critical rate of hardening would be of the same order as the yield stress,
the compressibility may be neglected in the present investigation. Using cylindrical
co-ordinates (r, 8, ), the virtual velocity field may be taken in the form

vo=—57 1, v=0, v=7{ (34)

where / is the length of the bar and z = x/l. The velocity Field furnishes

i, r ., ¥
&r = Eo0 = — 7 'z, = 7 'z, &,= TuR 1"z,
(35)
"
8r0:80x=0’ wﬁzﬁ—ﬂ?f”(z) , wr:wx:O'
The current state of stress is given by
Grr:O-ﬁH:_pY Uxx=0rx:0'r9’—“0'6x=0

and the non-zero components of the unit normal #,; are
1 2
Ny = Ny = ——7€ ’ My = 1/73‘
so that ¢;; n;; = V(_3/‘2~) &, in view of the assumed incompressibility.

Since H is small in comparison with &, equation (24) yields

T8, =He, +4G&,

ij ©ij xx !
and the uniqueness criterion (26) becomes

[t +4Ge, +p(e,+ el rardr—paf (e, 26,0), 40> 0

where use has been made of the fact that wy = ¢, ,.
Substituting from (34) and (35) and integrating through the cross section, we have

1

[l +srim+ 4 6 (%) 4n x> 0. (36)

Since the shear strain-rate is purely elastic, it is evident that the last term in the
above functional is small in comparison with the first term. The minimum valae of

ZAMP 20/45
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the functional is then obtained (very closely) by setting H = p, whatever the function
/. The critical rate of hardening is therefore the same as that in uniaxial tension and
this result is in complete agreement with experiment (101, A local neck is formed at
the bifurcation and the deformation continues temporarily under constant pressure.

6. Concluding Remarks

A sufficient condition for uniqueness of the bilinear elastic/plastic solid is obtained
by using a linearized version of the solid. The discussion by Hill was based on the
assumption that the constitutive equation has a unique inverse; the present treatment
is free from this restriction. The condition for uniqueness discussed here is more
general than that given by Hill and brings a wide range of practical problems within
the theoretical framework.

The problem of uniqueness of solids is closely related to that of stability. The
difference between the criteria governing the two problems appears only through the
constitutive law. If the solid responds identically to loading and unloading, the
criterion for uniqueness is the same as that for stability. For solids having separate
loading and unloading responses, the two criteria however differ. As a result, a point
of bifurcation may be reached before an actual loss of stability.

A general derivation of the stability condition, with special reference to rigid/
plastic solids, has been given by the writer {8].
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Zusamamenfassung

Die Bedingung fiir das Auftreten einer Verzweigung bei einem beliebigen festen Korper
wird allgemein fiir den Fall diskutiert, dass Teile der Oberfliche unter einer druckartigen
Belastung stehen. Besondere Beachtung wird der Frage der Eindeutigkeit bel konven-
tionellen plastischen Kérpern geschenkt und mit Beispielen illustriert. Die Formel mit
dem Tangentenmodul fiir das Beulen einer langen diinnwandigen Zylinderschale unter
sehr fliissigem Druck wird verbessert.
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