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We give a detailed proof, under slightly weaker conditions on the objective function, that a 
modified Frank-Wolfe algorithm based on Wolfe's "away step" strategy can achieve geometric 
convergence, provided a strict complementarity assumption holds. 
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1. Introduction 

Consider the mathematical programming problem 

M i n f ( x )  (P) 
x~S  

where f is a convex, continuously differentiable function, and S =  
{x ~ R n lAx = b, x >! 0} a nonempty bounded polyhedron. Throughout the paper we 
will denote by R the set of extreme points of  S. In [2] Frank and Wolfe proposed 
the following algorithm for solving P: 

Algorithm FW 
Let X 1 E S .  

k<-l .  
1. Solving a linearized problem 

Let T( x k) g arg minz~s f (  x k) + ( z - Xk) r v  f ( xk) = arg minz~s zTV f ( xk).  
Let y c  R n  T(xk) ,  d = y - x  k. 

2. Line search 
Let y ~ arg mint~to,l j f(x k + td). 

3. Update 
X k + l  <"- X k "[- yd. 

k ~- k + 1 and return to 1. 
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It is straightforward to show that if 3' = 0 at step 2, then xk~  T ( x  k) and x k is 
optimal for P. In practice, the algorithm has to be stopped after some convergence 
criterion is satisfied. From the convexity o f f ,  we have: 

f ( x * )  >~ f ( x  k) + (y - x k)TV f ( x k ) .  

Therefore, the term (x k -  y )TVf (xk ) ,  where y is solution to the linearized problem, 
provides an upper bound on the difference between the objective evaluated, respec- 
tively, at the current iterate and at the (unknown) optimum. This quantity is 
sometimes referred to as the gap associated with problem P at the current iterate, 
and can be conveniently utilized as a measure of proximity to the optimum. For 
instance, in many applications, f is strictly positive at the optimum, and the algorithm 
is stopped as soon as the inequality ( x k - - y ) T V f ( x  k) <~ e f ( x  k) is satisfied, for some 
small positive constant e. 

Global convergence of the algorithm can be proved by showing that the algorithm 
map is closed (see Zangwill [6] or Luenberger [3]) or by bounding from below the 
decrease of  the objective at each iteration (see next section). 

In the FW algorithm, descent directions are always directed toward extreme points 
of S. When one gets close to the optimum, and when this optimum is a point on 
the boundary of S, these directions become more and more orthogonal to the gradient 
vector, without reaching the optimal face, 1 resulting in a poor (sublinear) conver- 
gence rate. To remedy this situation, Wolfe [5] suggested enlarging the set of 
admissible directions, by including directions pointing 'away' from extreme points. 
Wolfe sketched a proof  that the modified algorithm identifies the set of active 
constraints (optimal face) in a finite number of  iterations, and achieves geometric 
convergence, provided the objective function is twice continuously differentiable, 
strongly convex and that strict complementarity holds at x*. In this paper we will 
give complete proofs of Wolfe's main results, under slightly weaker conditions. 

2. Basic convergence results 

Throughou/ the  paper, we will make use of the following three assumptions. 

Assumption 1. Vf is Lipschitz-continuous on S with Lipschitz constant h2, i.e. 

I lVf(y)-Vf(x) l l<~,~211y-xl l  for all x, y in S. (1) 

Assumption 2 (strong convexity). 2 There exists a positive constant hi such that 
7 :  

(y - x )V(Vf (y )  - Vf(x))/> A111Y - x II 2. (2) 

Assumption 3 (strict complementarity). Let x* be optimal for P and T* be the 

i A face of S is a convex subset C such that every closed line segment in S with a relative interior 
point in C lies entirely in C. See Rockafellar [4] for details. 

2 See Auslender [1] for characterizations of various convexity concepts when f is differentiable. 
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smallest face containing x*. Then 

(y - x*)TVf(x  *) = 0 ¢:~ y ~ T*. 

Under assumption 2, the optimal solution x* is unique. 
The next theorem provides a lower bound on the rate of convergence of  the FW 

algorithm. 

Theorem 1. Let x* be optimal for P and {xk}k be a sequence generated by FW. I f  
assumption 1 holds, then there exists an index K and constants L and ~ such that 

for k >~ K. 

L 
f ( x  k) - f ( x * )  <~ - -  (3) 

k + ¢  

Proof. By convexity of f and definition of d, one has 

f ( x  k) - f ( x * )  <~ --dTV f (xk) .  

Let te  [0, 1]. By the mean value theorem: 

Thus 

f ( x k +  t d ) - f ( x  k) = t d r v f ( x k +  t'td) with t 'e  [0, 1] 

(4) 

= tdTVf(x  k) + tdT(Vf(xk+ t ' td) - V f ( x k ) )  

<~ltdTVf(xk)+ 2 ( f (x*)- f (xk) )+A2t2[ ld l l2  by (1) and (4) 

<_ ½td~Vf(x k) + ! 2 ( f ( x* )  - f ( x k ) )  + 2 th2D 2 

where D is the diameter of S 

½tdTVf(x k) 

t ~ mk __a Min( 1, 
f ( x  k) 

if 
2A2D 2 j" ( 

f ( x  k+l) - f ( x * )  ~ ( 1 - - 9 ) ( f ( x k  ) -- f ( x * )  ). (5) 

Since the sequences {f(xk)}k and {mk}k are decreasing and bounded, they admit 
limits f ~  and m ~, respectively. By taking limits on both sides of (5), one finds 

f ~ - f ( x * ) ~  1 -  - f ( x * ) ) .  

This implies that either f ~ = f ( x * )  or m ~°= 0, which is equivalent. In particular 
global convergence is proved. 
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Now let K be the smallest index such that ( f ( x K ) - f ( x * ) ) / 2 h 2 D 2 < ~  1. Then, 
from (5), 

mk+l < ~ ( l _ m k ~  mk 
2 \ 2 / -2 - -  for k~>K 

and 

2 2 2 2 
~ > 1 + - -  or - - ~ k - K + - -  

mk+l  m k  mk  m K  

Thus 

2 2 2 
- -  - -  K ,  mk <~ k -  K + 2 /mK k + ~ with ~ = m r  

Setting L =  4)t2 D2, we get the desired result. [] 

In a particular instance, the convergence rate can be shown to be linear• 

Theorem 2. Suppose assumptions 1 and 2 are satisfied and let the optimal solution 

x* be in the relative interior orS. Then the s e q u e n c e  { x k } k  generated by FW converges 

geometrically to x*. 

Proof. If the relative interior of S is empty, there is nothing to prove. Otherwise, 
let Hs be the smallest affine variety containing S. 

Since x* (unique by assumption 2) is in the relative interior of S, there must exist 
some open ball B(x*, 2e) around x* such that B(x* ,  2e) ~ Hs c S, and an index K 
such that x k c B(x*, e) for all k/> K. From that iteration on, the problem is equivalent 
to an unconstrained optimization problem relative to Hs. Therefore, in the rest of 
the proof, we use Vf  instead of the restriction of Vf  to Hs. 

Now let k>~K, d = y - - x  k be a FW direction at x k ( x k ~ x  *) and t c [ 0 ,  1]. From 
assumptions 1 and 2, 

IIx ~ + td - x k II = < (x + td - xk)T(V f ( x  k + td) - V f ( x k )  ) 

<- a21l xk + td - x k II 2. (6) 

Let t* be the unique value of t for which the minimum value o f f  is achieved, i.e. 

dTVf(Xk + t ' d )  = O. 

We have that 

X k+l = xk"~ - t*d ~ B(x* ,  e) 

by definition of K. 
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Dividing both  sides o f  (6) by t and integrat ing from 0 to t we obtain 

t 2 
Al~ l ld l l=+tdVVf (xk )<~ f (xk+td ) - f ( xk )<-A2~ l ld l l2+tdwv f ( xk ) .  (7) 

Since x k+l = x k + t*d achieves the min imum o f f ( x  k + td) for t > O, f(x k+l) --f(x k) 
must be b o u n d e d  by the respective minima o f  the quadrat ic  terms of  (7), i.e. 

( d T V f ( x k ) ) 2 <  ,-, k, (dTVf(xk))  = 
~ J t X  ) - - f ( xk+l )~  2Allldll 2 

o r  

IlVf(xk)ll = cos = 0 IlVf(xk)ll = cos 2 0 <~ f ( x  k) - - f ( x  k+l ) < ( 8 )  
2A2 2hi 

where 0 is the angle between the vectors d and Vf(xk) .  Relation (8) is valid for 
any descent direction d;  in particular, taking d = V f ( x  k) and d = x * - x  k we find 

IlVf(xk) 112 <~f(x k) - f ( x * )  <~ IlVf(x~) I1= (9) 
2A2 2A1 

Now divide the three terms of  (8) by the (reversely) respective terms of  (9), to find 

k k + l  
1~ 1 f ( x  ) - f ( x  ) _< A= cos= 0 (10) 
- -  C O S  2 0 ~ " ~ - -  . 

A2 f ( x  k) - f ( x * )  1~ 1 

It remains to check that, for any FW direction d, cos 2 0 is b o u n d e d  away from zero. 

We have that x k - ~(Vf(xk)/ l lVf(x~)l l )  is in s since B(x*, 2e) c~ Hs lies in S, and 
x k is in B(x*,  e ) n  Hs. Let d = y - x  k be a F rank-Wol fe  direction. Then 

(y - x k) TV f ( x  k) <~ - e  II Vf(x ~) II. 

Therefore 

Icos 0l = I(Y-X~)TVf(xk)] E 

I ly-xkll  IlVf(x~)ll ~>D> 0. 
[]  

The next result shows that a F W  sequence cannot  in general be expected to 

converge geometrical ly to a solution. 

Theorem 3. Suppose assumptions 1 and 2 hold and that 
- the (unique) solution x* lies on the boundary of  S. 
- x*~ R (x* is not an extremepoint of  S). 
- x K ~ T* (smallest face containing x*) for some index K. 

Then for any positive constant 6, the relation f ( x k) - f ( x* ) >I 1 /k  1+~ holds for infinitely 

many indices k. 

Proof. See Wolfe [5]. 
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3. A modified Frank-Wolfe  algorithm 
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Algorithm M F W  

Let x 1 ~ S. 

k ~ l .  

1. Solving first linearized problem (Toward Step) 
Let YT ~ T(x  k) n R and dT= YT -- X k. (LPT) 

2. Solving the second linearized problem (Away Step) 
Let A(x  k) a= arg maxzf(X k) + (z - Xk) rVf (xk)  s.t. Z C S and zi = 0 

if  x~ = 0. (LPA) 

Set: yA~A(xk )  c~R (yA=X k if A(xk)c~R=O).  da=xk--yA.  
O~ a : M a x ~ 0  {ill xk + flda ~ S} > O. 
3. Choosing a descent direction 

I f  dTrVf(x k) <~ dTAVf(x k) then d = dT else d = dA (if equality holds, da can be 
chosen as well). 

4. Line search 
Let y e arg min,~to,~ ] f ( x k q  - td) where a = 1 if d = d r  and a = a A otherwise• 

5. Update 
X TM 4- X k -[- Td. 

k*- k + 1 and return to 1. 

Remark 1. In  Wolfe 's  paper,  the addit ional  constraint  {zi = 0 if x k = 0} o f  LPA is 

not included,  so that stepsizes o f  zero length can occur  at nonopt imal  points. 

Remark 2. At step 3 o f  algorithm MFW, Wolfe chooses dA whenever  lyTAVf(xk)I > 
ly~vf(xk)l. This criterion is inadequate,  since it can lead to nondescent  directions. 
Indeed,  consider  the quadrat ic  p rogramming problem:  

• 1 2 2 M m  ~(xl + x2) 
x c S  

where S is the t rapezoid illustrated in Figure 1. 

For X k - -  (3 3IT = y3 y 4  y t  y2  - t z ,  zj , one has: YT or and YA = or with ly~Vf(xk)[ =3 and 
[yTaVf(xk)l 9 3 -- 4>  Z. However:  dTAVf(x k) = 0; thus dA is not a descent direction. This 
situation is not  pathological:  if the initial point  x ~ lies on the segment [yl ,  y2], then, 

according to Wolfe 's  rule, away steps will always be performed,  and the sequence 
o f  iterates will converge to the nonopt imal  point  (3, 3)T. 

It is easy to show that the algorithmic map  corresponding  to M F W  is not closed 

(see Figure 2). To prove global convergence,  we will show that infinitely many  steps 
will occur,  each one resulting in an objective funct ion decrease o f  the form given 
by expression (5), thus ensuring global convergence.  

Theorem 4. Let {xk}k be a sequence generated by MFW. I f  assumption 1 holds, then: 
limk_~o~f(x k) = f ( x * ) ,  the optimal value of P. 
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x2 ̧  

~, yl 

3 

0 .5 1 x~ 

Fig.  1. N o n d e s c e n t  d i r ec t ion  in Wol fe ' s  p r o c e d u r e .  

y~ f ( x )  = I[x- a II 2 
xk --> .g 

d ( x k ) = x k - - y l ~ 2 - - y  t 

hu t  d ( 2 ) = y 2 - 2  

. . w - y2 

Fig. 2. N o n c l o s e d n e s s  o f  the  a l g o r i t h m i c  m a p  fo r  M F W .  

Remark. In Wolfe [5], global convergence is assumed but not proved. 

Proof. Suppose t h e  algorithm is not finitely convergent, i.e.: x k l ~  x k~ whenever 

kl ¢ k2. At least one of  the following situations must occur: 
1. Infinitely many toward steps are performed and convergence follows immedi- 

ately from (5). 
2. Infinitely many away steps with step sizes less than the maximal stepsize a A 

are performed. 
If  this is the case, let {xk}kci be a convergent subsequence and 2 its limit point. 

Suppose f ( 2 )  > f ( x * ) .  Then there exists y in R and a positive constant C such that: 
( y  _ .g) -VVf( .~)  = - 2 C  < O. 
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By continui ty o f  Vf, there exists a positive 8 such that [ [ x - 2 [ ] < 6  implies 
(y - x)TVf(x)  <~ -- C < O. 

Now let K be an index in I such that 

[ ]xk- -~[ [<6  for  any k >~ K, k c I .  

If, at x g, an away step with stepsize less than aA is performed,  denote  by l the 

subsequent  index in I. 
Then f ( x  k ) - f ( x  l) >>-f(x k ) --f(xk+l). 
Since the stepsize is not  maximal,  relation (8) must  hold, and:  

1 [ (xk- -yA)TVf(xk)]  2 C 2 f(xk)-f(xl)~-~allVf(x~)llZ cos ~ 0~7~--~ ,_ 7Z-y---'A _1 ~2~-~~b ~ > ° '  

in contradict ion with the assumption 

f ( x  k) ~ f ( 2 ) .  
k ~ I  

3. Nei ther  1 nor  2 are satisfied. There exists an index K such that d = dn for  all 

k/> K, and y = aA for those directions. This implies that the dimensionali ty o f  the 
minimal face containing x k strictly decreases at each iteration, which is clearly 

impossible. [ ]  

4. Convergence rate of MFW 

Theorem 5. Under assumptions 1, 2 and 3, M F W  identifies the set of  active constraints 
in a finite number of  iterations, and convergence towards the optimum x* is geometric. 

Proof. Let T* denote the optimal face. We first show the existence o f  an index K 
such that for any k t> K, the M F W  direction at x k is an away direction, unless x k 
is already in T*. 

Let ej, c be positive constants such that  

¢ 
(yJ - x ) r V f ( x )  >>- - ~  whenever  I Ix-x*l l  <- Y~ ~ g c~ T*, 

( yJ -x )TVf (x )>~c  whenever  IIx-x*ll<~ ~j, yJe g -  r*. 

Let e = Min~jl/~R t {e~} and K an index such that x k e  B(X*, e) for all k ~  K. 3 

I f  x K is not  in T* we have 

dVAVf(xK)<~-c<dVrVf(x~) and d = d A ,  

We have X T M  = X K -~- ad. 

3 The existence of such an index K is a direct consequence of the global convergence result of Theorem 
4 and of assumption 2. 
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~,3 ~ y4 
-- V ~ "T* 

* -vf{~') 

Fig. 3. Away directions outside T*. 

Suppose that a < o~ A. Then 

0 = d T V f ( x  K+l) = (x  t< - - y j ) T V f ( x K + I )  

= (x  K+' _ y j ) T V f ( x K + '  ) + (X K - XK+a)TVf (x  K+') 

= (XK+I _ y i ) T V f ( x K + ,  ) _ a d  T V f ( x  K+I) 

~< --e since x I':+l c B ( x * ,  e) 

<0.  

Thus we must have a = aa and the dimension of the face containing x K+I is 
strictly smaller than the dimension of the face containing x K. Starting at iteration 
K, the optimal face T* will therefore be reached in a finite number of iterations. 
This completes the proof  of the first statement. 

Now, once T* is reached, the iterates do not leave T* and the algorithm behaves 
as an unconstrained optimization algorithm on the affine variety described by the 
active constraints. 

In the convergence proof  of Theorem 2, it is only required that cos 0 be negative 
and bounded away from zero. Since the away step strategy satisfies this requirement, 
the proof can be repeated almost word for word, after substituting for the gradient 
o f f  its projection onto the smallest affine variety containing T*. 

It is worth noting that the constants A1 and X2 can be replaced by (maybe) smaller 
constants relative to the projection subspace. [] 

5. Conclusion 

In this paper, we have given detailed and complete proofs of convergence results 
about a modified version of the FW algorithm, slightly weakening the differentiability 
hypothesis assumed in Wolfe [5]. 
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