
W/irme- und Stofffibertragung 27, 473-479 (1992) W i i r m e -  

u n d  S t o f f i i b e r  t r a g u n g  

© Springer-Verlag 1992 

Convective wall plume in power-law fluid: 
Second-order correction for the adiabatic wall 
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Abstract. This paper considers the steady-state free convection flow 
arising from an infinitely long horizontal line source of heat em- 
bedded in the base of a vertical adiabatic surface when the ambient fl 
fluid is a non-Newtonian fluid for moderately large values of the t/ 

0 generalized Grashof numbers by the method of matched asymptotic 
expansions. In particular, the second-order corrections to account e 
for the non-boundary layer effects have been predicted. A family of 
numerical solutions for the power-law fluid behavior index n rang- ~0 
ing from 0.4 to 2.0 and for the Prandtl number Pr = 10 and 100 are ~P 
reported. 

Auftriebsstr/~mung in einem nieht-Newtonschen Fluid: 
Korrektur zweiter Ordnung bei adiabater Wand 

Zusammenfassung. Diese Arbeit bezieht sich auf die station/ire 
Auftriebsstr6mung fiber einer langen, horizontalen Linienw/irme- 
quelle, die in das untere Ende einer senkrechten, adiabaten F1/iche 
eingebettet ist, wobei ffir das umgebende Fluid nicht-Newtonsches 
Verhalten unterstellt wird. Unter Voraussetzung mfiBig hoher Werte 
ffir die verallgemeinerten Grashof-Zahlen kommt die Methode der 
angepaBten asymptotischen Entwicklung zur Anwendung. Ins- 
besondere wird belegt, dab Korrekturen zweiter Ordnung zur Be- 
rficksichtigung von Nichtgrenzschichteffekten erforderlich sind. Die 
mitgeteilten Ergebnisse umfassen eine Gruppe yon numerischen 
L6sungen im Bereich 0,4 bis 2,0 ffir den Exponenten n des Potenz- 
ansatzes, mit dem das nicht-Newtonsche Fluidverhalten erfaBt wird 
und jeweils fiir die Prandtl-Zahlen Pr = 10 und 100. 

Nomenclature 

Cs 
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Gr 
Gr x 
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skin friction coefficient 
acceleration due to gravity 
generalized Grashof number 
generalized local Grashof number 
second invariant of the strain-rate tensor 
consistency index 
reference length 
index of power-law viscosity model 
pressure 
generalized Prandtl number 
non-dimensional heat input by the thermal source 
radial distance 
temperature 
reference temperature 
velocity components along (x, y)-axis 
coordinates along and normal to the plate 
inner variable 

Greek symbols 

thermal expansion coefficient 
similarity variable 
non-dimensional temperature 
density 
shear stress 
angular distance 
stream function 

Superscripts 

- dimensionless variables 
differentiation with respect to 

Subscripts 

a adiabatic 
w wall condition 
o0 ambient condition 

1 Introduction 

The flow resulting from a horizontal  line source of heat 
placed at the base of a vertical surface submerged in a 
Newtonian fluid has been the subject of many investigations, 
beginning with Zimin and Lyakhov [1]. A good review of the 
past  work  is provided by Ingham and Pop  [2]. This configu- 
ration, also referred to as the wall plume, is often a con- 
venient and accurate idealizat ion of many electrical and elec- 
tronics cooling applications.  As was pointed out  by Jaturia 
[3] and Joshi [4] such flows are also of impor tance  in studies 
of boundary  layer regimes in t ranspor t  enclosures. 

A growing interest in the dynamics of various polymeric  
liquids has inspired investigations into the non-Newtonian  
fluids for several years. In particular, there is a need to under- 
s tand na tura l  convective flows when the non-Newtonian  
fluids can be approximated  with the power-law viscosity 
model. Appl icat ions for such model  can be found in indus- 
tries processing mol ten  plastics, polymers,  food stuff, fiber 
coating, etc. Thus, considerable at tent ion has been recently 
directed toward  major  aspects of this coupled, non-l inear  
power-law viscosity fluid model;  see Refs. [5-8] .  
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The scope of this study is to investigate the free convection 
flow arising from an infinitely long horizontal line source of 
heat embedded in the base of a vertical adiabatic surface 
when the ambient fluid is a non-Newtonian power-law fluid 
for moderately large values of the generalized Grashof num- 
bers by the method of matched asymptotic expansions. In 
particular, the second-order corrections to account for the 
non-boundary layer effects have been predicted. Numerical 
results are given to illustrate the effects of the power law 
viscosity index and the generalized Prandtl number on the 
velocity and temperature functions as well as on the local 
skin friction coefficient. The similarity solution of the classi- 
cal boundary layer equations for the power-law wall plume 
problem has been presented recently by Pop, Gorta and Lee 
[9]. However, very little previous work has been done on free 
convection plumes in non-Newtonian fluids. To the authors' 
knowledge, no experimental investigation of this problem 
has been reported in the literature. Work reported so far by 
the present authors include theoretical studies on free and 
mixed convection in wall plumes placed in non-Newtonian 
power-law fluids. 

Table 1. Dimensionless variables 

x y u v p 0 J 

.~ ~) ~ ~ fi T -- T~ Gr b 
L L U U QU 2 T, 

b = (6n2-5n-2) / (4n+ 1)(n-2) 

U n - 1 L 1 - n 

where 

L \ a x /  kay/ ~ a ~ / j  " ( 9  

Pr being the generalized Prandtl number and n is the power- 
law index. These equations will be solved with the boundary 
conditions, 

x>0 ,  y=0 :  

y - + ~ :  

u-- - -v=0,  

80 
O = ( 7 ; - T ~ ) G r b / T ~  or ~ y = 0 ,  (6a) 

u = v . . . O ,  0 ~ 0 ,  p ~ O ,  (6b) 

2 Governing equations 

Consider the free convection flow of a power-law fluid adja- 
cent to a vertical surface with a line heat source along the 
leading edge. The properties of the fluid will be taken as 
constant excepting the density in the buoyancy term. The 
coordinate x is the distance measured along the plate from 
its leading edge in the direction of the flow, y being normal 
to it. The corresponding velocity components are u and v, p 
is the pressure, T is the temperature of the fluid inside the 
plume, T~ and T~ are temperatures of the plate and the 
ambient fluid, respectively. 

The governing equations may be written in non-dimen- 
sional form as [5, 6, 10] 

8u 8v 
+ ~ -  = o,  (1) 

ey 

0. 0p 0 ( 0 . )  
" ~ + ~ a y -  0~ + _ ~ 2  0~/ 

+SV S /21 

Ov ~v 8p Gr_.(.+ ~)/(,.+ l) ~ 2 8 t / ~u'~ 

o)(o  
+ ~-  + ~ , (3) 

80 80 
U-~x + V a y 

=P~I Gr-"(n+l)/(4"+a){~---x(JOO)~x +~yy~J~y)~a /" S 0 ' ]  (4) 

8u ~0 
x<_0, y = 0 :  v = 0 .  (6c) 

8y 0y 

Also, for x > 0, for an adiabatic surface, the total convected 
energy downstream I(x) remains constant [11] 

I (x) = Gr -"/(4"+ 1) ~ u 0 dy = const. (7) 
0 

T h e  non-dimensional quantities in the above equations 
are defined in Table 1, where L is a characteristic length, Q is 
the density, T~ is a reference temperature, and U is a charac- 
teristic velocity 

U = (~L" Gr-" ("+ 1)/(4n+ 1)/K)1/(,-2) 

and Gr is the generalized Grashof number 

Gr = 0 fl T~ L (2 + n)/(2- n) (~ / K ) 2 / ( 2 -  n) . 

Further, we shall introduce the strem function ¢ defined 
in the usual way 

00 a~, 
u = By'  v 8x (8) 

and eliminate pressure p from equations (2), (3). After a little 
algebra, we get 

Ux ay ay ~ v'-0 

\ay ~ ax ~) j  

02 

\ex ~ ay ~/ ]  

0 2 (j ~ , ~ ;  00 
+ 4 ~ y ~  ex 6 y J J  + 8y-y = O, (9) 
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a@ a a@ a) 
~ x  ay ay ~ 0 

°(,,o)i 
= PW Lax k a . / +  ~ ~ (Jo) 

and Eq. (5) becomes 
a2@y],.-,,2 

J=k4~y) +key' } j " (,5) 

The boundary conditions (6) now read 

x>0,  y=O: @=8--~=0,  (t2a) 
0y 

80 
0 = ( T ~ - T ~ ) G r b / T ,  or w - = 0 ,  

c y  

80 
y-+m: - - - ~ 0 ,  0 - , 0 ,  (12b) 

8y 

82@ 80 
x_<0, y=0:  @ -  Oy 2 B y = 0  (12c) 

while relation (7) takes the form 

Grn/(4n+l) i ~ y  O dy = I . 

0 

(13) 

3 M e t h o d  o f  so lut ion  

Assuming the Grashof number to be large, we apply the 
method of matched asymptotic expansions as developed by 
Van Dyke [12] with Gr -È/("+i) as a small parameter. The 
method of solution is as follows. The velocity and tempera- 
ture fields are divided into two regions: one is the inner 
region close to the plate and the other is the outer region far 
from it. Separate, locally valid, expansions of the stream 
function and temperature are developed for those two 
regions. These expansions are assumed of the form 

@ = Gr-"/(~"+l){Oo(X, Y) + Gr-"/( '"+l)@l(x, Y) 

+ higher order terms}, (14 a) 

0 = Oo(x, Y ) + Gr -"/(4"+ l) Ol(x, Y) + higher order terms 
(14b) 

for the inner region where Y = Gr "/(4" + 1) y and 

@ = Gr-./(4.+ i) {q~l (x, y) + Gr -":(4" + i) ~2 (x, y) 

+ higher order terms}, (15 a) 

0 ~ 0 ,  (15b) 

for the outer region, respectively. We note that Eq. (15b) 
results from the fact that the outer region is isothermal. The 
equations for (@o, 0o) and (@l, 01) are obtained by substitut- 
ing Eq. (54) into Eqs. (9), (10) and collecting terms of various 
powers of Gr. Integrating equations derived from Eq. (9) in 

this manner once with respect to Y and the resulting arbi- 
trary functions of x set equal to zero, we obtain 

i) first-order approximation 

8@o 82~,o 80o a'@o 8 ( 820o .-182@o,/_ 
8 x  a Y  2 8 Y  8 x a Y  8 Y  \ ~ a Y 2 / - t - 0 ° = 0 '  

(16) 

_ (I 0' o 1 (5 7) 
8 Y  8x 8x 8Y  Pr 8 Y  \la~-I aY)' 

Y=0: 

g--~ oo: 

and 

8~'o a0o 
0 ° =  aY =0,  Oo=(Tw--T~)Grb/T~ or ~ - = 0 ,  

(18a) 

-~0, 0o-+0 (18b) 
8Y 

f ~ O o  dy = I .  

0 

(58 c) 

ii) second-order approximation 

0@~ 820o 80o 82@1 80o 82@1 801 820o 
t - - -  

8X 8 Y  2 OY 8x 8Y Ox OY 2 8Y 8xSY 

o /J 8'0o I "-~ 82@1) 
8-~- ~ --~-yE 8y2 + 0 i = 0 '  

a@o aO1 a@o 801 a@1 80o 8@I 80o 
8Y 8x 8x 8Y 8Y 8x 8x 8Y 

_ 1 8 ( 8'@o['-i80i~ 
Pr OY k , I - ~ T I  OY / '  

e@l 001 
Y =0:  @i-  0, 

8Y 8Y 

(20) 

(20) 

(21 a) 

Y~oo: 
a@1 
8Y 

and 01 match with the outer solution 

(21 b) 
and 

f 
* -gF 

0 

(21 c) 

3.1 The first-order inner solution 

The solution of the first-order inner problem has been shown 
by Pop, Gorla and Lee [9] to be of the form 

@ o = x (2, + 1)!(4, ~ i )/o (t/), (22 a) 

0o = x-(Z,+ i)l(4,+ i) h@ (t/) (22b) 

and 

q = x -(" + :)/(*"+ : )Y .  (22 c) 
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Functions fo and ho are determined from 

, , , -~  ,,, 2 n + l  n 
( [ f ; l  fd) + ~  fofd' 4n+~ fdZ+ho = 0 ,  (23) 

p@ 2 n + 1  
(]fd' f -  1 h~))' + ~ (f0 h0)' = 0 (24) 

with the boundary conditions given by 

fo(0) =fg(0) = 0, ho(1 ) = 0, h{)(0) = 0,  (25a) 

fg (oo) = ho(m ) = 0,  (25b) 

and 
oo 

fg ho dfl = I .  (25 c) 
o 

Here primes denote differentiation with respect to t/. We 
notice from Eqs. (18 a) and (22 b) that the temperature of the 
plate is assumed to depend upon x as 

Tw(x ) = T® + Gr -b T~ x -(2"+ 1)/(4n+ 1). 

3.2 The second-order outer solution 

By substituting Eq. (15) into equation (9), we find that the 
second-order outer solution is determined by the Laplace 
equation 

V2~1 = 0 (26) 

subject to the matching condition 

~l(x, 0) = {/°(°°)0 x(2"+1)1(4"+1) XX<0 > 0 (27) 

and the infinity condition ~ l / ~ x  = ~ l / ~ y  = 0. The solution 
of Eqs. (26), (27) can be shown to be 

sin L4 n + 1 
~l=r(Z"+l)t(4"+l)f°(°°) . [ -2n+1 ~ ' (28) 

s m L 4 n +  1 J 
where r = (x z + y2)i/2 and go = tan-  1 (y/x) are polar coordi- 
nates. 

3.3 The second-order inner solution 

The governing equations and boundary conditions for the 
second-order inner problem are given by Eqs. (19), (20) with 
the matching conditions 

8~--1 ( X , ~ y  oo)= -x-2"l(4"+l) fo(Oe)cot \4n+ 1 r: , (29a) 

01 (x, oo) = 0.  (29b) 

Note that Eq. (29) are obtained by using Eqs. (14), (15) and 
(28). It can be shown that this second-order inner problem 

admits similarity solutions of the form 

01 = x-("- 1)/(4,+ 1) f l  (t]), (30a) 

01 = X - ( 5 n +  1)/(4n+ 1) hi (t/) (30b) 

where f l  and h 1 are determined from 

2 n + 1  n 
(Ifd't"- lf~")' + 4 ~ f o f ; '  + 4 - - ~ f d f ;  

n--1 
f(~' fa + hi = 0,  (31) 

4 n - 1  

1 2 n + l  5n+1  
p~ (Ifd'[ "-1 hi)' + ~ - ~  fohl + 4 n ~  fdhl 

2 n + l  ~'h n + l  
+ ~ i - - J l  o 4 n + ~  f -h{)=0  (32) 

with the boundary and matching conditions, 

f l  (0) = f, '  (0) = h i (0) = 0,  (33 a) 

/ 2 n + l  
) hl(oo) = 0 (33b) fl'(oo) = --fo(oO) cot t ~ - ~ 1  u , 

and 

7 (fa' ho + fd  hi) dr/= 0. (33 c) 
0 

It is worth mentioning to this end that for n =  1, Eqs. 
(23)-(25) and (31)-(33) reduce to those of AfzaI [13] and 
Ingham and Pop [2] for the problem of convective wall 
plume in a Newtonian fluid. 

An important physical flow quantity of interest in this 
problem is the local coefficient of skin friction C¢ defined as 

c s  = 2 

where % is the shear stress at the plate given by 

V:¢ 
Making use of the variables defined in Table 1 and Eqs. (8), 
(14), (22) and (30), we obtain 

C¢ Gr "i(4"+ 11 xn/(4n+ 1) ---- 2 1 fd'(0) I" (34) 

+ 2 Gr x-'l(4" + 1) I fd' (0) I"- 1 fl" (0) + higher order terms 

where 

Gr x = g fl ~ L4(, - 1)/(2-,) if3 (~/ K)2/(2 -n) 

is the generalized local Grashof number. 
Finally, using Eqs. (14), (22) and (30), we may define the 

adiabatic wall temperature O, = (Tw--T~)/T~ as 

Oa Gr b x (2"+ 1)I(4, + 1) 

= ho (0) + Grx -"/(4"+ 1) hj (0) + higher order terms. (35) 
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Fig. 1. First order solution for velocity distribution vs. similarity 
variable, ~/for various flow behavior index, n (Pr  = 10) 
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Fig. 3. Second order solution for velocity distribution vs. similarity 
variable, t/for various flow behavior index, n (Pr= 10) 
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Fig. 2, First order solution for temperature distribution vs. similar- 
ity variable, t 1 for various flow behavior index, n ( P r =  100) 
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Fig. 4. Second order solution for temperature distribution vs. simi- 
larity variable, t/for various flow behavior index, n ( P r =  100) 

4 Results and discussion 

Numerica l  solutions for Eqs. (23) (25) and Eqs. (31) (33) 
were carried out for n ranging from 0.4 to 2.0 and for P r  = 10 
and 100, respectively. As we have mentioned in Section 2, 
n is the proper ty  of the fluid with n = 1 for Newtonian  fluids. 
Non-Newton ian  fluids with n < 1 are called pseudoplast ic  
(most macromolecular  fluids are of that  k ind with 
0.2 < n < 0.6, see Bird et al. [14]) and those with n >  1 d i la tan t  

The results for fd'(0), fi"(0), f o ( ~ ) ,  and h i (0) for selected 
values of n are tabula ted  in Tables 2 and 3 for future refer- 
ence. A complete discussion of the first-order (boundary 
layer) results has been presented in the previous paper  [9]. 
The results for the first order  velocity profile fd and temper- 
a ture  profile ho are displayed in Figs. I and 2, respectively for 
P r  = 10. Figs. 3 and 4 show the numerical  results for second 
order  velocity profile f~' and temperature  profile h 1 for 
P r  = 10 and n ranging from 0.4 to 2.0. Fig. 5 shows the vari- 
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Fig. 5. Second order solution for velocity at the outer edge of the 
boundary layer, fl' (oo) vs. flow behavior index, n for Pr = 10 and 100 

Table 2. fo (oo), fd'(0), f;'(O), and hi(o) versus various flow behavior 
index, n for Pr = 10. 

n fo(oO) fd'(O) fl"(0) h~(0) 

&4 2.48399 1 . 5 6 2 3 0  --0.03315 --0.22000 
0.6 1.65000 1 . 0 8 8 0 4  0.02196 -0.16500 
0.8 1.27000 0 . 9 5 0 6 3  0.01590 -0.15595 
1.0 0.99482 0 . 8 6 1 2 3  0.00069 --0.14410 
1.2 0.80000 0.90450 0.13457 0.15000 
1.5 0.62000 0.82903 0.53149 0.48312 
2.0 0.46400 0.76044 0.83138 0.97500 

In order to assess the accuracy of numerical  results, we 
have compared  our  results for n = 1 (Newtonian fluid) and 
P r = 0 . 7 2  with those known from the literature. Thus, the 
present numerical  results for fd'(0), f~" (0), and h 1 (0) for n = 1 
and Pr = 0.72 were found to be 1.31005, 0.43805 and 0.49374, 
while the corresponding values given by Ingham and Pop [2] 
were 1.31005, 0.43805 and 0.49375. This demonstrates  that  
our  numerical  results are highly accurate. 

F r o m  Eqs. (34) and (35) and Tables 2 and 3, we notice that  
the friction factor and  adiabat ic  wall temperature  are under 
predicted by the first-order boundary  layer solution. F o r  
values of Grashof  number  < 0  (105), it is observed that  the 
error  in using the first order theory amount  to about  15%. 
The second-order  correct ion reinforces the first-order term 
to augment  the friction factor and adiabat ic  wall tempera- 
ture. This increase of C~ and 0 a implies a decrease of 
boundary  layers thicknesses. 

5 Concluding remarks 

In this paper,  we have analyzed theoretically the laminar  
natura l  convection flow of a power-law fluid generated by a 
line thermal source embedded in the leading edge of an 
adiabat ic  vertical surface with second-order  correct ion in the 
boundary  layer by the method of matched asymptot ic  ex- 
pansions. The obtained numerical  results allow an accurate 
evaluation of the velocity and temperature distr ibution in 
the boundary  layer. I t  has been shown from the numerical  
results that  the errors in using the first-order theory amount  
to be 15%. The flow behavior  index was varied from 0.4 to 
2.0 whereas the Prandt l  number  was taken as 10 and 100. 
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Table 3. fo(oo), fd' (0), f;'(O), and h i (0) versus various flow behavior 
index, n for Pr = 100. 

n fo(oO) fd' (0) fl" (0) hi(O) 

0.4 0.49000 0 . 7 3 8 5 8  0.00074 --0.00447 
0.6 0.32000 0.50828 0.00877 --0.09750 
0.8 0.20300 0 . 4 1 8 9 5  --0.00350 --0.23180 
t.0 0.12585 0.48062 --0.00500 --0.07948 
1.2 0.09210 0.54364 0.00861 0.02513 
1.5 0.06500 0.53094 0.05687 0.10000 
2.0 0.04200 0.44790 0.20937 0.15000 

at ion of the second-order  velocity at  the outer  edge of the 
boundary  layer, f~'(oo) with n for P r = 1 0  and 100. I t  is 
relevant to note that  f~ (co) decreases with increasing values 
of n and Pr. This indicates that  the outer potent ial  flow 
induces a vertical velocity across the boundary  layer that  
decrease when n and Pr  increase. 
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