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For sufficiently large phonon dispersion the general rate-expression for nonradiative multi- 
phonon transitions reduces to a gentle analytical approximate expression suitable, due t o i t s  
compactness, for numerical calculations too. Simple explicit formulae are obtained in classical 
and semiclassical approximation frequently used in earlier papers, the severe limitations imposed 
to their actual applicability being discussed. On the basis of the concept of a mean phonon energy 
effective at medium temperatures, we derive explicit overlap-factor formulae applying to the 
experimenta�9 most typical cases when the spacings of the electronic levels involved in the non- 
radiative multiphonon transitions considered are larger than the corresponding readjustment 
energies of the phonon field by a factor 101/2. 

1. I N T R O D U C T I O N  

For a dynamical electronic system coupled statically with a dissipative system 
of quantized harmonic oscillators being in a state of thermal equilibrium, a general 
rate expression for nonradiative multiphonon transitions induced by the nonstatic 
part of the electron-phonon interaction had been given in a first paper [1]. According 
to the pattern of the simple transition-rate formula obtained there for the singular 
case of completely vanishing phonon dispersion, we shall derive in the present paper 
equally practicable transition-rate formulae for sufficiently large phonon dispersion. 

Thus, having established in sec. 2 a connection between the most important ones 
of the quantifies determining the spectral behaviour of the temperature-averaged 
overlap factor with the corresponding experimental luminescence spectra data, we 
give in sec. 3 some fundamental analytical properties of the overlap factor being 
a smooth function of the magnitude of heat conversion. These preliminary investiga- 
tions allow us to write down in sec. 4 an approximate rate expression which, due 
to its compactness, gentleness and large range of applicability, suffices within the 
framework of the static coupling scheme for the great majority of applications. 

In sec. 5 we specialize this nearly exact rate expression for both the classical and 
the semiclassical approximation frequently used in earlier work based on the adiabatic 
coupling scheme, see e.g. LAX [2], RICKAYZEN [3], STASIW [4], PERLIN [5] ,  SINYAV- 

sraY and KOVARSrdY [6], BONCH-BRUEVICH [7].  Having discussed the severe limita- 
tions of such elementary approximations which forbid, practically, their use for 
a very large class of nonradiative multiphonon transitions being of major physical 
interest, we pass in sec. 6 to higher approximafions based essentially on the concept 
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of a mean phonon energy effective at medium temperatures. This procedure enables 
us to give, in the first line, a theoretically underpined derivation of the single-phonon- 
energy formula (I. 6. 4) attained, in a merely intuitive way, in [1]. Yet, beyond this, 
there will be obtained a modified effective-phonon-energy formula for the smooth 
overlap factor which, in addition to accounting generaIly for the characteristic slow 
descent of its functional behaviour on the extremely far high-energy wing, reproduces 
correctly the three nontrivial lowest-order moments (i.e. the center of gravity, the 
broadening and the skewness) of the exact overlap-factor curve. 

2. OVERLAP-FACTOR MOMENTS 

The temperature-averaged rates wNy . and WRy . of nonradiative and radiative 
multiphonon transitions Ia> ~ la'> of a dynamical electronic system coupled stati- 
cally (within a linear interaction law) to a dissipative system N of quantized harmonic 
oscillators had been expressed in [1] in terms of the temperature-averaged overlap 
factors 

(2.1) ~a,a(E ) --- 1.~--�99 e-le dA 
2ni ! ~-i~ 

with quasicontinuously varying argument E corresponding to the energy converted 
into heat by mearis of an attached multiphonon reIaxation process. The associated 
generating function 

(2.2) re,(2) = oe~,,(E) e ~�9 dE 

corresponding to the Laplace transform of oe,,,(E) reads explicitly 

(2.3) r,,,(2) = exp (sNy - sNy 

= SNa,a(O)"[- ~ 1 ™ - -  . ,.Ja,al~ 
m = l  //7,! 

where e, > 0 and S , y  a �87 0 are the phonon energy and the transition-specific re- 
adjustment energy, resp., of the n,th normal mode, T is the temperature of the 
phonon field, k is the Boltzmann constant, and by 

2p (2.5a) -o,S (2p+1) ~ 2~n Sna, a 
n 

and 

(2.5b) ~™ ___ ™ x coth. e. 
--a'a A..~~n ~na'a �87 

2 k T  
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p = 0, 1, 2, ..., we bave denoted the temperature-independent odd-order and the 
temperature-dependent even-order derivatives, resp., of the function sNy dt 
2 = 0 which correspond to the semi-invariants of the spectral distribution of the 
overlap-factor curve (2.1), cf. Ktmo and TOYOZAWA [8], MCCUMBER [9]. Expanding 
the latter derivatives in terms of the former ones, we obtain the series 

(2.6) --a'a™ = 2kT. ~~ f(20 . ( 1 \..__2__121�99 1)  

z = 0 ( ~ )  v. \ 2 k T ] - - a ' a  

quickly converging dt high and medium temperatures, where we have denoted 
by f(21), 1 = 0, 1, ..'., the even-order derivatives of the function f ( x )  = x .  coth x dt 
x = 0 .  

Differentiating now expression (2.2) m-rimes with respect to 2 and putfing then 
2 = 0, we obtain for the moments r~,~2 of the overlap-factor curve oe~,,(E)(moments 
of heat conversion) exactly 

(2.7) r (") =- Emoea,a(E) dE = - -  exp (s~y - sNy 
- "'" - d2m ;. = 0 

(o 1 reproduces the usual normalization At this, the zeroth-order moment fa, a = 

condition of the overlap factor oey (cf. [1]), and the first-order moment @enter 
of gravity) _r ~171171 = --Ca'™ corresponding to the hall value of the Stokes' shift (sec e.g. 
PEKAR [10], PERLIN [5]) is just identical with the transition-specitic readjustment 
energy 2S ,y171  of the phonon field (cf. [1]). The latter quantity may be considered 

n 

to be generally the most important one of the parameters determining the rate of 
nonradiative multiphono n transitions (cf. KUBO [11]). In the case of nonvanishing 
phonon dispersion considered here it is to take 'over  the role of the well-known 
dimensionless Huang-Rhys parameter E8•lSna,a (see e.g. HUANG and RHYS [12], 

n 

MEYER [13], DEXTER [14], HOWGATE [15]), a quantity becoming less important 
with increasing phonon dispersion. 

In passing for m = 2, 3, 4, ... from (2.7) to moments O(a,~~ ) referring to the center 
of gravity S(,,1, ~ of oey we obtain from (2.2) correspondingly 

(2.s) 
i+: d~ o (m) -- (E - S(1)] m Oe,,~(E) dE = - -  exp (Suy - s~~,,a(O ) - 2S(,P) 

v- ,a 'a - - - a ' a ]  d,~u m J,-.= o 

^(3) = S(3) for the so that we have, in particular, OEa'a~(2) : --a'a'~(2) for the broadening, ea'a a'a 
(2) 2 skewness and ,~,,o (4) = --Ca'™ 3(Sa,,) for the kurtosis of the overlap-factor curve 

oece(E) (cf. LAx [2], STASlW [4]). 
For an experimental determination of the low-order quantifies -a'™ (2.5) in (2.7) 

or (2.8), m = 1, 2, 3 . . . . .  we conside�9 the normalized spectral behaviour of the asso- 
ciated luminescence band (see e.g. LAx [2], PERLIN [5]), which, in being located 
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at photon energies e ~> kT, is approximately given by the function oe,,a(]Jy - J . [  - e )  
(2.1) with the spacing [ j , ,  - Ja[  of the effective energy levels (see [1]) of the elec- 
tronic system in its base states la'> and la>. Thus, the moments/~a~,~ and A(,'T” of the 
luminescence band which refer to the origin e = 0 and the center of gravity s = L(,~,~ ), 
resp., are connected with the corresponding moments -ca r(~) and Qc�87 of heat conversion 
approximately by 

_ ~ m! 
(2.9) L~~,a ) (-1) 'n '  r~Y~')[jn j , l  " - ' y  

m'=0 m'! (m - m')! 

and 

( 2 . 1 0 )  A (m) --'* ( - - i )  m ~(a~2 

so that we bave according to (2.6) for the two nontrivial lowest-order moments 
in particular 

(2.10 -o,ar~') - I t . ' -  %1- '™ - - a  r~z 

[ '(~; ] ,�99 _~ ( 2 . 1 2 )  A (2) - -  S~.2. ) = 2kT S(,1,2 + -3 --Ca ._ara . . . .  

Consequently, on the basis of the temperature-behaviour of the broadening A (2) 
of the luminescence band at high and medium temperatures we can successively 
determine the quantities Sa(,~~ ) and ,™ the combination 

/,™ 
(2.13) e,,a --- ~ ~  ) 

of both giving some transition-specific phonon energy effective at temperatures T 
of the order of the corresponding Debye temperature Ty ~ e,,y which will play 
an essential part in the approximation procedures presented in sec. 6. Eventually, 
the energy spacing lJa'  - Ja] of the effective electronic levels may be determined 
from the location of the center of gravity r(1) of the luminescence band. ~ � 9  

3. SMOOTH OVERLAP FACTORS 

In typtcal nonradiative multiphonon band-imperfection transitions of carriers 
in semiconductors the heat energy IEI - ]Ja' -- J~[~ interchanged with the dissipative 
system of lattice modes n, is generally larger than the corresponding phonon energies 
e, by a factor of the order 101 ... 10 2 so that the condition (I. 6. 1) of the smoothness 
of the overlap-factor curve is usually fulfilled even in the case of relatively small 
phonon dispersion (e.g. for the field of only the longitudinal optical modes in hetero- 
polar crystals, see KRIVOGLAZ and PEKAR [16]). Consequently, in an approximate 
calculation of the integral (2.1) within the well-known saddle-point approximation 
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(see e.g. [16]) just the immediate vicinity of the real saddle point 2.,a(E) of the ex- 
ponential function exp (sNob()0 - sNy - 2E) in (2.1), 

(3.1) s~12,,(2,,,(E)) = E 

gives the dominating contribution to the integral (2.1) so that the overlap factor 
veduces to the smooth function 

(3.2) oey "-- [2ns~22, , (2, , , (E)) ]  - ' / 2  exp [@y - oey 

of the heat energy E (cf. [16, 5]), where 

(3.3) r ~ SNa'a(~a'a(E)) - -  SNa,a(O ) - -  ~a,a(E) E .  

To derive first of all a general relationship connecting smooth overlap factors 
oey with arguments E = _+ IEI differing only in their sign, we start from a corre- 
sponding symmetry relation 

E (2y 1 ) 1 _ 2 , , , ( -E )  1 
(3.4) 2~,,(E) = [‚ 2 ~  2 k T  - k ~  

obviously satisfied by the real solution of eq. (3.1), from which it follows immediately 
that the quantity s(u~,,(2y in the preexponential factor in (3,2) remains unchanged 
when the sign of E is converted and the function ~by ) in the exponential of (3.2) 
obeys a symmetry relation 

(3.5) ~,,y = ~~176 + U - l E !  = ~ y 1 7 6  + - -~ .  
2kT k T  

Thus, for the smooth overlap factor oe,,,(E) (3.2) itself we have a relationship 

(3.6) ~y -= oe,,,(IEl)exp \ 2 k T  / 

generally holding for the exact 0verlap factor oey (2.1) too (cf. [1]), which allows 
us principially to confine ourselves in explicit calculations of oe,,~(E) to positive 
arguments. 

In order to express now the overlap factor oey (3.2) with given energy E in terms 
of the solution of eq. (3.1) for an energy Eo differring from E in magnitude, we diffe- 
rentiate (by observing (3.1))the function ~b,,,(E) (3.3) m-rimes with respect to E, 

obtaining 

(3.7) e(~Y2(E) = -2(y199 ~)(E), 

m = 1, 2, 3, ...., where the low-order defivatives of/Iy read explicitly 

(3.8) 2~,t](E) _ 1 - @,),,(2,,a(E)) 
s~22,a(2,,,(e) ) , , ~ ~ 2 ( e )  = ~ ,2 ,  3 ' " "  [ N.,~176 
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(see [16]). Expanding now the functions 4~,,,(E) (3.3) and  [s~2.),,(2.,.(E))] - '  = 
= 2,(},)(E) (3.8) in (3.2) into Taylor series we can immediately write 

(3.9) { m}l/2 
(,) -I 1 2(y+I)(Eo)(E_ Eo ) oe.,o(E) = 1 + [2a,.(Eo) ] ,.:,~ 

1 - Eo) m} n �9 exp {--  ~ ,  ~ !  2(.,~.-"(Eo) (E 

this expansion permitting us, in particular, to reduce overlap factors oey with 
slightly varying heat energies E ~ Eo in a very elegant manner (see sec. 4) to a product  
of an overlap factor oey at fixed heat energy Eo with some less crucial factor 
of the order of magnitude 10 ~ 

Now, if for given difference E - E o of heat energies the condition 

(3.10) _ _ l E -  Eo[ - 
~n sN22,a(~a.a(Eo)) ~ 1 

is fulfilled with the phonon energies e, of the individual normal modes n, the contri- 
butions of the  2(a,~a~(Eo)-terms, m = 2, 3 . . . .  , to (3.9) are negligibly small in comparison 
with the 2(a},~(Eo)-term in the exponential, and in this approximation we bave simply 

(3.11) oe.,a(E) - exp { - 2 . , . ( E o ) ( E  - Eo) - (E  - E o )  2 "~ oe.,.(Eo) " 
25'2,.(,Vo(Eo))J 

Solving eq. (3.1) explicitly what can be done exactly for heat energies IEo[ = S(,} ) 
and 0, 

1 
(3.12) Y~(~)~=O and 2 , , y  

2"'"l'Oa'a) 2 k T '  

we may, by confining ourselves to formula (3.11)(in simplest approximation) or 
by starting directly from formula (3.9) (in higher approximation), immediately write 
down less or more gentle explicit overlap-factor formulae for heat energies IE[ ~ Sa(}, ) 
being of interest in radiative mult iphonon transitions as well as energies within 
a physically less interesting energy range lE] ~ 0. Contrary to this, for energies IE] 
large in comparison with the readjustment energy of the phonon field which are 
usually of interest in nonradiative mult iphonon transitions, such a formal reduction 
of oe,,a(IE]) to oe,,,(S(,}a )) or even to oea,a(0) would be without use in general due to 
the relatively slow convergence (see also KRIVOGLAZ [17]) of the series in (3.9) in the 
latter case. 
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4. NONRADIATIVE MULTIPHONON TRANSITION RATES 

If the variations 6E = E - Eo of the energy E in (3.11) around a fixed value Eo 
is as small as the order of magnitude of the phonon energies, [6E] ~ e,, so that the 
condition (3.10) reduces to the inequality 

(4.1) ==, ~ sI2.~ 

nearly coinciding with the criterion of the applicability of the saddle-point approxima- 
tion (see e.g. [16, 5]), the quadratic terre in the exponential in (3.11) gives only 
a small negative correction to unity, 

(4.2) Oey176 o + 6E) - 1 - 2=~~,=~,,=(Eo)).j exp  [ - ' - 2 , , , ( E o ) 6 E ]  oe, ,~  

In this approximation (cf. a corresponding rougher one used by KRIVOGLAZ [17] 
where the small quadratic term had been omitted completely) we obtain for the 
probability wN,,~ (I.4.21) of a nonradiative multiphonon transition ]a)-> la'> 
of the electronic system per unit rime generally the compact expression 

(4.3) w=y171 - ; a:~=,o - b==,.(2y176 - Jy  + 

+ ~o) . G),o(<,.(Y. /~ ] ,=o.,(~,.~ Io0) -  l�87176 io.))p~ y176 io.) 

with the real solution 2,,,(E0) of eq. (3.1) and the smooth overlap factor oey 

(3.2) for an energy Eo equal to the difference j̀ , j= ,  of the effective energy levels 
of the electronic system in the initial and final state. At this, the 2-derivatives of the 
functions bue,(2), c=~ and ==y (4.3) are explicitly given by 

(4.4) 

G%(,9 ] (=-~~ {B.a,.} 
y171176 (~)~ = Z <  C.y 
~(m+ 1) (~'~ ] n 
~ \'~] d Sna 'a  

~ +0] /y G +.)] 
2 s inh  e .  

2 k T  

m = 0, 1 . . . . .  with the transition-specifie energy coefficients B,y C,~ a > 0 and 
S,y _>_ 0 which are, according to their definition (I.4.8), generally connected by the 
relation 

(4.�87 I�87 = c,,,o sa,o. 
Thus, we have now at our disposal for the relevant case (I.6.1) of sufficiently large 

phonon dispersion a transition-rate formula (4.3) which, like expression (I.5.19) 
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derived for vanishing phonon dispersion, reduces to a product of a single overlap 
factor (3.2) with some transition-specific terres being weakly dependent (according 
to low-order power laws, cf. [1]) On the given value E o = J y  - j y  of the energy 
converted into heat. It is because of the simplicity, the gentleness and the large range 
of applicability of  formula (4.3) that it can be made to serve, within the framework 
of the static coupling scheme, as a starting point for the majority of typical non- 
radiative multiphonon transition-rate calculations. 

In this connection we wish to point out that such a gentle approximation formula 
could not have been obtained in evaluating WNa, a directly from (I.4.3) by putting 
simply 2 --* 2 y  a - j e )  in the preexponential factor in (I.4.6), as one would be 
possibly inclined to do in a roughest approximation. Such a procedure would not 
give the characteristic negative terre (cf. e.g. [17]) the occurence of which only 
completes the formal correspondence of (4.3) with (I.5.19). 

At the same time, as to be required with respect to any approximate transition-rate 
expression, tlie appearance of such a negative terre does hot affect the positive 
definiteness of  the total expression (4.3) due to a corresponding Schwarz' type 
inequality 

(4.6) Ib�99 2 < c~~ 

following, for any real 2, immediately from relation (4.5) in connection witl�9 the 
definition (4.4) of the functions considered. 

* Bna a, * Again, on the basis of the symmetry relations ana y = a:r = - - B , , y  

Cnay = C,,,a and S,=a" = S,a,a following from the actual definition (I.4.8) of these 
transition-specific energy coefficients in connection with the symmetry relations (3.4) 
and (3.6) satisfied by the position 2a,a(E) of the real saddle point and the associated 
smootti overlap factor oea,a(E), resp., it can be easily realized that the general transi- 
tion-rate expression given here (as well as the more specialized ones to be deduced 
in sec. 5) obeys exactly the relation (i.4.11) of detailed balance, 

(4.7)" w~,a W ~ a a ,  '= exp ( J ' / � 9 9  " 

5. INFERIOR APROXIMATIONS 

For energies IEI = [ j , ,  - Ja l  being of the order of magnitude of the readjustment 
energy S(,,lJ of the phonon field, simple explicit transition-rate formulae can be given. 
The correslSonding smooth overlap-factor curves reduce to normalized Gaussians 

(5.1) G(A;  oe) ---- [re 2oe] -1/2 exp - 2-~ ' 

where A are the distances considered from the given center of  gravity and A 2 are the 
associated mean square deviations. 
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5.1. C l a s s i c a l  a p p r o x i m a t i o n  

If at high temperatures, e. ~ 2kT, the inequality 

(5.2) ~o I E ~ I  ~ t 
2kTS(~*,2 

is fulfilled for all normal modes n considerably contributing to (2.4), the solution 
~y of (3.1) reads 

(5.3) 2"'a( E ) - ~  7 7 ) -  1 . 
Sa'a 

In this approximation the general expression (3.2) for the smooth overlap factor 
n reduces to its well-known classical form [ (1) 2 

4kTSa,a] exp - 4kTS(~2 J --a'a, (5.4) ,~a,a(E) ".2-[Tf, (1) -W2 (E -- Sa,a) ] = G(E - .™ 2kTS(a,,)a) 

(see e.g. LAX [2], RICKAYZEN [3], PERLIN [5], CURIE [18]). 
Correspondingly, if  condition (5.2) is fulfilled for  IEI = I Ja '  -- J " [ ,  the  general 

expression (4.3) for nonradiative multiphonon transition rates wzvy reduces simply t0 

(5.5) 
{ . C a 2 +  ( ~0,2 27~ c~a" - J a  (0) 2 k T  c F ~ "  - IB~176 ~~ ~a,a(a~a- Ja ' )  

WNa'a ~ 7 Aa'a -~ Oa, ao(1) S(12 / J 

With the (temperature.independent) transition-specific energy coe�9 A y 1 7 1  
( - 1 )  - aN.,. = ~A.y B~,~ -b~~ = ~B~y C(~Ta 1) -- c~y ) = Y,C,y and ,™ _ - -a ra  

ri n n 

-= s~1~),.(0 ) = ~ S . y  a being connected by a Schwarz' type inequality ]B(y176 < 
n 

=< Cy171 a(1) (cf. [1]) and the overlap factor ~y  - j e )  in dassical approxi- 
mation (5.4). The latter can be written in the form 

(�87 o ( j o  - t . ,  - s(.,~2 ; 2kTS(.12) = [= 4kTS(.~,2] -~/2 exp - k T J  

with the classical excitation energy 

--a'at (5.7) 0 ~ Ua, a ~- (~a Ja '  ™  

4S(*) --a'a 

(cf. KlUVOGLAZ [17], RICKAYZeN [3], PERLIN [5], SINYAVSKIu and KOVARSKIY [6]) 
for a nonradiative multiphonon transition la} -+ la'} of the electronic system which 
satisfies the symmetry relation 

( 5 . 8 )  Uaa" + i f  a" : Ua'a 21- 'v~a 

following trivially from its definition (5.7). 
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5.2 Semic las s i ca l  a p p r o x i m a t i o n  

For energies within the ranges 

(5.9) ~. I1~1 - s<,i - y  .~ I 
S(2)  a'a 

the solution 2y of eq. (3.1) reads, for arbitrary temperatures, 

--a'a (5.10) '~y lE l ,™ 
S~a~,2 

so that the corresponding smooth overlap factor (3.2) equals approximately 

[ - - . . +  l:q (5.11) Oey - [~ 2S(2'] -1/2 exp - (IEI s,1,~2 E = _ 
----a'a.J ----a'a2"�99 (2) 2 k T  J 

= G( N - ~ ~ " s  exp --a'a�87 

This expression corresponds, for positive E, exactly to the well-known semiclassical 
overlap-factor expression (see e.g. LAX [21, RICKAYZEN [31, STASIW [41, PERLIN [51, 
CURIE [181, HAUG [191) while, for negative E, it is modified so as to obey, at least, 
the fundamental symmetry relation (3.6) assuring detailed balance (4.7). 

Correspondingly, if n o w  the inequality (5.9) holds for IEI = 1 1 . , -  1~ the 
general expression (4.3) for nonradiative multiphonon transition rates wNy reduces 
to 

{ Ba'a ( (2) 2 2~ : . . -  : o  ,0, 2 , o ,_  1�87171 '~~ 
( 5 . 1 2 )  WNa, . "-- ~ Aa, a +-™ -S-�99239 .-I- Ca, . S(a2 2 / J  ~.~a,a(~,~a -- orafa ,) 

(see in contrast to this RICKAYZEN [3];: cf. a somewhat less practicable expression 
given by HAUG [19]) with the temperature-dependent transition-specific quantities 
B~a~,). - bg~2..(0); C<.~. ~ -cg~ and S~~,” - S~22,a(O) connected, again, by a Schwarz' 
type inequality IBL,1210E < c,o,™ = a'a~a'a" 

The semiclassical expression attained by SINYAVSKIY and KOVARSKIV [61 (see also 
BONCH-BRUEVlCH[7]) on the basis of the familiar adiabatic coupling scheme within 
the so-called Non-Condon approximation gives, in general, results of approximately 
the same order of magnitude as (5.12). Formally, it could be obtained from the latter 
by putting simply A, , .  = 0 and _,,,~('~ = 0, m = 0 and 1, in (5.12). 

5.3 C o m p a r i s o n  wi th  the  exac t  s o l u t i o n  

In applications, the distance IJ . '  - J-]  of the effective electronic levels involved 
is usually several times larger than the associated readjustment energy ,™ of the --a 'a 

phonon field, [J . ,  - J . l  ~ 101/2" - . ' .  SO) (see e.g. PEKAR [10], RICKAYZEN [3], FOWLER 
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and DEXTER [20]). Hence, the formulae given in this section apply only at extremely 
high temperatures (and then, because of S~2,), - 2kTS(,9~, the semiclassical approxima- 
tion gives the same results as the classical one) whereas, at lower temperatures, the 
condition of validity of the semiclassical approximation usually is not fulfilled. 

For a visualization of the deviations of the classical and semiclassical overlap-factor 
expressions from the corresponding exact one we consider the 1 st - and 2"a-order 
derivatives (3.8) of the solution 2y of eq. (3.1) which are 2(a,lJ(E) > 0 for any E and 
2'2){E~.'.w/ ~ 0 fo rE  ~ 0 and, due to (3.8) and (3.12), 

t 1 1 (5.13) ~~) y (1) ~. 'a(  "~- Sa'a) : - -  < - -  < = ~a'.(O) ,2, --.~ ( ~) S,,, 2k i  ~'a'a 1 
S(N2)a~a - -  

at E = ---]-S(1)a'a and 0. Thus, in observing relation (3.4), we can draw for the exact 
solution 2c,(E) of eq. (3.1) as compared with the approximate ones (5.3) and (5.10) 
generally the graph in fig. la from which, by integrating ~(,,la)(E ) = -2a,a(E ) (3.7) and 
observing ~by )) = ( - 1  ___ I)(S(,P/2kT), the graph in fig. lb for the exact 
function 4~,,a(E ) (3.3) in the exponential in oea,,(E) (3.2)is obtained. 

Fig.  1. 

/ 
. /  

a / 

(1) (12 / �9 i - ' "  ~ ~ "  
-Sy 0 + S a , y  

_. . . . . .~~~-~"  - -  - 1  -;y 

i "  

b (t: (1) 
-Sa'a O ~'S~, a 

- ~ ~ . ~ r , . . o - - ~ - ~ -  ~ ~- 
_ _  "" . S(~) E-IEI //'~_"~a'a " ~ 
2kT / / ' "  \?~~.. 

/,ff \ .\ ~ :]Z;:,., \\ x 
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From the latter we sec that in the energy ranges lE I > S(y ) the value of the function 
�9 ,,,(E), decisive for the order ofmagnitude of the smooth overlap factor Oey is 
underestimated not only by the classical but, quite generally, by the semiclassical ap- 
proximation too. 

In performing corresponding exemplaric numerical calculations (which can be 
easily carried out, for the case of small phonon dispersion at least, on the basis of 
formulae (I.6.4) and (5.11))we sec that for typical values of the parameters involved 
the underestimation of the numerical value of the overlap factor (3.2) by the semi- 
classical formula (5.11) may change in general even its order of magnitude, this 
discrepancy growing extremely quickly with increasing energy IE]. This fact shows 
clearly that the use of the simple (and popular) overlap-factor formu!ae (5.4) or (5.11) 
should be urgently avoided in nonradiative multiphonon transition-rate calculations, 
unless conditions (5.2) or (5.9) are in fact fulfilled. Henceforth, the use of more 
straightforward overlap-factor formulae such as, of the type (I.6.4) is stringently 
required. 

6. S U P E R I O R  A P P R O X I M A T I O N S  

On the basis of the concept of the transition-specific phonon energy ey (2.13) 
being effective experimentally at medium temperatures, k T  ~ ey we shall derive 
in this section overlap-factor formulae which, independently of the largeness of 
phonon dispersion, account correctly for the skewness 0~,3) = -y171231 = -y171171 ,™ (sec (2.8) 
and (2.13)) ofthe overlap-factor curve (3.2). In making ey at the same time, to serve 
as a temperature-independent "mean" phonon energy in a certain low-dispersion 
expansion (sec in contrast to this [16] and [17]) for all the higher-order derivatives 
S(m) in (2.4), m -- 4, 5, the formulae obtained will, in the case of small phonon 

apo � 9  

dispersion, automatically reduce to the single-phonon-e'nergy formula (I.6.4) as it 
ought to be required from any approximation formula to be applied, eventually, in 
ranges of large energies IEI. 

6.1 E f f e c t i v e - p h o n o n - e n e r g y  a p p r o x i m a t i o n  

In order to calculate the function sua,,()~) (2.4) as well as its low-order derivatives 
S~l.),a(2 ) and s~Z” (3.1) to (3.3) in the approximation just indicated we consider 
the temperature-independent moments 

(6.1) S~m),, . -- 2Sna,a(e z - e2,a) m 
n 

of phonon dispersion, rn = 0, 1, 2, ..., in terms of which the odd- and even-order 
derivatives (2.5) of SSa,,(2) (2.4) at 2 = 0 tan be written as 

(6.2a) ,™ ~ P!  ~, 2(p-m, 
--a'~ --m=0 m!(p:  m)! ~~.~a'~176 
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and 

oe 
(6.2b) S(2�87 _ 2kT~, f(20 ( 1 ~21 p+, (P + l)! v' ~z(v+,-,,) 

- - a ' a  ,=0 ~ t 2 ~ )  m=02 m! (p "q- 1 -- il'F/)[ ~ ( m ) " ' a ~  ' 

respectively. In confining ourselves now to the l st order which is, because of  S ( a ) a ,  a = 

= 0, equivalent to the 0 th order of phonon dispersion we obtain (with S ( o ) a ,  a = S a , a  ) ( 1 )  

approximately ,™ . .2p•(1) ,™ p.2p+l™ --a'a C.a,aOa,a, p = 2, 3, and - �9 " "~ - - a ' a  v a ' a  - - a ' a  

coth (G, , /2kT) ,  p = 0, 1, 2 , . . . ,  for the derivatives --a'a'™ (2.5)in (2.4). 

In this approximation the solution 2ce(E) of eq. (3.1) reads simply 

.// E G'a'~ 1 
(6.3) 2a ,a (E) -  arcsinh. - ~  sinh 

Sa .  a t S a . ) a  2 k T /  2 k T  

from which follows for the overlap factor (3.2) immediately 

(6.4) oea.a(E) - - -  a r t - -  . -,'__e" . + E 2 
~ao ~oa ~in~2; ) 

I L1 (1~T/2 1112 ~(1) 'a'a 
1 [ / .  Sa,, '~ + E2 -a'a coth 

. exp ~ sinh ga'a 2 k T  

_ __ f E 8a'a "~ 
E arcsinh 1777] sinh - - |  + 

G'a \S(a,” 2 k T /  

6.2 M o d i f i e d  e f f e c t i v e - p h o n o n - e n e r g y  a p p r o x i m a t i o n  

In order to derive an explicit overlap-factor formula superior, for lEt ~ (10~ 
,™ to ail the other ones given so far we consider the temperature-dependent �9 - -a 'a �87  

moments 

(6.5) S~'m)a'a-- ` a,acoth G (G2__G2,a)m 
, 2 k T  

in terms of which the even-order derivatives --Wa'™ (2.5b)in (2.4) can be written as 

P /'IT 
Y" c~t, 2(p-m) 

(6.6) .™ = ~ mi (P -- m)! ~(")a'aS"'a - - a ' a  �9 
m=0 

,, = ,™ in 0 th order of phonon dispersion approxi- Thus, we have now (with S(o)y a -n 
mately ,™ _ �87231 -a' ,  "a Ca'a, P = 1, 2 . . . . .  
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The latter modification of the procedure presented in the preceding subsection 
leads to the expression 

IEI + t , , ~ :  - (s':2)2 + E2 1 
(6.7) 2a,a(]E[) - - - I n  ,q(2) 

8a'a ,~(1) ..~ --a'_._.~a 
--a'a 

t~a 'a 

for the approximate solution of eq. (3.1) from which we get in accordance with 
symmetry relation (3.6) for the overlap factor (3.2) now 

(6.8) 
{ (2)  2 

ea,a(E ) "...t--- 2r~ 

/~a'a Ea'" L \  e . , .  / 

exp ] ~  Lke~' . ,  I[(S:2)a~2- _ ,-.'~:(S(1)' z + E z]1/2 
I 

lE[ F/S(2h2 ]112 + --a'a _ (,™ + E 2 

Li™ , - . -  _ IEIln 
" ' "  s ( "  + - -  s~a'22 

~a "a 
Sa, a 

,.~ ],.}-1. 
(Sa ,a )  Jl- E 2 

S~a.~'a 
2 

Ea, a 

6.3 Discuss ion  

In examining the gentleness of the approximate overlap-factor expressions (6.4) 
and (6.8) we satisfy ourselves first of ail that for small phonon dispersion, i.e. when 
e, ~ eo with a nearly common phonon energy e o so that we have ey (2.13) ~ eo and 
S(2) (6.6)-*o ™ both formulae become identical to one another a'a c'O~"3a'a 

and reduce to the corresponding smoothed single-phonon-energy formula (I.6.4) 
as required. 

Returning now to the case of large phonon dispersion, we easily verify by expand- 
ing the exponential function in (6.8) into a Taylor series that the low-order (1~1- 
- ,q('h - powers, inclusive the cubic one (cf. also KRIVOGLAZ and PEKAR [16], - -a 'a l  

STASlW [4], PERLIN [5]), of the exact exponential function in (3.9) are reproducey 
correctly by (6.8). From this �9 that the modified effective-phonon-energy 
formula (6.8)is, any way, superior to the semiclassical one (5.11) and can be, hence- 
forth, applied in a correspondingly larger energy range. 

To get an idea about the magnitude of the latter we recall that the approximation 
made in subsection 6.2 is of such a special kind that the low-order derivatives ,™ --a'a�87 

S t2).," and -.','™ (2.5)in 'sN.,a(2) (2.4) are left untouched hereby, Thus, because ofthe fast 
convergence of the expansion (2.4) (see KlUVOGLAZ [17]), the functional value of the 
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solution 2.,.(IEI) of eq. (3.1) as well as that of the function ~,,,(]EI)in (3.2) can be 
considered to be nearly unaltered by this procedure for ,L,.(lEI)-values up to an order 
of ~,,, aa,.(El) 10 ~ These values correspond at low temperatures, where we have 
e, , .2a, ,(E) ~ ln(IE/S(,!),) (according to (6.7) and (2.5)), just to energies of the 
order ~ 101/2:s~2 being of actual interest in typical nonradiative multiphonon 
band-imperfection transitions in semiconductors (which are indeed capable of 
dominating the associated radiative ones, see [21]). 

Since, beyond this, the deviations of (6.8) from (3.2) are even decreasing with 
increasing temperature, due to improving convergence of (2.4), expression (6.8) may 
be in fact considered to be a very gentle explicit overlap-factor formula enabling 
in connection with (6.7) and (4.3), at arbitrary temperatures, reliable numerical 
calculations of nonradiative multiphonon transition rates. 

At medium and high temperatures which are of most interest in practice we get 
from (2.6) simply --a'a'~(2) ._~ r~ e(1) coth (e , , , /2kT)  so that the modified effective-phonon- 
energy formula (6.8) reduces, for arbitrarily large phonon dispersion, to the original 
effective-plionon-energy formula (6.4) again. 

7. CONCLUSION 

For a somewhat idealized phonon system, a study of a number of relevant mathe- 
matical aspects of nonradiative multiphonon transition-rate calculations within the 
framework of the static coupling scheme has been performed in this paper. The 
idealization was connected with the severe restrictions that, firstly, the normal modes 
were strictly harmonic and, secondly, the electron-phonon interaction was linear 
in the normal coordinates. If these conditions are not well fulfilled which may be 
considered to be generally the case in molecules (see e.g. SCHLAG, SCHNmDER and 
FISCHER [22]) as well as for strongly localized imperfection electrons coupled with 
associated local modes in semiconductors (see e.g. FOWLER and DEXTER [20]), 
a generalization of the transition-rate calculations starting directly from the more 
general expression (I.2.9) given in [1] is required, in close analogy to that presented 
by KuBo and Tou [8] within the framework of the adiabatic coupling scheme. 
The formulae obtained will then, in particular, account for the temperature-induced 
shift of the center of gravity of the luminescense band (cf. O'RoURKE [23], McCuIvmER 
[9], HAUG [19]) which is frequently observed experimentally (see e.g. MEYER [13], 
DEXTER [14]) as well as lead to a certain modification of the functional behaviour 
of the overlap-factor curve on the high-energy wing which may alter, more or less 
significantly (cf. also [22]), the probabilities of nonradiative multiphonon transitions. 

Received 24. 6. 1974. 
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