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Broyden's method is formulated for the solution of nonlinear operator equations in Hilbert 
spaces. The algorithm is proven to be well defined and a linear rate of convergence is shown. 
Under an additional assumption on the initial approximation for the derivative we prove the 
superlinear rate of convergence. 
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1. Introduction 

In this paper we investigate the local convergence rate properties of Broyden's 
method for the solution of nonlinear operator equations in a Hilbert space setting. 
These problems occur for example in the solution of necessary conditions of optimal 
control problems or in the solution of nonlinear integral equations and various other 
areas of applied analysis. The convergence rates for Newton's method have been 
studied in infinite-dimensional spaces at least since the forties and the results are 
meanwhile considered to be classical, see e.g. Kantorovich [14], Kantorovich and 
Akilov [15], Anselone [2], Moore [20]. 

Broyden [3] introduced a method for the solution of a finite-dimensional system 
of nonlinear equations which does not require the computation of any derivatives 
at each iteration and which retains favorable convergence rate properties such as a 
superlinear rate. It consists of a reasonably good approximation of the actual 
derivative which is updated by rank-one operators at each iteration. In contrast to 
many other popular Quasi-Newton updates it does not require any symmetry of the 
Jacobian of the system. Broyden's method has been extended in various directions. 
We mention nonlinear Chebyshev-approximation (Madsen [18]), nonlinear least 
norm problems and nonsmooth optimization problems with or without constraints 
(Gruver and Sachs [12], Sachs [22, 23]), and singular problems (Decker and Kelley 
[6]). 

Unlike for Newton's method little attention has been given to the extension of 
Broyden's method to infinite-dimensional spaces. However, such an investigation 
could give more insight into the behavior of convergence rates for a discretized 
infinite-dimensional problem, where the discretization is rather fine. As a finite- 
dimensional problem it is supposed to converge superlinearly under the standard 
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assumptions, but if for the original infinite dimensional problem Broyden's method 
is not superlinearly convergent, then for very fine discretizations a fast performance 
of Broyden's method is unlikely. Discretizations of infinite-dimensional problems 
occur in nonlinear integral equations, nonlinear differential equations and control 
problems such as nonlinear parabolic boundary control, see e.g. [12]. 

Todd [24] studies Broyden's method among others in abstract vector spaces of 
finite dimension under the viewpoint of deriving general properties of various update 
formulas. In this paper, we focus on the local convergence behavior of Broyden's 
method for the solution of the nonlinear equation 

Fx = Oy, 

where F: X ~ Y is a nonlinear mapping with Hilbert spaces X, Y. The basic iteration 
scheme is 

Xi+l = Xi -- B i  I Fx i ,  

where Bi lies in B(X, Y),  the space of  all bounded linear operators defined on X 
with range in Y. The operators Bi are updated according to Broyden's method. 

Dennis proved in [7] for Broyden's method the linear rate of convergence of the 
iterates. In [12] and [23], also the superlinear rate of convergence was addressed. 
It was proven that the following property holds for all linear bounded functionals 
l o n X  

(l, x i+l -x )  
lim 0, (1.1) 

^ - 1  i.e. the sequence (x,+~-x)lIx,-x][  converges weakly to 0x. If  specialized to the 
finite-dimensional case, (1.1) gives the known result, because weak and strong 
convergence coincide. However, this result seems to indicate that in infinite 
dimensions the strong superlinear convergence rate, i.e. 

lim I1•i+1 - ~11 _ 0, (1.2) 
i~oo IIx,- ;[I 

does not hold. Under the usual assumptions, for another optimization algorithm, 
similar observations have been made by Fortuna [10], who gave an example of an 
infinite-dimensional quadratic minimization problem where the conjugate gradient 
method fails to converge superlinearly. Other Quasi-Newton methods besides 
Broyden's method have also been investigated in infinite-dimensional spaces: quad- 
ratic minimization problems and the DFP-algorithm by Horwitz, Sarachik [13] and 
Tokumaru, Adachi, and Goto [25]. A linear rate of convergence has been shown 
for algorithms of the Huang class in Turner and Huntley [26]. Mayorga and Quintana 
[19] give a sufficient condition for the superlinear rate of convergence of the 
BFGS-algorithm. However, in this reference, no verification of this condition for 
the BFGS-algorithm has been carried out. Independently, the author considered in 
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[12] the Dennis-Mor6 condition, i.e. 

lim II ( n ,  - F ' ) ( x , + l  - x,)II _ 0,  (1 .3 )  
' ~  I I x , + , - x ,  II 

for optimization problems in infinite-dimensional spaces. This is a weaker condition 
than the one given in [19]. Moreover, similar to the finite-dimensional case proven 
by Dennis and Mor6 [8], this condition (1.3) even characterizes the superlinear 
convergence rate of Quasi-Newton algorithms in optimization. However, the actual 
verification of (1.3) for Broyden's update formula is a nontrivial task in finite 
dimensions and even more in infinite-dimensional Hilbert spaces. In general, the 
weak limit in (1.3), considered as a sequence in the space Y, is Oy and thus (1.1) 
can be shown to hold. We show in the third section, that under the assumption, 
that B 1 - F "  is not only small in the operator norm but also an operator of  the 
Hilbert-Schmidt  type, the Dennis-Mor6 condition (1.3) holds and the strong super- 
linear rate of  convergence (1.2) follows for Broyden's method in infinite-dimensional 
spaces. Specialized to the ~", this covers the existing theory and hence yields a 
(second) extension to Hilbert spaces. The proof  follows the classical Frobenius 
norm estimates in [4] and [5]. This theorem can also be interpreted in another way. 
For this rate of  convergence to hold, we require that B1 is not only close to F"  in 
some norm, but in a particular one, the Hilbert-Schmidt-norm. In finite dimensions, 
both norms are equivalent, so this problem does not occur. In the last section we 
give an application to operator equations and two theorems on Hilbert-Schmidt  
operators. 

After the completion of this paper, the author has become aware of related work 
by Winther [27] and Griewank [11]. 

2. Linear rate of convergence 

A theorem on the linear rate of convergence of Broyden's method can be derived 
from existing theories such as e.g. [7, 23], where more general methods are investi- 
gated. 

For given y ~ Y, z c X, X, Y Hilbert spaces we denote by y ® z  the rank one 
operator 

y ® z = ( z , x ) y  f o r a l l x c X .  

The linear convergence rate theorem can be stated as follows: 

Theorem 2.1. Let X,  Y be Hilbert spaces and let ~ c X be a root o f  F: X ~ Y which 

is Fr(chet-differentiable, with a Lipschitz-continuous Frdchet-derivative F~.) in a ball 

o f  radius eL about 2. Suppose that, for  some y > O, 

IIF (x)ll vllxll for  all x e X and range F" = Y (2.1) 
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holds. For each Kc(0 ,  1) there exist e, e*>O such that i f  x l 6 X  and B l a B ( X ,  Y)  
satisfy 

I[x,-~l l~<e * and ]IB,-F'I[<-e *, (2.2) 

then the iterates 

Xi+l = xi - B/a Fxi, (2.3) 

1 
B i + l - -  Bi + ~  FXi+l(~Pi,  (2.4) 

Pi ~ Xi+l - xi~ 

are well defined and converge to ~ at a linear rate, 

IIX,+l-;[[  llx,-;ll (2.5) 

and 

I IB , -F ' ( x )  H <~ e for all i e  N. (2.6) 

3. Superlinear rate of  convergence 

Whereas the theory for the linear rate of convergence gives the same results as 
for the finite-dimensional case, this does not seem to be true for the problem of a 
superlinear convergence rate. An extension to the Hilbert space problem has been 
proved in [23]. I f  it is specialized to the finite-dimensional case, it yields the known 
result. 

Theorem 3.1. Let X, Y be Hilbert spaces and let F: X ~ Y be Frdchet-differentiable 
with Lipschitz-continuous Frdchet-derivative F~ in a ball of radius eL about the root 
ofF. Suppose that F~ satisfies the regularity condition (2.1). There exists e > 0 such 
that if  xl ~ X and Ba ~ B( X, Y) satisfy 

B?I~B(Y,X) ,]]x~-~]]~<e and I]B1-F~]]<~e, 

then the iterates {xi} defined by (2.3) and (2.4) converge linearly and 

(h, x~+~ - ; )  
lim - 0 (3.1) 
- ®  Itx,- lb 

for all h c X. 

Proof. The linear rate of  convergence follows from Theorem 2.1. Since the operators 
{Bi} stay in a neighborhood of F~, Theorem 6.3 in [23] is applicable and with the 

specialization to the case & = I[ " II and G - -  F we deduce 

l im( l ' (B i -F ' )P~)=O for all l~ Y. (3.2) 
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The iteration scheme (2.3) and F~ = 0 yield the equality 

F ' (x,+l  - ; )  = ( F~ - B,)(x,+~ - x,) + F';(x,  - :~) + Bi(xi+ 1 - -  Xi) 

= ( F "  -- Bi)(xi+ 1 - -  Xi) Jr F ' ( x ,  - ~) - F:~ - Fx, 

Then, from an application of the mean value theorem [9, (8.6.2)], we obtain, for 
some Lipschitz-constant v > 0 and all 1 c Y, 

(1, F~(xi+ 1 - 2~))<~ (/, ( F ' -  B , ) (x ,+~-  x~))+ villi[ ]]x,- :~[[ 2. (3.3) 

The linear rate of convergence implies 

11 x,+l - x, [[ <~ 21Ix , - .~11. (3.4) 

From (3.3) and (3.4) we deduce 

( / ,  F t ~ ( x i + l  - x ) )  ~ 2(/, ( F'; - B i ) P i )  + 
I Ix , - ; l l  - IIp, II Hill ttxi-5~l] 2 (3.5) 

and therefore 

(/, F ; ( X i + l  - ; ) )  
lim = 0 for all l c K (3.6) 
- ~  I Ix , - ; l l  

Equation (3.6) and assumption (2.1) imply that (3.1) holds. 
Note that the 'weak' superlinear convergence rate (3.1) is identical with the usual 

statement on a superlinear rate 

lim I]x'+~ - 5 [ [ -  0, (3.7) 

if X is finite-dimensional. The same statement (3.1) has been investigated in [12] 
for Quasi-Newton methods in Hilbert spaces which are applied to optimization 
problems. 

However, despite the fact that Theorem 3.1 is an extension of the finite-dimensional 
theory, one would like to know under which conditions the 'strong' superlinear rate 
of convergence (3.7) holds. As it will be shown in the following theorem, this is the 
case if the initial approximation B~ of the derivative F"  is close enough in a sense 
that is stronger than the norm topology (2.2). Before we formulate the theorem we 
state a few facts from the operator theory in Hilbert spaces. 

Let us review some properties of rank-one operators and their composition with 
other operators which will be used in the proof. 

Lemma 3.2. Le t  X ,  Y be Hilbert spaces and  x~ c X ,  y~ c Y, i = 1, 2, T c B (  X ,  Y ) .  Then 

the fol lowing properties hold, where T* denotes  the adjoint  operator: 

(i) (y~®x~)* = x~®y~ e B(  Y, X),  
(ii) ( y ~ ® x l ) ( x 2 ® y 2 )  = (x~, x2)(yl®y2) ~ B( Y, Y), 

(iii) T ( x l ® y l )  = Tx~®yl  c B ( Y ,  Y), 
(iv) (y~Qx~)  T* = y~® TXl ~ B (  Y, Y), 

(v) Ily,®xxl[ = I[yll[ Ilx~]] • 
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The proofs of these well known properties can be carried out by inspection. 
We also need to cite several statements on traces of operators and Hilbert-Schmidt- 

operators, see e.g. [16, 263]. 

Definition 3.3. Let X, Y be Hilbert spaces. An operator D ~ B(X ,  Y)  is a Hilbert- 
Schmidt operator if  there exists an orthonormal basis {a, : ce ~ A} of  X such that 

II Da~ 11 ~ is finite. 
s eA  

Lemma 3.4. Let X, Y be Hilbert spaces, xl, x2 ~ X, and D~ a Hilbert-Schmidt operator. 

Then for the orthonormal basis {as : ce ~ A} from Definition 3.3 we define, for each 
operator T ~  B(X ,  X ) ,  

t r T =  ~ (as, Ta,) 
ct~A 

as long as the sum is finite. Then 

(i) tr T~ < 0o for i = 1, 2 implies tr( T1 + T2) = tr T1 + t r  T2, 

(ii) tr x~®x2 = (x~, x2). 

The proof  of  (i) follows by inspection, whereas for (ii) one only needs to use the 
definition of rank-one operator. The linear functional tr on B(X,  Y)  is called the 
trace of an operator and several more properties can be shown. Since they are not 
relevant for our application we confine ourselves to the observations mentioned 
above. 

Theorem 3.5. Let all the assumptions of  Theorem 3.1 be satisfied and suppose in 
addition that B1 ~ B(X,  Y)  is such that 

B 1 -  F" is a Hilbert-Schmidt-operator. 

Then the iterates {xi}~ defined by (2.3) and (2.4) converge superlinearly to :~, 

lim Ilxi+l - ; l l  0. 

Proof. The proof  is closely related to the one given by Broyden [4] and Broyden, 
Dennis and Mor6 [5] in the finite-dimensional case. Observe that the definition of 
the update and y~ = F X i + l -  Fx~ imply 

or, with 

B,+] - F~ = ( B i - -  F" ) (  I - - -  

D, = B, - F" c B(X ,  Y), 

P i @ P i "~ .jr 

Pi e~= [~  ][ ~ X, 

(Yi - F~,pi) ®Pi (3.8) 
(Pi, Pi) 

di Y i -  F~Pic 
- [ r p ,  IJ Y' 
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we can write (3.8) shorter  as 

D,+I = D , ( I  - e ,® e,) + d, ® e,. 

Using proper t ies  ( i )-( iv)  in L e m m a  3.2 and  ]]e,[] = 1 we can s implify D % D i + I  e 
B( Y, Y) as follows: 

D~% D,+I = ( ( I  - e~ ® ei)D* + e, ® di)(D~(I  - e~ @ ei) + d, ® e,) 

= ( I  - e ,® e i ) D * D , ( I  - e ,® e,) + (e l® di)(D, - Diei® ei) 

+ ( I  - e, ® e,)D*di ® e, + I] d~ 112e~ ® e~ 

= O * D, - ( e, ® O * O,e, + O * D,e, ® e,) + I I D,e, II 2 e, ® e, 

+e,®D*d,+ O*d, Oe,+(lld, ll2-2(d,, D,e,))e ,®e, .  (3.9) 

By assumpt ion ,  D~ is a Hi lbe r t -Schmid t  opera tor ,  i.e. for  some o r thonormal  system 
{a~: s e A }  o f  X we have 

~. (a~, D ~ D l a ~ ) < ~ .  
ot~A 

Each correct ion f rom D*~D~ to D~*+ID~+I in (3.9) is given by  a finite sum of  rank 
one operators .  Hence  by L e m m a  3.4 all opera tors  D*~D~, i e ~,  have a finite trace 
tr(Di*D~). Using the linearity of  tr and t r ( x l ® x 2 ) =  (Xl, x2), we can s implify (3.9) 
cons iderably  by  taking the trace on both  sides: 

t r ( D %  Oi+l) = t r (O*  O~) - I] O,e~ 112 + II d~ II 2. (3.10) 

We use (3.10) consecut ively and obtain 

i 

tr(D*+lD,+~) =tr (D*lD1)+ ~ (lldk]] 2 -  IlO~eklf. (3.11) 
k = l  

By definit ion tr(D~*+lDi+l) is a sum of  norms  and hence nonnegat ive  so that  (3.11) 
yields 

i i 

E [[Dkekll2<<-tr(D*O,)+ E Ildkll 2- (3.12) 
k = l  k = l  

With the differentiabil i ty requirements  imposed  on F we can est imate ]1 d~l] using a 
Lipschitz constant  u > 0 and an appl ica t ion of  the mean  value theorem [9, (8.6.2)] 

II d, II -- II Fx~+l - Fx~ - F'(x,+~ - xi)]] II x , .~  - x, II -~ 

With the l inear  convergence rate we obtain  then  for  some K e (0, 1) 

i i 1 

k = l  k = l  k = l  

< ~ . 2 1 1 x ~ - ~ 1 1 ( 1 - ~ 2 ) - '  f o r  all  i e N .  
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Hence the sum of the left inequality in (3.12) is also finite 

[[ Oke k II 2 < 0(3 
k = l  

and in particular 

lim IID,eill - II(Bi - EL)p, II _ O. (3.13) 

This is the Dennis-Mor6 condition [8] which is known to characterize the superlinear 
convergence in the finite-dimensional case. For our purpose we can use (3.5) and 
take the supremum over all elements I in the unit ball on both sides of  the inequality 
to obtain will (2.1) 

I l x i + , - ; [ l ~  I IF' (X,÷l-; ) l l  

r IIx,-~ll Ilxi-~ll 

< 2  II(Bi- F')p,I[ ~ ~11/,-~ll 2. 
Ilpill 

Hence (3.13) and the convergence of xl to ~ yield (3.10). 

Remark 3.6. In the proof  of  Theorem 3.1 we used a result in [23] to state line (3.2). 
This equality can be proved similar to the proof  of  Theorem 3.5 by deriving a 
recursion formula for D~÷aD*÷I and applying Ic  Y on both sides of  * Di+lDi+l. It 
should be noted that expression Di÷lD*+l in contrast to (3.9) is rather short: 

Di+l D *~+, = DiD* - Diei ® Diei + d, ® 4 .  (3.14) 

Remark 3.7. In the case that F is an affine operator, i.e. F x = A x + b  ( A c  

B(X,  Y), b c X) ,  the elements di equal 0x and (3.14) simplifies to 

Di+~D*+~ = DiD*~ - Diei ® Die, (3.15) 

The sequence of positive operators {DiD*}~ is a decreasing sequence which is 
bounded by 0my, r ) and DID* and hence there exists operator S c B(Y, Y) which 
is the strongly convergent limit of  the sequence, see Martin [17, p. 100]. This 
observation is independent on the convergence of the iterates. In the case of a 
Hilbert-Schmidt operator D1 = B1 - A, the statement in Theorem 3.5 can be sharpened 
to obtain the infinite dimensional analogue of  a theorem of Mor6 and Trangenstein 
[21]. We state a version where the relaxation factor 0i in [21] is set equal to 1. 

Corollary 3.8. Let X,  Y be Hilbert spaces and ~ a root o f  Fx = A x  + b = O, where 

A c  B(X,  Y)  and b c X .  Suppose that F" = A is regular, i.e. (2.1) holds. I f  X l E X  and 
B1 ~ B( X, Y )  is such that B~ - A is a Hilbert-Schmidt operator and if  the iterates are 

well defined, then xi converges to ~ at a superlinear rate. 



E. W. Sachs / Broyden' s method in Hilbert space 79 

Proof. We specialize the proof  of Theorem 3.5 to the case d~ = 0y. Then (3.10) 
reduces to 

i 

tr(D*+~Dj+0 = t r ( D * D 0  - Y. II D~e~ II ~ 
k--1 

and we obtain (3.13). This implies with the definition of the iteration rule (2.3) that 

l im [IFx,+~l[ 0. 
,~oo [ I x . l - x , [ I  

Hence (2.1) yields 

0 = lira Ilax,+l + bl[ 
, ~ o  IIx,+, - x, I[ 

]lA(x;+,-~)ll 
lira 

IIX,~a-;hL ( IIx,-;LI '1-1 
~> y lira [[xN.+l_--~-~i~l ~> y lira 1+ 

and therefore 

lim Ilxi+l -~l]  0. 
- ~  [ fx , - ; f f  

Remark 3.9. As one can see from this section, the conditions (3.2) and (3.13) carry 
the information how well the operators B~ approximate the Fr6chet-derivative F~ 
of F at the solution ~. In order to see that (3.2) is in general not sufficient for a 
superlinear rate of  convergence, we state the infinite-dimensional extension of the 
characterization of the superlinear convergence rate given in the finite-dimensional 

case by Dennis and Mor4 [8]. 

Theorem 3.10. Let X,  Y be Hilbert spaces, ~ ~ X a root of  Fx = Oy where F: X ~ Y is 

continuously Frdchet-differentiable on an open convex set V containing ~, {Bi}•c 
B(X,  Y )  a sequence of  operators which have inverse operators defined on the range of  

F, and assume that, for some Y > O, 

[ [F 'x l l  >I vllxll  for  all x c  X. 

Suppose that the sequence of  {xi}• defined by 

x l~  V, x i + l = x i - B ? l F x i  for i~N ,  

remains in V and converges to ~. Then 

lim [[x,+l-;[] = 0  
,_~oo IIx, - ; l l  

holds if  and only if  

lim II(B' - F~) (x ,+ , -  x~)II _ 0. 
,~oo [ Ix ,+1-  x, II 
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The proof  follows exactly the one given in [8, Theorem 2.2] and is omitted. 

4. Applications 

Let us consider one application to operator equations in connection with Broyden's 
method. Obviously, in order to obtain the (strong) superlinear rate of  convergence, 
the initial update B~ for the derivative of  F at the solution needs not only to be 
close in the operator norm, but it is assumed to differ only by a Hilbert-Schmidt 
operator. Nonlinear integral equations often can be written in the following way, 

see e.g. Anselone [2]. 
Let X be a Hilbert space, Y a Banach space, G: X ~  Y a nonlinear operator, 

K:  Y ~  X a linear operator. For given g ~ Y find £ ~ X such that 

~ -  K G ~ = g .  (4.1) 

Theorem 4.1. Le t  X be a Hilbert  space, Y a Banach  space, G: X ~ Y Fr~chet-differenti-  

able with Lipschi t z -eont inuous  derivat ive G "  in a ball around the solution ~ o f  (4.1), 
K c B (  Y, X ) such that  K o G ' :  X ~ X is a H i l b e r t - S c h m i d t  operator f o r  all x c X and  

1 is not  an e igenvalue  o f K  o G~. Then there exists  e > 0 such that  i f x l  ~ X satisf ies 

and  B~ ~ B ( X ,  X )  is chosen to be 

BI = I -  K G ' ,  (4.2) 

then the sequence  o f  i terates def ined by (2.3) and  (2.4) converges at  a superl inear rate 

to ~. 

Proof. We define F: X-~ X by 

F x  = x - K G x  - g. 

By the assumption F is Fr6chet-differentiable, 

F~ = I - K G "  

and the continuity requirements in Theorem 3.1 are met. Furthermore, since 1 is 
not an eigenvalue of K G "  there exists m > 0 with 

HF'(u)I] = [I( I -  K G "  )u[[ >~ rnllull 

for all u c U. By the choice (4.2) 

B , - F ' =  I - K G ' , - ( I -  KG' )  = K(  O'~- G',) (4.3) 

and 

[I B ,  - F~ I[ <~ [[K[[ II G ~ - G'~, I[ <~ II K [t K [I :~ - x~ II 
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for some constant K > 0. Hence B1 - F"  becomes small if II~-x~ll is small. Also, by 
assumption, (4.3) shows that B1 - F"  is a Hilbert-Schmidt  operator because of the 
additivity of  this class of  operators. Hence, Theorem 3.5 yields the superlinear rate 
of  convergence. 

Remark 4.2. I f  IIKG'II is small enough, it is sufficient to choose 

B1 = I, (4.4) 

since B 1 - F "  = - K G "  which is a Hilbert-Schmidt  operator. The choice (4.4) is 
always feasible, if G is linear. 

Remark 4.3. Bellman proposed a method for the solution of operator equation 
which is called 'Quasilinearization': Given x~ c X, solve 

Fxi + F',(xi+l - xi) = 0 

which is a linear equation in Xi+l. For the problem (4.1) this reduces to 

Xi+ 1 - -  KG',(xi+I) = KGx, - KG',(x,) + g (4.5) 

which is a linear equation. Under similar smoothness assumptions one can show a 
quadratic rate of  convergence for this method. The property that certain mappings 
are Hilbert-Schmidt  operators is not needed here. However, at each iteration step 
a linear equation (4.5) has to be solved and G'~, needs to computed. This is not 
necessary if Broyden's method is used instead and the fast superlinear rate of 
convergence is maintained if B1-  F"  is of the Hilbert-Schmidt  class. 

The importance of Hilbert-Schmidt operators for Broyden's method in Hilbert 
spaces has become evident so that we cite a characterization of these operators on 

L2-spaces. 

Theorem 4.4 [1, p. 264]. Let M1 and M2 be measurable subsets of  R e and ~ q ,  resp. 

The operator T ~ B( L2( M1), L2(M2)) is a Hilbert-Schmidt operator if  and only if  there 

exists a kernel k c L2( M 2 × M1) such that, for  all f c L2(M1), 

Tf(x)  = I~i k(x,  y ) f ( y )  dy a.e. in M2. 
1 

Another sufficient condition can be found in Agmon [1, p. 211]: 

Theorem 4.5. Let M be a bounded and open subset o f  R n having the segment property 

and the ordinary cone property (see [1, p. l l ] ) .  I f  T c B ( L 2 ( M ) , L 2 ( M ) )  has the 
property that 

Ty ~ Hm(M)  for all y ~ L2(M), 

where Hm( M )  is the subspace of  L2 where all functions have strong L2-derivatives of  

order up to m, and if  2m > n, then T is a Hilbert-Schmidt operator. 
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