
Mathematical  Programming 42 (1988) 421-448 421 
North-Holland 

A P A R A L L E L  A L G O R I T H M  F O R  C O N S T R A I N E D  C O N C A V E  
Q U A D R A T I C  G L O B A L  M I N I M I Z A T I O N  

A.T. PHILLIPS and J.B. ROSEN 

Department of Computer Science, University of Minnesota, Minneapolis, MN55455, USA 

Received 12 August  1987 
Revised manuscript  received 29 February 1988 

The global minimization of large-scale concave quadratic problems over a bounded  polyhedral 
set using a parallel branch and bound approach is considered. The objective function consists of  
both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the 
linear constraints. These large-scale problems are characterized by having the number  of  linear 
variables much  greater than the number  of  nonlinear variables. A linear underest imating function 
to the concave part of  the objective is easily constructed and minimized over the feasible domain 
to get both upper and lower bounds  on the global min imum function value. At each minor iteration 
of the algorithm, the feasible domain is divided into subregions and linear underest imating 
problems over each subregion are solved in parallel. Branch and bound  techniques can then be 
used to eliminate parts of  the feasible domain  from consideration and improve the upper and 
lower bounds.  It is shown that the algorithm guarantees that a solution is obtained to within any 
specified tolerance in a finite number  of  steps. Computat ional  results are presented for problems 
with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained 
on a four processor CRAY2 using both sequential and parallel implementat ions of  the algorithm. 
The average parallel solution time was approximately 15 seconds for problems with 400 linear 
variables and a relative tolerance of  0.001. For a relative tolerance of  0.1, the average computat ion 
time appears to increase only linearly with the number  of  linear variables. 
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1. Introduction 

The general problem considered is that of  minimizing a concave quadratic function 
over a bounded polyhedral set. Specifically, the problem statement is 

(GQ) global min O(x, y) = q~(x) + dty 
(x,y)c~ 

where 12 = {(x, y): A~x + A2y <~ b, y >~ 0} is a nonempty,  bounded polyhedral set, and 
r n x n  A ~ m x k  x e Nn, y ~ ~k,  A~ c R , ~2 ~ N , b ~ ~ m  and d 6 R k. The usual nonnegativity 

requirement on x is assumed to be included in the constraints of  g2. The nonlinear 
1 t term p(x)  of  q,(x,y) can be expressed as ~(x)=c~x-(5)x Qx, where c o n  ~ and 

Q c N,×n. The matrix Q is assumed to be a positive semi-definite symmetric matrix 

since O(x, y) is a concave quadratic function. Large-scale problems of this type are 
characterized by having many more linear variables than nonlinear variables (k >> n). 

The problem GQ is a constrained combinatorial  optimization problem and is 
equivalent to other well known combinatorial optimization problems such as zero- 
one integer programming and the quadratic assignment problem (Pardalos and 
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Rosen, 1987). It follows from this equivalence that problem GQ is NP-hard. From 
a computational  viewpoint, this means that, in the worst case, the computing time 
will grow exponentially with the number  of  nonlinear variables. An important 
property of  this problem, which is basic to all solution methods, is that the global 
minimum point is always found at a vertex of the convex polytope ~. For this 

reason, linear programming is an essential part  of any computational algorithm to 
solve problem GQ. For a comprehensive review of  constrained global optimization, 
including applications and recent computational  results, see Pardalos and Rosen 

(1986) and (1987). 
In this paper  a new algorithm is presented which is designed to be efficient for 

problems with many linear variables. It is also designed so that it can be easily 
implemented for, and take full advantage of, parallel processing. The algorithm is 
guaranteed to obtain an e-approximate solution (the relative error in the objective 
function is bounded by a user specified tolerance e) in a finite number  of steps. 
This guaranteed bound (on the number  of  subproblems solved) is obtained by a 
worst case analysis and grows exponentially as ( 4 n / e )  hI2. Obviously if this represen- 

ted the average computational  performance of the algorithm, it would be of no 
practical interest. Thus, extensive computational testing of the algorithm was carried 
Out on a range of realistic test problems. These problems ranged in size from n = 25 

and k = 0 up to n = 50 and k = 400. The largest problems are an order of  magnitude 
larger than any others of  this kind previously reported in the literature. The computa- 
tion times for e = 0.001 using a four processor CRAY2 ranged from less than one 

second to a maximum of 165 seconds. The average (ten problems) parallel solution 
time for n = 25 and k = 400 was approximately 15 seconds. These results demonstrate 
that the algorithm and its parallel implementation are practical for the solution of 
constrained quadratic global minimization problems of  the size tested, and probably 

for substantially larger problems as well. 
The algorithm is an efficient method for two major  reasons. First, at each major 

iteration of the method, a heuristic step (stage I) is applied in an attempt to eliminate 
parts of the feasible region which cannot contain the global minimum vertex. In 
the worst case, this step will fail to eliminate any regions. But in practice the heuristic 
works extremely well at every major iteration of  the solution procedure, and hence 
the original feasible region is rapidly reduced to a much smaller polytope in which 
the global minimum vertex must occur. Second, the parallel implementation of the 
algorithm is highly efficient. At each minor iteration, 2n multiple-cost-row linear 

programs are available to be solved in parallel. Since the solution of  the linear 
programs is the most computationally intensive part  of  the method, all processors 

can be efficiently utilized, and in fact speedups approaching and even exceeding 
the number  processors are observed. 

The approach presented here for solving problem GQ takes full advantage of  the 

linearity of  the y variables. The original ideas for this approach were proposed by 
Rosen (1983) for the case k = 0 and where the explicit reduction to separable form 
was not required. A rectangular domain R x ~ "  is constructed to contain the 
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projection 12x of 12 on the x-space by solving a multiple-cost-row linear program 
with n cost rows. The original problem is then transformed into an equivalent 
concave separable quadratic minimization problem with linear constraints. A linear 
underestimating function F(z)+ d'y, in the new nonlinear variables z • R n and the 
same linear variables y • ~k, to the transformed separable quadratic function ~O(z, y) 

is easily computed and the linear program 

rain r(z)+ d'y 
(z,y)e.Q' 

is solved, where 12' is the transformed bounded convex polyhedron. The solution 
of this linear program gives both upper  and lower bounds on the global minimum 

function value ~O*. Branch and bound techniques are then applied to reduce the 
feasible region under consideration and decrease the difference between the upper  
and lower bounds. 

The next four sections describe the construction of the linear underestimating 
function, and its use to obtain upper  and lower bounds on the global opt imum 
function value is justified. The branch and bound techniques used to eliminate 
subregions are also presented (Theorem 1), and improved bounds are obtained 
(Theorem 2). In Section 6 the stage I algorithm is presented. Stage I gives an initial 

approximate solution with a minimum of computat ion but with a relatively large 
bound. It is also used repetitively in each stage II  major  iteration. Stage II  of  the 
algorithm is presented and justified in Sections 7 and 8. In Section 9 the worst case 
behavior of  the algorithm is analyzed, and it is shown that an e-approximate  solution 
is guaranteed with the solution of a large, but finite, number  of  subproblems. Section 
10 discusses some aspects of  the parallel implementation. The computational  results 
obtained on the four processor CRAY2 are summarized in Sections 11 and 12. In 

Section 11 the manner  in which the test problems were generated is described. The 
results obtained are given in Section 12 and compared (for small problems) with 
recent results obtained by two other methods. 

The computational  results are presented by means of nine figures which show 
both average and extreme values of the computat ion time as a function of k, the 

number  of  linear variables. Results for stage I are given in Figures 3 and 4, and for 
the combined stages I and II  in Figures 5 thru 8. Figures 3 and 4 show that the 
computation time for stage I depends linearly on k. Both sequential and parallel 
results are given, and the speedup using four processors is also shown (Figures 9 

and 10). 

2. The initial linear underestimator 

The concave quadratic function q,(x, y) can easily be reduced to separable form by 
a linear transformation based on the eigenstructure of  the matrix Q. This reduction 
is described in detail in Rosen and Pardalos (1986) and Phillips and Rosen (1987a) 
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and will not be repeated here. Computat ionally it requires finding the eigenvalues 
and eigenvectors of  the symmetric matrix Q and the solution of a multiple-cost-row 
linear program (with n cost rows). For n ~< 100 finding the eigenvalues and eigenvec- 

tors requires less than one second of (CRAY2) CPU time. Hence, without loss of  
generality, we limit consideration to the following concave separable quadratic 

minimization problem 

(SQ) g loba lmin~(x ,Y )=~(x )+dty  = i q,(xi)+dtY 
(x,y)~g~ i=1  

where 12 = {(x, y): Alx+A2y<~b, x ~>O,y ~>0}, qi(xi) ~ 2 = CiX i --~*~iXi, and where x c ~n, 
y e n  k, d ~ N  k, b6R  m, A i c N  m×", and A 2 c R  m×k (Note that since Q is positive 

semi-definite Ai/> 0, and that in fact hi > 0 since we assume that each & is a nonlinear 
variable). 

Given a concave quadratic minimization problem that has been reduced to 
separable form, we can easily construct the smallest rectangular domain Rx c N n 
which contains 12x, the projection of /2  onto the x-space. We solve the multiple-cost- 
row linear program (with n cost rows) 

(MCR) max xi 
(x,y)eKl 

for each i = 1 , . . . ,  n to get optimal function values fli, i = 1 , . . . ,  n. Then the rec- 
tangular domain Rx can be expressed as 

Rx ={x:  O<~ xi<~ fli, i= 1 , . . . ,  n}. 

A linear underestimating function F(x) of  ~p(x) over Rx which agrees with ~p(x) at 
every vertex of Rx can now be constructed. This linear function F(x) is given by 

r (x )  = Z ~,i(x,) 
i = l  

where yi(xi) = (ci -½&,Si)xi. Since F(x) underestimates ~(x)  on Rx, it also underesti- 
mates ~(x)  on 12~ c R~, and hence F(x) + d'y is a linear underestimator of q,(x, y) = 

~(x)  + d 'y  over 12. The solution to the linear program 

(LU) min F(x)+d 'y  
(x,y)c~Q 

provides a vertex (x', y') of 12 such that 

r(x ' )  + d'y'<~ 4,(x*, y*) ~ O(x', y') 

where qt(x*,y*)= ~* is the global opt imum for SQ. Let F°)=F(x ' )+d ' y  ' and 
~(1)= ~b(x', y'). Thus, F O) is a lower bound and ~/,o) is an upper  bound for the 

global opt imum function value q,*. 

3. Error bounds for the initial linear underestimator 

As previously stated, the lower and upper  bounds for ~b* are given by /.(1) and 
~b (1), respectively. I f  we define an appropriate  scale factor A~o to be the maximum 
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o f  the range o f  ¢ ( x )  on S2 and the range o f  d'y on S2, then we shall say that  (x' ,  y ' )  

is an e-approximate  solution if, for a given e > O, 

O(x', y') - ~* ~ eAq~. 

Defining the difference E(x)= ~ ( x ) -  F(x) we note that 

g,(x', y ' )  - ~* ~< E ( x ' )  

and hence, if E(x')<-e&p then (x', y') is an e -approximate  solution. We can easily 

obtain a bound  on E(x) for  any x c ~x c Rx. Assume, without  loss o f  generality, 

that  

l~lf121)hif12i, i = 1  . . . .  ,n ,  

and define the ratios 

2 2 Pi=(hifli)/(hlfll), i= l , . . . , n .  

Note  that pi ~< 1 for i = 1 , . . . ,  n. Now, 

E(x)=~(x)-r(x)= ~ [qi(xi)-yi(x,)]=½ ~ / ~ i ( ~ i - - X i ) X i  
i--1 i=l 

which attains its max imum at x~ = fl~/2 for  i = 1 , . . . ,  n. Thus, for any x ~ ~ c Rx, 

i=1  i--1 

Fur thermore,  we can easily obtain a bound  on the scale factor  dq~. We first define 

the fol lowing quantities: 

~0ma x = max ~p (x), 
XER x 

q'mi. = min q~(x), 
XER x 

DYma. = max d'y, 
(x,y)e~t 

DYmi~= min d'y. 
( x , y ) c ~  

Then  by definition A¢ = m a x  {~max-- ~min, D Y m a x -  DYmin}- Note  that  

(~min = ~ min{qi(O), qi(fli)}, ~ m a x  = ~ qi~a ~ 
i = l  i = l  

where 

qi(O) if thi ~< O, 

qim°x = qi(fli) if 0]~ ~> fli, 

qi(oSg) if 05~ ~ (0, fl~), 

and  where o5i = ci/h~ for  1 = 1 , . . . ,  n is the unconst ra ined  ma x imum o f  q~(xi). Also 

notice that  DYm,xand DYmi, are obtained by solving two linear p rograms  where 
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the feasible region is 12. Further ,  all l inear programs solved since the reduct ion to 
separable form have been solved over the same feasible region 12 and can therefore  
be classified as mult iple-cost-row linear programs. This p roper ty  is significant for  
computa t ional  purposes and is a major  difference between this approach  and other  
earlier methods  such as Falk and Hoffman (1976) and Horst  (1976). 

A lower bound  for A~N--= ~m~×--~min depends  on the distance Oetween o5~ and 
/3~/2 for  o3~ c (0,/3e) and is independen t  of  o3~ for o5, ~ (0,/3i). This dependence  is 
expressed by the quantities 

r /~=min{1,  ~ - I  }, i = l , . . . , n .  

Notice that 0 ~< r/~ <~ 1 and that  rli = 0 iff aS~ =/3~/2. Also, ~/~ = 1 for all o3~ ~< 0 and for 
all o5~ ~>/3, Then,  as shown by Rosen and Pardalos (1986), we get that 

1 2 
A~O N ~ m a x - - ~ 0 m i n ~ A t / 3 1  ~ pi( l+rh)  2. 

i=1  

Hence,  an a priori upper  bounded  on the relative error is given by 

~O(x', y ')  - tp* ,_a 
< --- ~(p,  n) 

A~ ~ pi(l+,qi)2 
i=1  

and it is easily seen that o-(p, n ) c  [¼, 1] and that o-(p, ~7)= 1 iff o3~ =/3~/2 for  all 
.. , = z l f f w ~ ( 0 , / 3 i )  for  all i = 1 , . . . ,  n. i = l ,  . n. Fur thermore ,  t r ( p ,~ )  1. - 

4. The 2n linear underestimators 

During each minor  i teration o f  the algorithm, the feasible region is divided into 
subregions by bisecting 12x in certain directions. Linear  underest imating functions 
to qJ(x, y) over the subregions are then constructed and minimized over the original 
region 12. More  specifically, define R = {x: /3 ,  ~< xi <~/3~2, i = 1 , . . . ,  n} where initially 
we would have/3i~ = 0 and /3ez = fie for  i = 1 . . . .  , n (i.e. R --- Rx). Let l ~ { 1 , . . . ,  n} 
and let/3t3 = (/3tl +/312)/2 be the midpoint  o f  the interval [/3tl, ritz]. Define yll(xt) to 
be the linear funct ion which interpolates the points [/311, qt(/3tl)) and (/3t3, qt(/3t3)). 
Similarly, define Y12(x1) to be the linear funct ion which interpolates the points 
(/313, ql(/313)) and (/312, q1(/312)). Also, for  i = 1 , . . . ,  n let 7~(x~) be the linear funct ion 
which interpolates the points (/3~1, qi(/3i~)) and (/3i2, q~(/3i2)). It is easily shown that 

~/i(Xi) =1)ti/3il/3i2-~- ( C i -- l l~i(/3il ' ) t-  /3i2) )Xi ,  i = 1 , . . . ,  n. 

Clearly, yi(x~) <~ qi(x~) on [/3.,/3i2]. Likewise, 

= ~AI/3/1/313 + (c1-½A~(/3. +/3s3))xl and 711(x~) 
1 

"~12(XI) = ~1~1/313/312 + ( C I -- 11~1(/313 +/312))Xl  
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so that yll(xt)<~ qt(xl) on [/3,,/313] and %2(xt)<~ qt(xl) on [/313,/312]. Now, consider 
the linear functions 

/ ' / l ( X ) :  ~ ")li(Xi)'~-~/ll(Xl) and F12(x):  ~ %(xi)+y12(xl) 
i=1 i=l 
i#l  i#l  

and the hyperrectangles 

RIl={X:xcR,[311~Xl~[~13 } for l = l , . . . , n ,  and 

Rt2={x: x c  R,/3t3<~x~<~/312} for l=  1 , . . . ,  n 

then we have that Ftx(x) underestimates q~(x) on R11 and that Fi2(x) underestimates 
~(x)  on Rt2. It is shown in Phillips and Rosen (1987a) that these linear underes- 
timators are in fact the "best" convex underestimators of q~(x) over their respective 
regions (see also Kalantari 1984). 

5. Branch and hound techniques 

As stated earlier, during each minor iteration of  the algorithm the feasible region 
is divided into subregions by bisecting Rx in certain directions (the branching step) 
and linear underestimating functions to t~(x, y) over the subregions are then con- 
structed and minimized over the original region f2. Bounding techniques can then 
be applied to determine if any of the subregions cannot contain the global optimum 
vertex (x*, y*) and may therefore be eliminated from further consideration. 

Given the hyperrectangles R, Rtl, and Rt2 and their corresponding linear underest- 
mators F(x) ,  Fl~(x), and Ft2(x) as defined in the previous section, we solve the 
multiple-cost-row linear program (with 2n cost rows) 

(LU6) min Fij(x) + d'y 
(x,y)~J~ 

for l = 1 , . . . ,  n and j = 1, 2. Notice that the minimization occurs over the entire 
region S2. Let (xtj, Y6) be the solution vertex corresponding to problem LU 6. Also, 
let Flj(x!i)+ d'y!i be the corresponding optimal function value, and denote this by 
Ftj. Define ~/incb to be the "incumbent" function value, i.e. the lowest upper  bound 
at any given time (note: ~0incb = ~1) immediately after the first linear underestimator). 
We now have the important 

Theorem 1. I f  Ftl > min{~binc~, ~(xtl,  Yll)} for some I c { 1 , . . . ,  n}, then x* ~ Rtl and 
hence Rl~ can be eliminated from further consideration. Likewise, if Ft2> 
min{~bi,cb, ff(xt2,y12)} for some I c { 1 , . . . , n } ,  then x* ~ Rt2 and hence Rr2 can be 
eliminated from further consideration. 
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Proof. (x*, y*) e 12 by definition and min{toi~cb, O(xn, Y/I)} < F l l  ~- FII(Xtl) + d'yn = 
minimum of Fn(x )+d ' y  over 12. Hence min{toi~ob, to(Xll,yll)}<['tl<~Fll(x)+d'y 
for all (x ,y)  c12 and thus for all (x ,y)  c12c~(R~X12y). If  x * c R ~  then 

min{toi,cb, 4'(xn, Yn)} < Fn(x*)+ d'y*<~ to(x*, y*) since Fil(x) underestimates q~(x) 
for all x c R~. But this is a contradiction since t0(x*, y*) is the global minimum 
over 12. Thus x* ~ Rn. A similar proof  yields the second part of the theorem. [] 

From this theorem we can see that if F~ > min{to~,cb, to(x~, YO)} for either j = 1 or 
2, then R o can be eliminated from further consideration. Additionally, Theorem 1 
guarantees that if a subregion R o of the feasible region is eliminated, then that 
subregion cannot contain any feasible point which has a lower function value than 

min{toi~cb, to(x~, y~)}. 
From these 2n linear programs, we would also like to obtain possibly better 

upper and lower bounds on the global minimum 4,(x*, y*). We do this by first 

defining 

F (2>= max min{Fn,/"/2} and to(2~= rain {to(xn,yn),to(x/2, YI2)}" 
I=1 . . . .  ,n l=l,...,n 

Using these definitions, we have the 

Theorem 2. I f  x* c R then F ~2) <~ to(x*, y*) <~ to(2). 

Proof. The upper bound is obvious since each (xe, yo)~ 12 for l=  1 , . . . ,  n and 
j = 1, 2. For the lower bound we have two cases to consider. 

Case I: Suppose x * c  Rn. Then Fn(x*) + d'y*-~ to(x*, y*) since Yn(x)  <~ ~o(x) 
for all x e R n .  Also, Fn=-Fn(Xn)+d~yn<-Ft~(x*)+d'y * since FI~ is the minimum 
of Ft,(x)+ d'y over 12 and (x*, y * ) c  12. It follows that Fll<~ to(x*, y*) and hence 
that min{Fl~, Fi2} ~< to(x*, y*). 

Case 2: Suppose x* ~ Rn, i.e. x* e R~2 (since x* ~ R). Then as above, F~2(x*) + 

d'y* ~< to(x*, y*) and Fz2 ~ Fl2(x*) + d'y*. It follows that FI2 ~< 4,(x*, y*) and hence 

that min{1)~, FI2} <~ to(x*, y*). 
Thus, combining Cases 1 and 2, if x * e  R then min{Fl~, F~2}~ < to(x*, y*). This 

holds for 1 = 1 , . . . ,  n so that we get F ~2~ <~ to(x*, y*). [] 

From Theorem 2 we get upper and lower bounds on to* --- to(x*, y*). In fact, if 
we continue the algorithm by bisecting the new hyperrectangle (obtained from the 
old hyperrectangle by eliminating subregions according to Theorem 1), we get 
another set of upper and lower bounds. After k minor iterations of the algorithm, 
t~inob=min{toO) ' ~1(2),... ,  to(k)} is the "best" upper bound and hence is also the 
approximation to the global optimum function value. Note that the previous results 
show that the process can continue as long as at least one of the 2n linear programs 
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P0 at each minor iteration provides a solution which satisfies the conditions of 
Theorem 1 (i.e. some subregion can be eliminated). An initial algorithm (stage I), 
based on these results, is now presented. 

6. Stage I: The initial algorithm 

Given a linearly constrained feasible region S2 (nonempty and bounded),  
a concave separable quadratic function q~(x, y), a hyperrectangle R = 

{x: fi~l ~< xg ~< fi~2, i = 1 , . . .  ,n} and an a priori lower bound/ ' (o)  on q,*, the general 
algorithm can be stated as 

Algl(R, ~ ,  r (°)) 
1. Construct the linear function F(x) + dry which agrees with ~b(x, y) at all vertices 

of  R. 
2. Solve the linear program 

(LU) min F(x)+d 'y  
(x,y)e~Q 

to get the vertex (x', y'). Set F (1):= max{F(x ')  + d ry '  F(O)}, ~b(1):= O(x', y'), xo:= 
x', Yo := Y', and k := 2. If  ~p(l) _ F(1) ~< eA~ then stop and accept (xo, Yo) as the global 
solution vertex with corresponding function value ~b (1). 

3. For each 1 = 1 , . . . ,  n construct the linear function Fi l (x)+ d'y which agrees 
with ~b(x, y) at all vertices of RI1 and the linear function Fll(X)+d'y which agrees 
with ~b(x, y) at all vertices of Rt2, where Rll = x: x ~ R, fill ~< xl ~< fit3} and Rt2 = {x: x c 

R ,  fil3 ~ Xl ~ f i l 2 } ,  and where/313 = (fill  -~- fi/2)/2. 
4. Solve the multiple-cost-row linear program 

(LUg) rain Fv(x)+d~y 
(x,y)eg2 

for l = 1 , . . . ,  n and j = 1, 2. Let (Xlj, Yo) be the solution vertex corresponding to 
problem LUg. Also, let F~(xo)+ d'y~ be the corresponding optimal function value, 
and denote this by F 0. 

5. For each 1 = 1 , . . . ,  n i fFa  > min{~b (k-l), tp(x~l, YII)} then set fill := fit3. Likewise, 
if/'12 > min{~P (k-l), ~0(xt2, Y12)} then set f i l 2  : =  f i l 3 "  

6. Set 

/ ' (k)= max min{Fi1,Ft2} and 0 (k)= min {q'(xll,yl,), O(x12, y12)}. 
1 - 1 , . . . ,  n l =  1,...,n 

7. If /'(k)<F(k-1) then set /'(k):=/'(k-l). If  0(k)> 0 (k-l) then set q,(k):= 0(k-l). 

Update (Xo, Yo) to be vertex (of O) with corresponding function value 0(k). 
8. If  4'(k?-- F (k) <~ ezl~ then stop and accept (xo, Yo) as the global solution vertex 

with corresponding function value ~b (k). 
9. If no eliminations were made in step 5, then stop. Otherwise, set R:=  

{x: fi~l<~x~<<-fi~, i =  1 , . . . ,  n}, k:= k + l ,  and go to 3. 
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The justification for the algorithm is given by the theorems of the previous section. 
That is, since x* • R initially, then Theorem 1 implies that the actions taken in step 
5 of the algorithm will guarantee that x* • R for the next minor iteration (i.e. x* is 
in the new hyperrectangle which was obtained by eliminating subregions of  the old 

hyperrectangle). Inductively, these arguments apply to each minor iteration k = 
2, 3, . . .  of the algorithm. Similarly, the upper  and lower bounds of steps 6 and 7 
are justified by Theorem 2 of the previous section. Note that q,~k) is really just the 
incumbent function value ~O~ob at minor iteration k of  the algorithm. We use the 
name qj(k) instead of ~Oi.~b to represent the incumbent value at this point because 

we will use the n a m e  ffJincb in a more general way in a later section. 

7. Stage II: Restarting when no further eliminations are possible 

An important drawback of the algorithm as it stands (stage I only) is that termination 
at an e-approximate solution (for a specified small e) is not guaranteed. That is, 
at some minor iteration k the algorithm may be forced to stop if no subregion can 
be eliminated and ~b ~k) - F ~k~ > eAq~. At such a time we have available an incumbent 

vertex v with associated function value ~binob, a lower bound F, and a hyperrectangle 
R such that x * •  R (and R c Rx). To resume the algorithm we now pick some 
direction ei and bisect R along that direction to get two new hyperrectangles R1 
and R2. This is done by adding one additional bound (upper  or lower) to the 
constraints. That is, we add a single upper  bound to the feasible region O (to get 

O1) to ensure that the region R2 is excluded from feasibility when R1 is the 

hyperrectangle under consideration. Likewise, a corresponding lower bound is 
added to S2 (to get g22) to ensure that the region R1 is excluded from feasibility 
when R2 is the hyperrectangle under consideration. Thus, two independent subprob- 

lems are generated with O1 and ~22 as the feasible domains and R1 and R2 as the 
respective hyperrectangles. It is important to note at this point that the addition of 
this bounding constraint to the feasible region O is not required to ensure conver- 
gence of the algorithm. In fact, all of  the convergence properties to be presented 

later are obtained independent of the feasible region under consideration after all 
eliminations and bisections. The bounding constraint is added to O in order to 
facilitate pruning of the feasible region under consideration at each major  iteration 
of  the algorithm. 

Let the hyperrectangle R ={x:  ~ j l < ~ x j ~ j 2 , j  = 1 , . . . ,  n}. Pick i • { 1 , . . . ,  n} and 

let/3i3 = (j3il +/3i2)/2. Then for R~ = {x: x e R and xi ~</3~3} and R2 = {x: x • R and 

Xi~]~i3 } w e  let Ol=O('~{(x,y):xi~fli3} and 0 2 = O c ~ { ( x , y ) : x i > ~ f l i 3 } .  We can 
then apply the algorithm Algl(R~, 12~, F)  to the feasible region O1 with hyperrec- 

tangle R1, incumbent vertex v with associated function value (upper bound) ~0~b, 
and lower bound F. Similarly, and in parallel, we can apply the algorithm 

Algl(R2,122, F)  to the feasible region O2 with hyperrectangle R2. Clearly, the 
procedure can again be applied to the hyperrectangles (with associated feasible 
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regions O~ and 02) obtained from this second application of the algorithm. In 
addition, if  at any time the lower bound for a subproblem is not less than the current 
incumbent function value then that subproblem may be "pruned" ,  i.e. eliminated 
from further consideration. In this way the new procedure is a parallel branch and 
bound algorithm. 

The choice of  the bisected direction ei can be made in many ways. One such 
choice is to pick i such that 

A,(fl ,2- fl,,) 2= m a x  ,~j(~j2-- ~jl)  2 
j= l,...,n 

where the hyperrectangle R = {x:/3j~ ~< xj ~ flj2,J = 1 , . . .  ,n}. It is easily shown that 
the error E ( x )  over the hyperrectangle R is bounded above by 

j= l  

The ith term of this error over R is ½A,(fli2- ft,)2. Since direction ei was the bisected 
direction, the ith term of the error over the two sub-hyperrectangles R~ and R2 is 
1 A ~( f l i2- f l , )  2. Hence, each subproblem has an upper  bound on the error which 

strictly decreases as the algorithm proceeds. Since the ith term of the error is the 
largest of the error terms and it strictly decreases by a factor of four at each major  
iteration (the point at which a new constraint is added), then at some major  iteration 

with hyperrectangle R = {x: fljl <~ xj <~ fij2,J = 1, . . . ,  n} 

~Aj(/3j2-/3j,)2~ < eA~o/n f o r j  = 1 , . . . ,  n 

so that E ( x )  <~ edq~ for all x e R, and hence finite convergence to an e-approximate  
solution is guaranteed. 

8. The parallel branch and bound algorithm 

Given a linearly constrained feasible region O '  (nonempty and bounded) and a 
concave quadratic function 0'(x,  y), the parallel branch and bound algorithm can 
be stated as 

Alg2(~' ,  l-l') 

1. Reduce the problem to separable form to get the separable quadratic function 
0(x, y) and the transformed feasible domain /2 (nonempty and bounded).  

2. Compute  the enclosing hyperrectangle Rx and the range A~ by solving (in 
parallel) the multiple-cost-row linear program 

(MCR) max a [ l x + a l 2 y  
(x,y)e~ 
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! i = 1  . . . .  ,n ,  ~ ei, i =  1 , . . . . ,  n, and ai2 i n+ 1, 
an [0,  i = n + l , n + 2 ,  d i = n + 2 ,  

for  each i = 1 , . . . ,  n + 2 to get the vertices v l , . . . ,  v,+2 with cor responding  opt imal  

funct ion values ~ 1 , . . . ,  ~,,, DYmax , -DYm~.  Set the initial hyperrec tangle  R{ Z~:= 
{x: 0 ~ x ~ < / 3 , ,  i = 1 , . . . ,  n} and the initial feasible domain  12{~: = O. Compu te  Aq~ 

(as descr ibed in Section 3.0). 
3. Set S : = 0 ,  I(~):={1}, t o i ~ b : = m i n { t o ( v l ) , . . . . ,  to(1)n+2)}, L]I): = -0% and k :=  1. 

4. Set 1 (g+~:= 0. 
5. For  each j c 1 (k~ do 5.1-5.5 (all j c I ~ in parallel)  
5.1. Apply  Algl(R~ k), O~k), L)k~) to get the uppe r  b o u n d  to~k), the lower bound  

F I k), and the candida te  vertex vJ k). 
5.2. I f  to}k)--F}k"< ca,:# then set S :=  S w { ( k , j ) }  and go 5.5. 

R ( k ) = { X : f l ~ ' < ' ~ ' k d  i = 1 ,  n} 5.3. Denote  the current  hyperrectangle  by _~j ~ ~ ~,~2, • • •, 
and  pick i c { 1 , . . . ,  n} such that  

~ ( 1 2 t k , j  _ f~k,j~2 x [ f ~ k d  _ (Rkj~2 i\l~i2 /~il] = max  ,tsk~s2 ~,sl., • 
s = l , . . . , t l  

5.4. Set/33 ~ := ~ ~J °(~÷~) "-  {x: x ~ R~ ~ o(~÷~ ' -  (/3/2 + /3n  )/2.  Set ,,2j_~ . -  and x,<~/33 ~} and .,~j .-- 
o ( k + D  ._ o(~+1~-- y2!~ ~ {(x, y):  x i < ~ }  and , , : j  . -  {x: x ~ R} ~ and xi/> ]33~}. Set "~2i-, "-  , 

~(k+~)'--F!~ and I (~+~):=FJ ~. Set I (~+~" O) ") c~ {(x, y):  x~ ~> fl3~J}. Set ~2~-~ . -  -~ , ~z~ .= 
I (~) w {2j - 1, 2j}. 

5.5. Cont inue  step 5.0. 
6. I f  I (k+~)=0 then set k :=  k + l  and go to 4. 

7. Set t o : = t o ] ~ = m i n  to)~ for all ( k , j ) ~ S , F : = m i n F )  ~ for all ( k , j ) ~ S ,  and 
/2 := ~)}s r). 

Notat ional ly ,  I ~ represents  the set of  subscripts  (names)  of  the subprob lems  to 
be solved at ma jor  i terat ion k of  the algori thm, i.e. it is merely  a way to keep t rack 
of  which subprob lems  are to be solved at a given major  i terat ion k. Clearly, when 
I (g~= 0 the p rob lem is solved. The set S represents  the set o f  index pairs (k , j )  such 

that  the subprob lem character ized by the hyperrec tangle  RJ ~ and the feasible region 
was solved within the to lerance cage. U p o n  te rmina t ion  of  the algori thm, the 

solut ion vertex v with associa ted  funct ion value to and lower bound  F satisfies the 
obvious  

Theorem 3. to - F <~ eAq~ and F <~ tO* <~ to. 

Proof.  t o :=min  to) k) for  all ( k , j ) ~ S  and F : = m i n F )  k) for  all ( k , j ) c S ,  where S =  
{(k, j ) :  to~k)_ F } k ) ~  eAq)}. Suppose  F = F 7  ~ where (q, p ) ~  S. Then,  ~t'p'lt(q)-- --pF'(q) <~ EA@ 
and hence,  to - F  = O - F ~  q~<~ O(v q~ -F(f l  ~<~ eAq~. Also, x* c R} k~ for  some (k , j )  ~ S so 
that  F - V (q~ < F~ k) <~ O* <~ to since F} k~ is a lower b o u n d  on to*, and to is always an 

uppe r  b o u n d  on to*. [ ]  
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Four important additions need to be made to the initial algorithm Algl in order 
to properly update the incumbent function value ~Oin~b, allow pruning, and keep the 
upper  bound for each subproblem as tight as possible. We add to Algl the following 

four steps: 

2.1. I f  ~p(1)< ~/incb then ~tincb := ~(1) 

else ~(~):= ~tincb. 
2.2. I f  F (~) i> ~b~b then terminate this problem (i.e. prune). 

7.1. I f  0(k)< ~%cb then q'incb:---- ~ o(k) 
else 0 (k):= 0i,ob. 

7.2. I f  F (k) t> 0~ob then terminate this problem (i.e. prune). 
Note that in Alg2 the final function value (the approximate global solution) ~b is 

really just the incumbent function value tp~b and that 0~,,~u is intended to be a value 
available to all subproblems (i.e. a globally shared value). 

9. Convergence analysis 

To analyze the worst case performance of the algorithm, we assume that for each 

subproblem generated no eliminations can be performed (as given by Theorem 1). 
Since at each minor iteration we cannot discard any of the feasible region ,q, we 
are forced to generate two new subproblems for each problem at the current major 
iteration. Assume also that we cannot prune any of the subproblems. Then, in order 
to terminate, we must satisfy E(x)<~ eA~  over each hyperrectangle R~ k) for s = 
1 , . . . ,  2 k-~ and at some major iteration k. That is, we must have 

over each R(s k) = {x: ~il <~ xi <~/3i2, i = 1 , . . . ,  n} for s = 1 , . . . ,  2 k-1. It suffices to con- 
sider only one such hyperrectangle RJ k) since A/3i --=/3i2 -- /3, i  = 1 , . . . ,  n, is the same 
for all R~ k) for s = 1 , . . . ,  2 k-I because no regions were ever eliminated (see Figure 

1). Hence, if the condition stated above holds over some RJ k) then it holds over all 
R~ k), s = 1 , . . . , 2  k-1. 

Let k; be the number  of  bisections along coordinate direction e~ required to reduce 
the original hyperrectangle R~ 1) to the current hyperrectangle R~ k). As an example, 
k, is the number  of bisections of e, along the path R]')-~ R~2)~ R(23)--) R(34)--) • • "-~ R (k) ,! 
in Figure 2. Note that k is the number of  levels in the complete binary tree (complete 
since no pruning or eliminations occur). Also, k - 1 represents the sum of the number  

R(k) of bisections in each direction along the path from R~ 1) to __j . Consider now the 
ith term of  the error 



434 A.T. Phillips, J.B. Rosen / A parallel algorithm 

R~ ~ 

Fig. 1. A tree of  b isected subprob lems .  

where fii is the optimal solution to the problem MCR in step 2 of Alg2. Hence, if 

1 2 2 k . ~  . . ~af l i /2  ' ~ e & # / n  f o r i = l ,  . , n  

R ( k )  then E(x)  ~< eAq~ over . .j  as desired. Thus, we require that ki be the least integer 
such that 

ki~log2\geAqD, I for i = 1  . . . .  ,n. 

It follows that the total number of bisections along the path from R] 1) to R I k~ is 
bounded above by 

( [ na R2\1/2 ) 
I ~,-.i} + . k - l =  i=, ~' k,~< ,=,~ log2 \ 8 - ~  / 1 

Since k represents the number of  levels in the complete binary tree, then the total 
number of bisections required for the algorithm to terminate is 2 k-~ - 1. It can then 
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A A A A  
R(4) R(4) R(4) R(4) R(4) R(4) R(4) R(4) 

I ~'2 "'3 " 4  " 5  "'6 ='7 " 8  

J 

Fig. 2. The worst case expansion of the tree. 

be shown that the total number of bisections required for termination is bounded 
above by 

i=1 \2eAq~/  - 1. 

Using the error bounds of  Section 3, the worst case number of bisections is also 
bounded above by 

In addition, the total number of  subproblems in the tree (i.e. calls to Alg l )  is 2 k - 1 

and, therefore, is bounded above by 

Hence, the total number of linear programs solved is bounded above by 

~ L V s ~ 2 ( n + l )  i=, ~ k2--~,/ - n + l < 2 ( n + l )  

Since x* d Rx, the initial bounding hyperrectangle, then x* E R} k) for some j e 
{l, 2 , . . . ,  2k-l}. By the analysis above, 4:~ k~ --F~k)<~ eA~ for all s = 1, 2 , . . . ,  2 k-~ so 
that ~bJ k) -  FJ k) <~ eaq~. Note that since x* E R~ k) we get FJk)~ 0* ~< ~/,}k). By step 5.2 
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of Alg2, the pair ( k , j )  is put into the solution set S, and since to---min 0~ ~ for all 
(s, r) ~ S we get that to - to* <~ to)k)_ tO* <~ O~ k~ -- F]k) ~ eAq~ which proves the 

Theorem 4. The solution vertex v with associated function value tO provided Alg2 
satisfies tO- tO * <~ eAq~ and is obtained in a finite number o f  steps. 

Hence, tO is an e-approximate solution to the original concave separable quadratic 
minimization problem. 

10. Parallel implementation 

The speedup achieved by a parallel algorithm running on N processors is often 
defined as the ratio between the time taken by a given parallel computer executing 
the fastest serial algorithm for a problem and the time taken by that same parallel 
computer executing the parallel algorithm using N processors (Quinn, 1987). Note 
that the fastest serial algorithm may be quite different from the parallel algorithm 
being examined. Unfortunately, there is often no consensus as to which serial 
algorithm is the fastest for a given class of problems (for example, mathematical 
programming problems such as linear programming). Hence, we use a more practical 
definition of speedup; that is, speedup is the ratio between the time taken by a given 
parallel computer executing the parallel algorithm using only one processor and 
the time taken by that same parallel computer executing the parallel algorithm using 
N processors. In fact, we also discount any overhead incurred by the parallel 
algorithm when it is executing on only one processor (so that it more closely imitates 
a serial algorithm). 

The algorithm is highly parallel in nature and is therefore a good candidate for 
parallel computation. The most obvious parallelism occurs in the solution of the 
multiple-cost-row linear programs (MCRLP),  and in the branching and solution of 
the independent subproblems. 

The parallelism at the MCRLP level has finer granularity than the parallelism at 
the subproblem level. For each subproblem there are 2kn + 1 linear programs, for 
some k ~> 1, to be minimized over the same feasible region. At each minor iteration 
of the algorithm performed on each subproblem, 2n of the linear programs (i.e. one 
MCRLP) can be done in parallel. In addition, an initial MCRLP which begins the 
solution procedure consists of n + 2 linear programs (to be minimized over the same 
feasible region), and therefore can also be performed in parallel. 

At the subproblem level, each subproblem at major iteration k is independent of 
the other subproblems at that major iteration (except for the sharing of the incumbent 
function value 0i,cb) and is defined by its hyperrectangle R~ k~ and corresponding 

Q(k) Hence, the algorithm can be applied to each subproblem in feasible region __j . 
parallel, but unlike the MCRLP level, we cannot guarantee that a particular number 
of parallel subproblems will need to be solved at each major iteration (i.e. the 
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number of  subproblems may vary anywhere from 0 to 2 k-~ at each major iteration 
k of the algorithm). Because considering the parallelism at the subproblem level 
does not interfere with the parallelism at the MCRLP level, both the subproblems 
and the MCRLPs within each subproblem could be done in parallel. 

For parallelism at the subproblem level, a speedup greater than one can be 
observed only for problems in which more than one level of the solution tree is 
expanded. Furthermore, all N processors are used only when N or more subprob- 
lems at the same level (major iteration) k remain to be solved. On the other hand, 
it is also possible in this case to observe speedups greater than the number of  
processors (Phillips and Rosen 1987b). 

For parallelism at the MCRLP level, all N processors are active at each level of 
the solution tree (N  < n is assumed), to that the percent of processor utilization 
can be very high. For this reason, and since speedups greater than the number of 
processors are also possible in this case (Phillips and Rosen, 1988), the implementa- 
tion of the algorithm that is presented considers only the parallelism at the MCRLP 
level. 

11. Test problems 

The algorithm was tested on three kinds of problems: small examples constructed 
by hand, medium size examples obtained from the literature, and large sparse 
randomly generated problems with no known solutions. Eleven example problems 
(Phillips and Rosen 1987b) were constructed by hand and tested. In addition, the 
five medium size problems from the literature (Rosen and van Vliet 1987) were 
tested to allow the direct comparison of  the proposed method with two other 
available methods for solving problem (SQ). The other two methods compared were 
the stochastic approach of Rosen and van Vliet (1987) and the zero-one integer 
programming approach of  Glinsman and Rosen (1986). Finally, the randomly 
generated problems were constructed so that the feasible region was nonempty and 
bounded, and A1 and A2 were sparse constraint matrices with eight nonzero elements 
per column (Chvfital, 1983). More precisely, the random problems generated had 
the following form: 

O(x, y) = o ~ ( x )  + O2d'y, 

~D(X) = (21-) ~ ~i(Xi--O)i) 2, 
i~l 

/2 = {(x, y): A l x + A 2 y  <~ b, x >I0, y I>0}, 

where x~N" ,  y6I~ k, A ~ " ,  ff~cI~", de l~  k, A ~ e R  . . . .  , A2G~ rnxk, and 01, 02~N. 

Note that this form of the quadratic function differs from that of problem SQ 

only by a constant. The parameters 01 and 02 are designed to allow scaling of the 
nonlinear and linear terms so that neither one totally dominates the other. For the 
test problems generated randomly, they were fixed at 01 = -0.001 and 02 = 0.1. Note 
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that when the components of  02d are large (as compared to the components of  
(½)01A) the problem is primarily a linear program, and hence much easier. The 

particular choices of  01 and 02 were  selected so as to generate difficult problems. 
The constant O5 c R n represents the unconstrained maximum of the quadratic 

function. Again, the choice of  05 was made so as to generate difficult problems. 
More precisely for o5 near the interior of  the polytope, the problem is generally 

much harder since many local minima may exist. Choosing o3 exterior to the polytope 
tends to generate much easier problems. 

12. Results 

12.0. Computational results on the CRAY2 

This section describes the computational  results obtained on the CRAY2 supercom- 
puter for the example  problems, medium size problems from the literature, and the 
randomly generated problems described in the previous section. In all of  the test 
problems a solution vertex was recognized as the global solution if it was 
e-approximate  for e = 0.001. 

The CRAY2 supercomputer,  located in the Minnesota Supercomputer  Center, is 
a four processor vector M I M D  supercomputer  with a 4.1 ns (nanosecond) clock 
cycle, 256 million words of  central memory,  and the UNICOS operating system. 
The compiler used was a developmental version of  the CFT77 Fortran compiler. 
The parallel results cited below were obtained by using all four processors of the 
CRAY2 in a dedicated environment. 

12. I. Results for small and medium size problems 

The tables in this section summarize the results obtained for the example problems 
and the medium size problems from the literature. Table 1 presents the results 
obtained from testing the program sequentially on the set of  hand constructed 

examples. In all cases, the parameters 05 = - 1 . 0  and 02= 1.0 were used, and a 
solution vertex was recognized as the global solution if it was e-approximate for 
e = 0.001. Problems "example"  and "p rob l5"  required the expansion of  three levels 
of  the solution tree and the solution of  five subproblems in order to obtain an 
e-approximate solution. Problem "p rob l0"  required the expansion of two levels of  
the tree and the solution of  three subproblems. All other problems required only 
one level of  the tree and the solution of  one subproblem. 

Table 2 compares three different algorithms on five test problems from the 
literature (Rosen and van Vliet, 1987). Each algorithm was tested sequentially on 
either the CRAY2 or the Cyber 845 (Glinsman and Rosen's algorithm only). This 
table clearly shows that for these concave quadratic problems, the algorithm of  

Phillips and Rosen with e = 0.001 is the most efficient. Note that for smaller values 
of  e, the algorithm of Phillips and Rosen would perform less favorably. The algorithm 
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Table 1 

Sizes and sequential solution times (secs) for 
the eleven hand-constructed test problems on 
the CRAY2 

name m, n, k Time 

example 5, 2, 0 0.026 
probl 5, 6, 0 0.022 
prob2 5, 6, 0 0.020 
prob3 5, 6, 0 0.026 
probl0 4, 2, 0 0.017 
probl 1 4, 3, 0 0.015 
probl2 4, 3, 0 0.014 
probl3 10, 3, 0 0.022 
probl4 10, 3, 0 0.020 
prob 15 4, 4, 0 0.029 
prob20 9, 2, 1 0.023 
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Table 2 

Comparison of solution times (secs) of three different algorithms on the CRAY2 for the five 
test problems from the literature 

name\algorithm m, n, k P&R87 R&vV87 G&R86 a 

R&vV87.1 5, 10, 0 0.11 1.50 10.34 
R&vV87.2 10, 20, 0 1.43 18.69 20.47 
R&vV87.3 20, 20, 0 3.21 73.84 211.87 
R&vV87.7 20, 30, 0 9.16 118.76 417.26 
R&vV87.8 20, 40, 0 16.52 195.53 328.55 

a Time on the Cyber 845. 

of Rosen and  van Vliet, a l though not  as efficient as the algori thm of Phill ips and  

Rosen for the cases tested, applies to the b roader  class of general  differentiable 

concave problems,  and  hence may be more suited to non-quadra t i c  problems.  In  

addi t ion ,  its per formance  could be enhanced  if run  in parallel.  The detai led results 

concern ing  the stochastic algori thm of Rosen and  van Vliet and  the 0-1 integer  

approach of G l i n s m a n  and  Rosen are avai lable in Rosen and  van  Vliet (1987) and  

G l i n s m a n  and Rosen (1986), respectively. 

12.2. Results for  large-scale problems 

An impor tan t  property of this algori thm is that an e -approximate  solut ion is 

guaranteed  in a finite n u m b e r  of steps. Cons ider ing  only the first level of  the solut ion 

tree (stage I), the current  i ncumben t  vertex Vincb with cor responding  func t ion  value 

~0incb is clearly not  guaran teed  to be e-approximate .  But computa t iona l  experience 

has shown that Vinob is in m a n y  cases either the global solut ion vertex v*, or is such 

that the relative error 4~,cb--tO*)/Aq~ is small.  In  addi t ion,  it has been  computa-  

t ional ly observed that  the t ime required to complete  stage I as a func t ion  of k is 
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Fig. 3. Time (sequent ia l )  vs k wi th  m = 20 and  n = 25 on the CRAY2.  Stat is t ics  for s tage I of  the so lu t ion  

only. (10 p rob lems  of  each size and  e =0 .1) .  
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Fig. 4. Time (sequent ia l )  vs k wi th  m = 20 and  n = 50 on  the CRAY2.  Stat is t ics  for s tage I o f  the so lu t ion  

only. (10 p rob lems  of  each size and  e ~ 0 . 1 )  
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approximate ly  linear. Figure 3 demonstrates  this by showing the t ime (min imum,  

max imum,  and  average) required to complete  stage I for m = 20, n = 25, and  various 

values of k. Figure 4 is s imilar  for m = 20 and  n = 50. Fur ther  results concern ing  

solut ions obta ined  by stage I a lone can be found  in Stuart, Rosen,  and  Phillips 

(1988) for problems with m as large as 160, n as large as 100, and  k as large as 400. 

As stated earlier, in all of  the r andomly  generated test p roblems a solut ion vertex 

was recognized as the global  solut ion if it was e -approximate  for e = 0.001. Figure 

5 displays the n u m b e r  of  CPU seconds required on the CRAY2 to obta in  

Time (secs) 
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Fig. 5. Time (sequential) vs k with m = 20 and n = 25 on the CRAY2. Statistics for stages 1 and II of 
the solution. (10 problems of each size and e = 0.001). 
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Fig. 6. Time (parallel) vs k with m ~ 20 and n = 25 on the CRAY2. Statistics for stages I and lI of the 
solution. (10 problems of each size and e = 0.001). 

e - a p p r o x i m a t e  so lu t ions  for  large sparse  r a n d o m l y  genera ted  p rob lems  solved 

sequent ia l ly  (i.e. on one  p rocessor )  wi th  m = 20 const ra ints ,  n = 25 non l inea r  vari-  

ables,  and  the n u m b e r  o f  l inear  var iables  k vary ing  f rom 0 to 400. For  each value  

o f  k, the range of  so lu t ion  t imes  are ind ica t ed  by  the bar ,  and  the average so lu t ion  

t ime is d e n o t e d  by  X. Not ice  tha t  the  case k = 0 is s ignif icant ly more  difficult than  

the cases k = 50 and 100. This is not  surpr is ing  since for  k = 0, the p rob l e m to be 

solved is a pure ly  non l inea r  one. As k increases  mode ra t e ly  (to 50 and 100) the 

presence  o f  the l inear  terms make  the p r o b l e m  more  l inear  and  hence  somewha t  

easier.  But as k gets large (such as k = 200 and  400) the to ta l  number  o f  p r o b l e m  

var iables  increases  and  again  the  p r o b l e m  becomes  more  difficult. F igure  6 d i sp lays  

the co r r e spond ing  para l l e l  so lu t ion  t imes (min imum,  m a x i m u m ,  and  average)  for 

the  same set o f  test p rob lems .  

F igure  7 d i sp lays  the  n u m b e r  of  C P U  seconds  requ i red  on the C R A Y 2  to solve 

r a n d o m l y  genera ted  p r o b l e m s  sequent ia l ly  wi th  20 const ra ints ,  50 non l inea r  vari-  
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Fig. 7. Time (sequential) vs k with m = 20 and n = 50 on the CRAY2. Statistics for stages I and II of 
the solution. (10 problems of each size and e = 0.001) 

ables, and  the n u m b e r  of l inear  variables varying from 0 to 400. Figure 8 shows the 

cor responding  parallel  so lut ion times. 

Figures 9 and  10 display the speedup ob ta ined  by the parallel  imp lemen ta t i on  of 

the algori thm over the sequent ia l  version. It is clear from these figures that in certain 

cases speedups  greater than  four (the n u m b e r  of processors used) can actual ly be 

observed. Fur thermore ,  in some cases an average speedup of four can be observed. 

Al though the algori thm is guaranteed to ob ta in  an e -approximate  so lu t ion  in a 

finite n u m b e r  of steps, this guaranteed b o u n d  (worst case), on the l inear  programs 
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Fig. 8. Time (parallel) vs k with m = 20 and n = 50 on the CRAY2. Statistics for stages I and II of the 
solution. (10 problems of each size and e =0.001). 

solved, grows exponent ia l ly  as n ( 4 n / e )  "/2 (see Section 9). Obviously  if this represen- 

ted the average computa t iona l  per formance  of the algori thm, it would  be of no 

practical interest. For tuna te ly  this is not  the case. Figure 11 displays the n u m b e r  of 

l inear  programs (min imum,  maximum,  and  average) solved in order to obta in  an 

e-approximate  solut ion for the r andomly  generated test problems.  Whereas the 

theoretical upper  b o u n d  predicts that at most  1.645 × 1064 l inear  programs would  

need to be solved (in the worst case) for a p rob lem of size n = 25 ( independen t  of 
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Fig. 9. Speedup vs k with m =20 and n =25 on the CRAY2. (10 problems and e = 0.001) 

k),  compu ta t i ona l  exper ience  indica tes  that  no more  than  6300 l inear  p r o g r a m s  

were requ i red  for  any  pa r t i cu l a r  p rob l em with n = 25. Resul ts  for  the case n - - 5 0  

are s imi lar  and  therefore  not  repor ted .  

F ina l ly ,  because  the n u m b e r  of  l inear  p rog rams  m a y  be  large  if  an e - a p p r o x i m a t e  

so lu t ion  is desi red,  then the n u m b e r  o f  p ivots  requ i red  to ob ta in  the  so lu t ion  may  

become  prohib i t ive .  For tuna te ly ,  because  the  mul t ip le -cos t - row a p p r o a c h  to solving 

the l inear  p rog rams  is efficient, the average n u m b e r  o f  pivots  pe r  l inear  p rog ram 

remains  small .  In  fact,  the  compu ta t i ona l  results  ind ica te  that  the  average  n u m b e r  
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Fig. 10. Speedup vs k with m =20 and n =50 on the CRAY2. (10 problems and e =0.001) 

of  pivots per linear program was never more than 36. More precisely, in cases for 
which at least two levels of  the solution tree were required to obtain an e-approximate 

solution (i.e. stage I alone did not provide an e-approximate solution), the average 

number of pivots per linear program never exceeded ten. Only in the cases for which 

stage I alone was sufficient to obtain the e-approximate solution did this average 

exceed ten (but it never exceeded 36). Hence, although a potentially large number 
of linear programs may need to be solved to obtain an e-approximate solution for 

a given problem, the number of pivots per linear program is small, and therefore 
the overall solution time remains reasonable. 
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Fig. 11. Number of linear programs per problem vs k with m =20 and n=25 on the CRAY2. (10 
problems of each size and e = 0.001). 

13. Conclusions 

The computa t ional  results included in this paper  demonst ra te  that the algori thm is 

an efficient method  for  finding an e-approximate  solution for large-scale concave 

quadrat ic  global minimizat ion problems. Fur thermore,  for shared memory  parallel 

machines,  the method  is very effective in obta ining average speedups approach ing  

the number  of  processors.  
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