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On the Problem of Uniqueness under Pressure Loading 
By JA~ABAND~U CHAKRABARTu Dept. of Civil Engineering, Middle East Technical 

University, Ankara, Turkey 

1. In troduc t ion  

Consider a typical boundary value problem for an arbitrary solid in which traction 
and traction-rate are prescribed on a part  SF of the surface and velocity prescribed 
on the remainder S~. If changes in geometry are taken into account, the problem 
does not necessarily possess a unique solution and a bifurcation therefore results at a 
certain stage of the deformation. I t  is, however, possible to have a stable bifurcation 
with the load increasing with continuing deformation. This was first indicated by  
SKAXLEu LI! in relation to the failure of inelastic columns. 

For a wide class of non-linear solids, a sufficient condition for uniqueness may be 
obtained by linearizing the constitutive taw connecting the strain and stress-rates [2]. 
Under certain boundary conditions, bifurcation in the linearized solid may occur for 
any value of the traction-rate when the varying parameter  (load or modulus) attains 
a critical value. In the actual non-linear solid, bifurcation may still occur at the same 
value of the varying parameter, though only for a certain range of values of the 
traction-rate. The so-called convected derivative of the Kirchoff stress previously 
employed E2] in this context to describe the constitutive law is, however, unsatisfactory 
for a general class of solids. 

Although load-type sensitivity in relation to bifurcation has long been recognized 
for both elastic and plastic solids, very little useful general consideration has been 
given in the literature to load-types other than dead-loading. In the present investi- 
gation, the practically important case of pressure-type loading is considered for solids 
of arbitrary constitutive law under sufficiently general boundary conditions. A saffi- 
cient condition for uniqueness is discussed for the important  special case of conven- 
tional plastic solids. 

The theory is illustrated with examples and the tangent modulus formula for the 
critical external pressure of long thin tubes is corrected. 

2. B o u n d a r y  Cond i t i ons  

Since the future position of the surface is not known in advance when geometry 
changes are taken into account, it is convenient to formulate the boundary conditions 
in terms of the rate of change of nominal traction (i.e. rate of change of traction based 
on the initial configuration). 

Let x i be the instantaneous co-ordinates of a typical particle with respect to a 
fixed rectangular Cartesian frame of reference and a i the co-ordinates at some initial 
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state. If 1 i is the uni t  vector  in the direction of the outward normal  to the initial 
surface element dS ~ the vector surface element at the initial state is 

d s  ~ = z~ d s  o . (1) 

If this vector becomes dS i at the instant  under consideration, then [3] 

dS~- ~176 Oa, dS~ (2) 
o 0~ 9- 

where 9 o and 9 are the densities at the particle in the initial and instantaneous states 
respectively. 

If  the boundary  surface is subjected to a uniform fluid pressure p, the load 
current ly acting on the surface element is 

d ~  = - -p  dS,  = - p  (flo Oxj ] l i dS~  

in view of equations (1) and (2). 
Denoting by  F/ the load per unit  initial surface area (i.e. the nominal traction), 

the boundary  condition becomes 

ox a ! li . (3) 

The nominal  t ract ion-rate is obtained by taking the material rate of change given 
by the operator 

D 0 0 
D) = OF + vk Ox z. 

where v k is the instantaneous velocity of the particle and t the time scale. 
N o w ,  

D l  T = . Dx o 0 ~  (4) 

in view of the equation of cont inui ty  

Do Ovt~ 
Dt + o  0 s  

Also, 

DY t-b~f]  = 0x+ \ Z / - ]  0xj 0xk" 

Since the initial co+ordinates do not  change during the motion, Da+/Dt = 0 and 

D ( Oai ] ark Oai 
z)~ \ axj ! = - o,j  -Ox k " (5) 

Taking the material  derivative of (3) and using (4) and (5), we have 

D~.j 9 0 Oai ( Dp OVk ~ 0 ~ Oal OVk 
Dt ~o Oxj ~ l  + p a x  k ] l ~ + -  -oUfPl~ Oxk 

If the initial state is taken as tha t  at the instant  considered, 90 = ~ and ai = x~. 
Denoting the rate of change by  a dot, we finally obtain the nominal t ract ion-rate as 

/; 1 b~-~. - Zj o,:~ ]"  (6) 
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It  is to be noted that the part of the nominal traction-rate given by only tile first 
term can be prescribed1). 

3. Genera l  Cons idera t ion  of Bi furcat ion 

Consider a body (of arbitrary constitutive law) subjected to prescribed nominal 
traction-rate on SF and velocity on Sv, the remaining part of the boundary Sf being 
submitted to a uniform fluid pressure p. The current state of the body is assumed to 
be completely known and this is taken as the initial reference state in the field 
equations below. 

If s'ij denotes the material rate of change of the nominal stress and g} the body 
force rate per unit initial volume, the equation of equilibrium and the boundary 
condition are 

Os'~ j Jzi + g) - 0 ,  (7) 

sij (s) 
where/~) is the rate of increase in nominal traction and l~. the outward drawn unit 
normal to the surface at the initial configuration. 

The material rate of change of the true (Cauchy) stress, denoted by b~j, is related 

., Ov i Ovk to s~j by [3J siJ : Gi]-- aJk O-X~ ~- Gij OX k (9) 

where a~j is the initial stress and v~ the initial velocity. 
If there is more than one solution of the problem for given boundary conditions 

and body-force rate, equations (7)-(9) provide 

o (As~j) = 0 (10) 0xi 

" '  ~ (Av 3 + a~ As~ = zlcr~j - ~ j~  ~ -0~ (zlv~) (12) 

where the prefix z] denotes the difference of the corresponding quantities in the two 
solutions. 

Application of Green's theorem to integrals for surface S and Volmne V yields 

in view of equations (10)-(12). 
On the part Sf of the boundary, the nominal traction-rate is given by (6), so that 

0 (Ark) _ l~ ) ~  (z:lvk) ] (14) : 

W 
1) An incorrect expression for Fj was given by HILL [11~. 
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on S.r, and it follows that  

" 0 

since the integrand on the left hand side vanishes on SF (where A~ = 0) and S~ 
(where Avj = 0). 

Introducing the true strain-rate 

eiJ= 2 \ Oxj + 0.~" i ]' 

we obtain from equations (13) and (15), 

" . ,  o (Av~) o o o ] 

- (16) 
0 0 

the boundary condition outside Sf being arbitrary. 
If the part  of the boundary not submitted to fluid pressure is fully constrained, 

dvj = 0 on this part  ot the boundary and the surface integral in (16) can be formally 
extended over the entire surface of the body. Transformation of the surface into 
volume integral by Green's theorem then furnishes the result 

i['(]aij A a i j -  ((~ij 4- P dij) 
(17) 

{ o (Av3 a (Ark)+ 0 0 }] 

Biturcation can occur only if this equation is satisfied for some non-zero continuous 
differentiable field representing dvj and hence vanishing on S~. 

For the special case of rigid/plastic solids, an analogous equation was obtained 
by HILL [4]. 

In actual applications, recourse must be made to the constitutive law connecting 
the stress-rate 2) and the strain-rate. However, the above stress-rate a~i (referred to 
fixed axes) is not suitable for the purpose, because it does not vanish in the event of a 
rigid body rotation. The most suitable definition of stress-rate satisfying this require- 
lnent is the one originally given by  JAUMANN [5]. I t  is written as 

% = ~ j -  ~ %k - ~j~ co~ (18) 

where co u is the antisymmetric part  of the velocity gradient tensor, namely 

o)~j= 2 \ Oxj Ox~]" 

From symmetry  of a~j and e u and ant isymmetry  of co u it is easy to show that  

zJ~i s = Zl~ij Zleij 4- 2 a u ge;k Ac%~ , (19) 

which gives the leading terms in equations (16) and (17). 

e) The stress-rate may  depend also on higher rates of deformation. 
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I t  is to be noted that  Jaumann 's  definition corresponds to the material rate of 
change of the true stress with respect to axes which take part  in the instantaneous 
rotation. I t  is bu (not ~]) that  enters into the constitutive law. The so-called convected 
derivative of the stress used by  HILL [2] is unsatisfactory and is likely to introduce 
errors of unknown magnitude in real solids, particularly plastic solids [6~_. 

I t  is easy to see that  an addition of the quantity 15 d u to the current stress tensor 
aij leaves equation (19) unchanged. Equation (17) then furnishes the following 
theorem : 

Theorem: I f  a body is partly constrained and the remaining surface is submitted 
to a uniform f luid/sressure/5,  the condition for the occurrence of bifurcation, irres/sective 
of the constitutive law of the material, is the same as that without the/sressure, provided 
the stress state is assumed as that in which the actual normal stresses in the body are 
increased by the amount p. 

If in the conventional tensile test of a certain solid, bifurcation occurs when the 
tensile stress reaches the value a, the above theorem indicates that  an application of a 
uniform fluid pressure/5 on the lateral surface of the specimen reduces the tensile 
stress to ~--15 at bifurcation. If the deformation of the solid is substantially un- 
affected by a uniform hydrostatic pressure, the amount of uniform strain before 
bifurcation therefore remains unchanged. 

4. U n i q u e n e s s  in C o n v e n t i o n a l  P las t i c  So l ids  

Consider a conventional elastic/plastic solid for which the plastic part  of the 
strain rate is given by the plastic potential rule, while the elastic part  is given by the 
generalized Hooke's law. Assuming an elastic isotropy, the constitutive law for an 
element currently at the yield point may be written as 

1 (~ " " ) ~ " 
2 ~ iJ 1 4- V tTkk dij + 2 ~[- (~kl nkl ]r ' when ~k~ nkl >~ 0 ,  

e u _ (20) 
. 

" ~i j  1 4- 1) (Ykk di d , when r nk~ G 0 

where H is a positive scalar denoting the rate of hardening. I t  coincides with the 
current slope of the true stress-strain curve (without elastic strain) in uniaxial tension 
when the material is also plastically isotropic, n u is the outward drawn unit normal to 
the regular yield surface (with nil = 0) in a nine-dimensional stress-space. G is the 
shear modulus and v Poisson's ratio. 

I t  follows from (20) that  

J 
'~ij qq~ij : ) 1 

I 2 - G - ~ i j n u '  w h e n ~ i j n u  ~<0 

so that  eij nij ~ 0 for ~ j  n u .~ O. When e u n u >/O, the scalar product of (20) with 
eij  gives 

[ 3G v .~] (21) 
~i j  eij  = 2 G eij eij  3 G 4- H (ei'] nij)2 @ 1 - - -2~  e~1~ 
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where the last term is identically zero for an incompressible solid. When eij ~4ij ~ O, 
the second equation of (20) gives 

�9 [ v e~k] " (22) (rij Cij = 2 G aij Cij @ ~ 2 V 

Consider now a fictitious solid whose constitutive law is given by the first equation 
of (20), regardless of the sign of e~: niy, whenever an element is currently plastic. 
Since the strain-rate is then a unique linear function of the stress-rate, the new solid 
may  be regarded as a linearized elastic/plastic solid. 

If the true stress-rate corresponding to the linearized solid is denoted by ~ij, the 
rate-equation of this solid is 

l ( ~ i j  v ) 3 �9 (23) 
eiJ = "2 G . . . .  i ~ -  V- ~kk (~ij -~ 2 H Tkl 7~kl ~bij 

for an element currently in the plastic region and it follows from (21) and (22) that  

2 ~ ~ 2 (24) 
2 G [H ~ij q- 3 G {~ij eij (eiJ r q- 1 - -2 -v  ekk - -  3 G +  H ~ij 

w h e r e  the equality holds only in the loading part  oI the plastic region 
In any elastic region, Ti~ completely coincides with a~ and hence 

�9 ( 
(~ij 81j = Tij gij = 2 G 8ij gij @ 1 2p 8kk " 

I t  is to be noted that  the normal component of $~j tangential to the elastic/plastic 
interface must be discontinuous. 

From (16) and (19) a sufficient condition for uniqueness of the linearized solid 
may  be written as 

/ [  a~j a~ i Ox (Ave) 0 A4~j Ae~: + (Ae~ Ae~j + 2 Aej~ Ac%D - ~ (Av~)] clV 

I [  o (Avk)-l:  o ] dS F > 0  

for all continuous differentiable fields zJvj vanishing at the constraints. 
If  the constraints are rigid so that  vj - 0 there, every difference field is a member 

of the admissible field v~. The above criterion then becomes 

/[ ( Y~-~105 :J dv [ 
(25) 

-s~Jtk~-ZJ oxk:5  

for all continuous differentiable fields vanishing on S,. 
In view of the inequality in (24), uniqueness of the linearized solid also ensm es 

uniqueness of the non-linear elastic/plastic solid. If some non-zero field vj makes the 
functional in (25) vanish, bifurcation in the linearized solid may occur for any value 

of the traction-rate on S;r and p on @, since this fietd need not represent an actual 
mode. In the actual elastic/plastic solid, however, bifurcation occurs only for those 
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values of the above quantities which correspond to no unloading of the current 
plastic region. 

Splitting the tensor Ovi/Ox k into the symmetric part eik and the anti-symmetric 
part ogik and noting that 

Ovi Ovk 
r Ox k Oxj = aij (ejkek~ + ~ k % ~ )  

(the other triple products cancelling one-another), the uniqueness criterion may be 
written in the alternative form 

c e v + %- (e~k e~-j + 2 83. k c%~- e~ ~ e k i -  %~ ~ i)] dV  
�9 ( 2 6 )  f 

which is most convenient for practical applications in any curvilinear coordinate 
systemS), co~y is related to the spin-vector o) = (1/2) curl v by the equation 

( ' O i j  - -  - -  g i j  k O')k 

where e;y k is the permutation symbol. More explicitly, 

0 --~o a co~ ] 

coi~ = c% 0 - % J  . (27) 

o - -  09  2 (1) 1 

Two important special cases will be considered below. 
(i) The plastic modulus H is large in comparison with the components of a~j. 

In this case, the terms a~j a~j Gk and a~j ejk ek~ in (26) are negligible in comparison 
with similar terms in the strain-rate components occuring in (24). The uniqueness 
criterion (25) then reduces to 

which is essentially similar to that given by PEARSON [7] for classical elastic solids. 
Indeed, by letting H tend to infinity in (24) the elastic constitutive equation is 
recovered. 

It may therefore be concluded that bifurcation of the tinearized elastic/plastic solid 
in the present case corresponds to an eigenstate and the eigenfield makes the functional 
in (28) an absolute minimum. 

(if) It  is sometimes useful to regard the material as rigid/plastic in which the shear 
modulus G is infinitely large. In this case, the strain-rate vector is entirely normal 
(though not necessarily outward) to the yield surface and also Gk = 0; hence r~  eli -- 
(2/3) H Qj e~y. 

When the principal axes of the strain-rate coincide with those of the stress, 
the scalar product aiy 82~ w~i identically vanishes and the uniqueness criterion (25) 

~) P r o v i d e d  s l j  etc .  a re  i n t e r p r e t e d  as  the  c u r v i l i n e a r  c o m p o n e n t s .  
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reduces to 

j ' [  2_3_ H eij eij _ aij (ejk eki ,m "lk _~_ (.Okj) V j co, k%~)]dv--pj (eka dSI>O (29) 

with the understanding that  either the stress or the velocity is known in any rigid 
region. The above criterion is essentially the same as that  obtained elsewhere [81 
for the rigid/plastic body treated on its own merit. 

5.  I l l u s t r a t i v e  E x a m p l e s  

a) Cylindrical Shell Under External Pressure 

As a first example for the application of the preceding theory, consider a thin- 
walled circular cylindrical shell subjected to a uniform external pressure p. If the 
cylinder is sufficiently long, it is safe to neglect axial strain-rate in the choice of 
admissible field for the investigation of bifurcation !71. Using cylindrical co-ordinates 
(r, 0, x) in the radial, circumferential and axial directions respectively, the velocity 
field may  therefore be taken in the form 

(v - ~ ' )  ~x = 0 (30 )  V r = W '  V o = V +  R 

where z is the radially outward distance from the middle surface of radius R. The 
quantities v and w are periodic functions of 0 and represent the velocity of the middle 
surface. 

The above velocity field corresponds to the usual thinshell approximation and is 
adequate for calculating all strain-rate except the through-thickness one. The shear 
strain-rates er0 and erx, which are conventionally negligible, actually vanish in this 
case. A straightforward calculation furnishes 

Coo= N ( v ' + w ) -  R 

~ , -  *~o = ~ ,  = ~ o  - o ,  t ( 31 )  

with a minor approximation. 
When the pressure acts on the lateral surface, the current state of stress is a 

uniaxial compression in the circumferential direction and the unit normal to the 
yield surface has the non-zero components (assuming isotropy) 

~r = n x x  t / ~  , T~O0  = - -  

and  the  c o n s t i t u t i v e  e q u a t i o n  (23) g ives  

' 2 H  

= + ;) 0o 
1 

�9 1 
 0o(; 
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where E is Young's  modulus.  In t roduc ing  the tangent  modulus  

a short  calculat ion yields 

where 

E H  
T =  

E + H '  

�9 " 2 

Tij  e i j  "Co o eoo = )o E e o o 

1 + 3 T / E  
2 : (5 - 4 v) -- i l  • 2 - v ) ~ T / E  " (32a) 

If  the  cyl inder  has closed ends and the  pressure  is a l l - round,  the  value  of 2 is modi-  
fied. The s ta te  of stress is then a pure shear (with super imposed hydros t a t i c  tension) 
and the non-zero components  of ni j  are 

1 1 

~r~= [?-~, ~00=-1/2, ~,~=0. 

Using the cons t i tu t ive  equat ion,  a calculat ion s imilar  to above  furnishes 

4 T I E  
2 = 3 + (1 -- 4 v 2) T / E  " (32b) 

Since p / E  is only of order  ( t /R)  3 at the  b i furca t ion  (where t is the  current  uniform 
thickness),  it  is ev ident  t ha t  the  cr i ter ion (28) is appropr i a t e  in the  present  context .  
Considering a uni t  length of the  cylinder,  the  cr i ter ion becomes 

, /  

to a sufficient accuracy,  for bo th  the  loading condit ions.  
Subs t i tu t ing  for e00 and co~ from (31) and observing tha t  aoo = - p  R / t ,  the 

cri t ical  pressure is ob ta ined  as 

2~ 2z* 

p~ _ Z t min 0 o 
E R ~ 

o 

The min imum value  is ve ry  closely ob ta ined  b y  set t ing w - v '  and  v = Sin2 0. 
Hence the cri t ical  pressure is 

where )~ is given b y  (32). 
I t  follows t ha t  in the  elastic range (T = E) ,  2 has the wel l -known value  1/(1 - v2) 

for bo th  loading condit ions.  In  the  plas t ic  range, however,  the  cri t ical  pressure for 
the  second case is somewhat  lower than  t ha t  for the  first  casea). The t angen t  
modulus  formula  [9], which uses the  elast ic  value of 2 bu t  replaces E b y  T in (33), 
underes t imates  the  cri t ical  pressure for all values of v < 0.5. The t angen t  modulus  
value coincides wi th  the  closed-end value  for v = 0.5. 

4) Except  for v e r y  small  values of Poisson's ratio. 
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In  view of the remarks in Section 4, the critical pressure of the elastic/plastic 
cylinder (with no imperfection) cannot be lower than  tha t  given by  (33). However,  
the pressure must  increase in such a way  tha t  there is no incipient unloading of the 
cylinder at the bifurcation. The velocity field at the bifurcation is any  linear combina- 
tion of the eigenfield (given by  v = Sin2 0, w - - -2  Cos20) and tha t  corresponding 
to a uniform contraction, such tha t  %o < 0. 

b) Cylindrical Bar  Under Lateral Pressure 

As a second example, consider a circular cylindrical bar of radius a subjected 
to a uniform fluid pressure p on the lateral surface. The ends of the bar  are supported 
in such a way  tha t  they  are free to move axially during the deformation. 

Since the critical rate of hardening would be of the same order as the yield stress, 
the compressibility m a y  be neglected in the present investigation. Using cylindrical 
co-ordinates (r, O, x), the virtual  velocity field m a y  be taken in the form 

v 
v r -  2~ l ' (z) ,  v o = O ,  v , = l ( z )  (34) 

where I is the length of the bar and z = x/l. The velocity Field furnishes 

1 1 
~ r r =  eOO - -  2 a l ' ( z )  ' e . . =  7 l ' ( z )  , 

7" 
e~o = So, = O, foe - 4-Z~ /"(z) , 

The current state of stress is given by  

(7rr  = 1700  = - - j )  , 

I \  
~ rx  4 z~ s ~z;, 

fO r = CO x = 0 . 

G x x ~ G r x = G r O = f f O x =  0 

(35) 

and the non-zero components  of the unit  normal  n~j are 

nrr = n00 - l/~ ' nx, = 

so tha t  eij niy : l/~i2) G, in view of the assumed incompressibility. 
Since H is small in comparison with G, equation (24) yields 

~ij eij I-I 2 = e,,,, + 4 G G, ,  

and the uniqueness criterion (26) becomes 

l f [ H e : , +  4 G 2 2 ; G ,  + 15 (G~ + e~o)l r dr dx -- p a (err Vr @ 2 Or, V,)~ ~ dx > 0 

where use has been made of the fact tha t  fo0 = G,. 
Subst i tut ing from (34) and (35) and integrat ing through the cross section, we have 

1 

ssu'): + p i l" + > o .  (36) 
o 

Since the shear strain-rate is purely elastic, it is evident tha t  the last term in the 
above functional is small in comparison with the first term. The min imum value of 

ZAMP 20/45 
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the functional is then obtained (very closely) by setting H = p, whatever the function 
f. The critical rate of hardening is therefore the same as that  in uniaxial tension and 
this result is in complete agreement with experiment [10]. A local neck is formed at 
the bifurcation and the deformation continues temporarily under constant pressure. 

6. Concludin~ Remarks 

A sufficient condition for uniqueness of the bilinear elastic/plastic solid is obtained 
by using a linearized version of the solid. The discussion by  Hill was based on the 
assumption that  the constitutive equation has a unique inverse; the present t reatment  
is free from this restriction. The condition for uniqueness discussed here is more 
general than that  given by Hill and brings a wide range of practical problems within 
the theoretical framework. 

The problem of uniqueness of solids is closely related to that  of stability. The 
difference between the criteria governing the two problems appears only through the 
constitutive law. If the solid responds identically to loading and unloading, the 
criterion for uniqueness is the same as that  for stability. For solids having separate 
loading and unloading responses, the two criteria however differ. As a result, a point 
of bifurcation may be reached before an actual loss of stability. 

A general derivation of the stability condition, with special reference to rigid/ 
plastic solids, has been given by the writer ~8]. 
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Zusam~en/assung 

Die Bedinguug fiir das Auftreten einer Verzweigung bei einem beliebigen festen l<6rper 
wird allgemein fiir den Fall diskutiert, dass Teile der Oberfl~che unter einer druckartigen 
Belastung stehen. Besondere Beachtung wird der Frage der Eindeutigkeit bet konven- 
tionellen plastischen Karpern geschenkt und mit Beispielen fllustriert. Die Formel mit 
dem Tangentenmodul fiir das Beulen einer langen diinnwandigen Zylinderschale unter 
sehr flfissigem Druck wird verbessert. 
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