
Mathematical Programming 42 (1988) 421-448 421
North-Holland

A P A R A L L E L A L G O R I T H M F O R C O N S T R A I N E D C O N C A V E
Q U A D R A T I C G L O B A L M I N I M I Z A T I O N

A.T. PHILLIPS and J.B. ROSEN

Department of Computer Science, University of Minnesota, Minneapolis, MN55455, USA

Received 12 August 1987
Revised manuscript received 29 February 1988

The global minimization of large-scale concave quadratic problems over a bounded polyhedral
set using a parallel branch and bound approach is considered. The objective function consists of
both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the
linear constraints. These large-scale problems are characterized by having the number of linear
variables much greater than the number of nonlinear variables. A linear underest imating function
to the concave part of the objective is easily constructed and minimized over the feasible domain
to get both upper and lower bounds on the global min imum function value. At each minor iteration
of the algorithm, the feasible domain is divided into subregions and linear underest imating
problems over each subregion are solved in parallel. Branch and bound techniques can then be
used to eliminate parts of the feasible domain from consideration and improve the upper and
lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any
specified tolerance in a finite number of steps. Computat ional results are presented for problems
with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained
on a four processor CRAY2 using both sequential and parallel implementat ions of the algorithm.
The average parallel solution time was approximately 15 seconds for problems with 400 linear
variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computat ion
time appears to increase only linearly with the number of linear variables.

Key words: Global minimization, concave quadratic programming, parallel algorithms.

1. Introduction

The general problem considered is that of minimizing a concave quadratic function
over a bounded polyhedral set. Specifically, the problem statement is

(GQ) global min O(x, y) = q~(x) + dty
(x,y)c~

where 12 = {(x, y): A~x + A2y <~ b, y >~ 0} is a nonempty, bounded polyhedral set, and
r n x n A ~ m x k x e Nn, y ~ ~k, A~ c R , ~2 ~ N , b ~ ~ m and d 6 R k. The usual nonnegativity

requirement on x is assumed to be included in the constraints of g2. The nonlinear
1 t term p(x) of q,(x,y) can be expressed as ~(x)=c~x-(5)x Qx, where c o n ~ and

Q c N,×n. The matrix Q is assumed to be a positive semi-definite symmetric matrix

since O(x, y) is a concave quadratic function. Large-scale problems of this type are
characterized by having many more linear variables than nonlinear variables (k >> n).

The problem GQ is a constrained combinatorial optimization problem and is
equivalent to other well known combinatorial optimization problems such as zero-
one integer programming and the quadratic assignment problem (Pardalos and

422 A.T. Phillips, J.B. Rosen / A parallel algorithm

Rosen, 1987). It follows from this equivalence that problem GQ is NP-hard. From
a computational viewpoint, this means that, in the worst case, the computing time
will grow exponentially with the number of nonlinear variables. An important
property of this problem, which is basic to all solution methods, is that the global
minimum point is always found at a vertex of the convex polytope ~. For this

reason, linear programming is an essential part of any computational algorithm to
solve problem GQ. For a comprehensive review of constrained global optimization,
including applications and recent computational results, see Pardalos and Rosen

(1986) and (1987).
In this paper a new algorithm is presented which is designed to be efficient for

problems with many linear variables. It is also designed so that it can be easily
implemented for, and take full advantage of, parallel processing. The algorithm is
guaranteed to obtain an e-approximate solution (the relative error in the objective
function is bounded by a user specified tolerance e) in a finite number of steps.
This guaranteed bound (on the number of subproblems solved) is obtained by a
worst case analysis and grows exponentially as (4 n / e) hI2. Obviously if this represen-

ted the average computational performance of the algorithm, it would be of no
practical interest. Thus, extensive computational testing of the algorithm was carried
Out on a range of realistic test problems. These problems ranged in size from n = 25

and k = 0 up to n = 50 and k = 400. The largest problems are an order of magnitude
larger than any others of this kind previously reported in the literature. The computa-
tion times for e = 0.001 using a four processor CRAY2 ranged from less than one

second to a maximum of 165 seconds. The average (ten problems) parallel solution
time for n = 25 and k = 400 was approximately 15 seconds. These results demonstrate
that the algorithm and its parallel implementation are practical for the solution of
constrained quadratic global minimization problems of the size tested, and probably

for substantially larger problems as well.
The algorithm is an efficient method for two major reasons. First, at each major

iteration of the method, a heuristic step (stage I) is applied in an attempt to eliminate
parts of the feasible region which cannot contain the global minimum vertex. In
the worst case, this step will fail to eliminate any regions. But in practice the heuristic
works extremely well at every major iteration of the solution procedure, and hence
the original feasible region is rapidly reduced to a much smaller polytope in which
the global minimum vertex must occur. Second, the parallel implementation of the
algorithm is highly efficient. At each minor iteration, 2n multiple-cost-row linear

programs are available to be solved in parallel. Since the solution of the linear
programs is the most computationally intensive part of the method, all processors

can be efficiently utilized, and in fact speedups approaching and even exceeding
the number processors are observed.

The approach presented here for solving problem GQ takes full advantage of the

linearity of the y variables. The original ideas for this approach were proposed by
Rosen (1983) for the case k = 0 and where the explicit reduction to separable form
was not required. A rectangular domain R x ~ " is constructed to contain the

A.T. Phillips, J.B. Rosen / A parallel algorithm 423

projection 12x of 12 on the x-space by solving a multiple-cost-row linear program
with n cost rows. The original problem is then transformed into an equivalent
concave separable quadratic minimization problem with linear constraints. A linear
underestimating function F(z)+ d'y, in the new nonlinear variables z • R n and the
same linear variables y • ~k, to the transformed separable quadratic function ~O(z, y)

is easily computed and the linear program

rain r(z)+ d'y
(z,y)e.Q'

is solved, where 12' is the transformed bounded convex polyhedron. The solution
of this linear program gives both upper and lower bounds on the global minimum

function value ~O*. Branch and bound techniques are then applied to reduce the
feasible region under consideration and decrease the difference between the upper
and lower bounds.

The next four sections describe the construction of the linear underestimating
function, and its use to obtain upper and lower bounds on the global opt imum
function value is justified. The branch and bound techniques used to eliminate
subregions are also presented (Theorem 1), and improved bounds are obtained
(Theorem 2). In Section 6 the stage I algorithm is presented. Stage I gives an initial

approximate solution with a minimum of computat ion but with a relatively large
bound. It is also used repetitively in each stage II major iteration. Stage II of the
algorithm is presented and justified in Sections 7 and 8. In Section 9 the worst case
behavior of the algorithm is analyzed, and it is shown that an e-approximate solution
is guaranteed with the solution of a large, but finite, number of subproblems. Section
10 discusses some aspects of the parallel implementation. The computational results
obtained on the four processor CRAY2 are summarized in Sections 11 and 12. In

Section 11 the manner in which the test problems were generated is described. The
results obtained are given in Section 12 and compared (for small problems) with
recent results obtained by two other methods.

The computational results are presented by means of nine figures which show
both average and extreme values of the computat ion time as a function of k, the

number of linear variables. Results for stage I are given in Figures 3 and 4, and for
the combined stages I and II in Figures 5 thru 8. Figures 3 and 4 show that the
computation time for stage I depends linearly on k. Both sequential and parallel
results are given, and the speedup using four processors is also shown (Figures 9

and 10).

2. The initial linear underestimator

The concave quadratic function q,(x, y) can easily be reduced to separable form by
a linear transformation based on the eigenstructure of the matrix Q. This reduction
is described in detail in Rosen and Pardalos (1986) and Phillips and Rosen (1987a)

4 2 4 A.T. Phillips, J.B. Rosen / A parallel algorithm

and will not be repeated here. Computat ionally it requires finding the eigenvalues
and eigenvectors of the symmetric matrix Q and the solution of a multiple-cost-row
linear program (with n cost rows). For n ~< 100 finding the eigenvalues and eigenvec-

tors requires less than one second of (CRAY2) CPU time. Hence, without loss of
generality, we limit consideration to the following concave separable quadratic

minimization problem

(SQ) g loba lmin~(x ,Y)=~(x)+dty = i q,(xi)+dtY
(x,y)~g~ i=1

where 12 = {(x, y): Alx+A2y<~b, x ~>O,y ~>0}, qi(xi) ~ 2 = CiX i --~*~iXi, and where x c ~n,
y e n k, d ~ N k, b6R m, A i c N m×", and A 2 c R m×k (Note that since Q is positive

semi-definite Ai/> 0, and that in fact hi > 0 since we assume that each & is a nonlinear
variable).

Given a concave quadratic minimization problem that has been reduced to
separable form, we can easily construct the smallest rectangular domain Rx c N n
which contains 12x, the projection of /2 onto the x-space. We solve the multiple-cost-
row linear program (with n cost rows)

(MCR) max xi
(x,y)eKl

for each i = 1 , . . . , n to get optimal function values fli, i = 1 , . . . , n. Then the rec-
tangular domain Rx can be expressed as

Rx ={x: O<~ xi<~ fli, i= 1 , . . . , n}.

A linear underestimating function F(x) of ~p(x) over Rx which agrees with ~p(x) at
every vertex of Rx can now be constructed. This linear function F(x) is given by

r (x) = Z ~,i(x,)
i = l

where yi(xi) = (ci -½&,Si)xi. Since F(x) underestimates ~(x) on Rx, it also underesti-
mates ~(x) on 12~ c R~, and hence F(x) + d'y is a linear underestimator of q,(x, y) =

~(x) + d 'y over 12. The solution to the linear program

(LU) min F(x)+d 'y
(x,y)c~Q

provides a vertex (x', y') of 12 such that

r(x ') + d'y'<~ 4,(x*, y*) ~ O(x', y')

where qt(x*,y*)= ~* is the global opt imum for SQ. Let F°)=F(x ')+d ' y ' and
~(1)= ~b(x', y'). Thus, F O) is a lower bound and ~/,o) is an upper bound for the

global opt imum function value q,*.

3. Error bounds for the initial linear underestimator

As previously stated, the lower and upper bounds for ~b* are given by /.(1) and
~b (1), respectively. I f we define an appropriate scale factor A~o to be the maximum

A.T. Phillips, J.B. Rosen / A parallel algorithm 425

o f the range o f ¢ (x) on S2 and the range o f d'y on S2, then we shall say that (x' , y ')

is an e-approximate solution if, for a given e > O,

O(x', y') - ~* ~ eAq~.

Defining the difference E(x)= ~ (x) - F(x) we note that

g,(x', y ') - ~* ~< E (x ')

and hence, if E(x')<-e&p then (x', y') is an e -approximate solution. We can easily

obtain a bound on E(x) for any x c ~x c Rx. Assume, without loss o f generality,

that

l~lf121)hif12i, i = 1 ,n ,

and define the ratios

2 2 Pi=(hifli)/(hlfll), i= l , . . . , n .

Note that pi ~< 1 for i = 1 , . . . , n. Now,

E(x)=~(x)-r(x)= ~ [qi(xi)-yi(x,)]=½ ~ / ~ i (~ i - - X i) X i
i--1 i=l

which attains its max imum at x~ = fl~/2 for i = 1 , . . . , n. Thus, for any x ~ ~ c Rx,

i=1 i--1

Fur thermore, we can easily obtain a bound on the scale factor dq~. We first define

the fol lowing quantities:

~0ma x = max ~p (x),
XER x

q'mi. = min q~(x),
XER x

DYma. = max d'y,
(x,y)e~t

DYmi~= min d'y.
(x , y) c ~

Then by definition A¢ = m a x {~max-- ~min, D Y m a x - DYmin}- Note that

(~min = ~ min{qi(O), qi(fli)}, ~ m a x = ~ qi~a ~
i = l i = l

where

qi(O) if thi ~< O,

qim°x = qi(fli) if 0]~ ~> fli,

qi(oSg) if 05~ ~ (0, fl~),

and where o5i = ci/h~ for 1 = 1 , . . . , n is the unconst ra ined ma x imum o f q~(xi). Also

notice that DYm,xand DYmi, are obtained by solving two linear p rograms where

4 2 6 A. 7:. Phillips, J.B. Rosen / A parallel algorithm

the feasible region is 12. Further , all l inear programs solved since the reduct ion to
separable form have been solved over the same feasible region 12 and can therefore
be classified as mult iple-cost-row linear programs. This p roper ty is significant for
computa t ional purposes and is a major difference between this approach and other
earlier methods such as Falk and Hoffman (1976) and Horst (1976).

A lower bound for A~N--= ~m~×--~min depends on the distance Oetween o5~ and
/3~/2 for o3~ c (0,/3e) and is independen t of o3~ for o5, ~ (0,/3i). This dependence is
expressed by the quantities

r /~=min{1, ~ - I }, i = l , . . . , n .

Notice that 0 ~< r/~ <~ 1 and that rli = 0 iff aS~ =/3~/2. Also, ~/~ = 1 for all o3~ ~< 0 and for
all o5~ ~>/3, Then, as shown by Rosen and Pardalos (1986), we get that

1 2
A~O N ~ m a x - - ~ 0 m i n ~ A t / 3 1 ~ pi(l+rh) 2.

i=1

Hence, an a priori upper bounded on the relative error is given by

~O(x', y ') - tp* ,_a
< --- ~(p, n)

A~ ~ pi(l+,qi)2
i=1

and it is easily seen that o-(p, n) c [¼, 1] and that o-(p, ~7)= 1 iff o3~ =/3~/2 for all
.. , = z l f f w ~ (0 , / 3 i) for all i = 1 , . . . , n. i = l , . n. Fur thermore , t r (p ,~) 1. -

4. The 2n linear underestimators

During each minor i teration o f the algorithm, the feasible region is divided into
subregions by bisecting 12x in certain directions. Linear underest imating functions
to qJ(x, y) over the subregions are then constructed and minimized over the original
region 12. More specifically, define R = {x: /3 , ~< xi <~/3~2, i = 1 , . . . , n} where initially
we would have/3i~ = 0 and /3ez = fie for i = 1 , n (i.e. R --- Rx). Let l ~ { 1 , . . . , n}
and let/3t3 = (/3tl +/312)/2 be the midpoint o f the interval [/3tl, ritz]. Define yll(xt) to
be the linear funct ion which interpolates the points [/311, qt(/3tl)) and (/3t3, qt(/3t3)).
Similarly, define Y12(x1) to be the linear funct ion which interpolates the points
(/313, ql(/313)) and (/312, q1(/312)). Also, for i = 1 , . . . , n let 7~(x~) be the linear funct ion
which interpolates the points (/3~1, qi(/3i~)) and (/3i2, q~(/3i2)). It is easily shown that

~/i(Xi) =1)ti/3il/3i2-~- (C i -- l l~i(/3il ') t- /3i2))Xi , i = 1 , . . . , n.

Clearly, yi(x~) <~ qi(x~) on [/3.,/3i2]. Likewise,

= ~AI/3/1/313 + (c1-½A~(/3. +/3s3))xl and 711(x~)
1

"~12(XI) = ~1~1/313/312 + (C I -- 11~1(/313 +/312))Xl

A.T. Phillips, J.B. Rosen / A parallel algorithm 427

so that yll(xt)<~ qt(xl) on [/3,,/313] and %2(xt)<~ qt(xl) on [/313,/312]. Now, consider
the linear functions

/ ' / l (X) : ~ ")li(Xi)'~-~/ll(Xl) and F12(x): ~ %(xi)+y12(xl)
i=1 i=l
i#l i#l

and the hyperrectangles

RIl={X:xcR,[311~Xl~[~13 } for l = l , . . . , n , and

Rt2={x: x c R,/3t3<~x~<~/312} for l= 1 , . . . , n

then we have that Ftx(x) underestimates q~(x) on R11 and that Fi2(x) underestimates
~(x) on Rt2. It is shown in Phillips and Rosen (1987a) that these linear underes-
timators are in fact the "best" convex underestimators of q~(x) over their respective
regions (see also Kalantari 1984).

5. Branch and hound techniques

As stated earlier, during each minor iteration of the algorithm the feasible region
is divided into subregions by bisecting Rx in certain directions (the branching step)
and linear underestimating functions to t~(x, y) over the subregions are then con-
structed and minimized over the original region f2. Bounding techniques can then
be applied to determine if any of the subregions cannot contain the global optimum
vertex (x*, y*) and may therefore be eliminated from further consideration.

Given the hyperrectangles R, Rtl, and Rt2 and their corresponding linear underest-
mators F(x) , Fl~(x), and Ft2(x) as defined in the previous section, we solve the
multiple-cost-row linear program (with 2n cost rows)

(LU6) min Fij(x) + d'y
(x,y)~J~

for l = 1 , . . . , n and j = 1, 2. Notice that the minimization occurs over the entire
region S2. Let (xtj, Y6) be the solution vertex corresponding to problem LU 6. Also,
let Flj(x!i)+ d'y!i be the corresponding optimal function value, and denote this by
Ftj. Define ~/incb to be the "incumbent" function value, i.e. the lowest upper bound
at any given time (note: ~0incb = ~1) immediately after the first linear underestimator).
We now have the important

Theorem 1. I f Ftl > min{~binc~, ~(xtl, Yll)} for some I c { 1 , . . . , n}, then x* ~ Rtl and
hence Rl~ can be eliminated from further consideration. Likewise, if Ft2>
min{~bi,cb, ff(xt2,y12)} for some I c { 1 , . . . , n } , then x* ~ Rt2 and hence Rr2 can be
eliminated from further consideration.

428 A.T. Phillips, J.B. Rosen / A parallel algorithm

Proof. (x*, y*) e 12 by definition and min{toi~cb, O(xn, Y/I)} < F l l ~- FII(Xtl) + d'yn =
minimum of Fn(x)+d ' y over 12. Hence min{toi~ob, to(Xll,yll)}<['tl<~Fll(x)+d'y
for all (x ,y) c12 and thus for all (x ,y) c12c~(R~X12y). If x * c R ~ then

min{toi,cb, 4'(xn, Yn)} < Fn(x*)+ d'y*<~ to(x*, y*) since Fil(x) underestimates q~(x)
for all x c R~. But this is a contradiction since t0(x*, y*) is the global minimum
over 12. Thus x* ~ Rn. A similar proof yields the second part of the theorem. []

From this theorem we can see that if F~ > min{to~,cb, to(x~, YO)} for either j = 1 or
2, then R o can be eliminated from further consideration. Additionally, Theorem 1
guarantees that if a subregion R o of the feasible region is eliminated, then that
subregion cannot contain any feasible point which has a lower function value than

min{toi~cb, to(x~, y~)}.
From these 2n linear programs, we would also like to obtain possibly better

upper and lower bounds on the global minimum 4,(x*, y*). We do this by first

defining

F (2>= max min{Fn,/"/2} and to(2~= rain {to(xn,yn),to(x/2, YI2)}"
I=1 ,n l=l,...,n

Using these definitions, we have the

Theorem 2. I f x* c R then F ~2) <~ to(x*, y*) <~ to(2).

Proof. The upper bound is obvious since each (xe, yo)~ 12 for l= 1 , . . . , n and
j = 1, 2. For the lower bound we have two cases to consider.

Case I: Suppose x * c Rn. Then Fn(x*) + d'y*-~ to(x*, y*) since Yn(x) <~ ~o(x)
for all x e R n . Also, Fn=-Fn(Xn)+d~yn<-Ft~(x*)+d'y * since FI~ is the minimum
of Ft,(x)+ d'y over 12 and (x*, y *) c 12. It follows that Fll<~ to(x*, y*) and hence
that min{Fl~, Fi2} ~< to(x*, y*).

Case 2: Suppose x* ~ Rn, i.e. x* e R~2 (since x* ~ R). Then as above, F~2(x*) +

d'y* ~< to(x*, y*) and Fz2 ~ Fl2(x*) + d'y*. It follows that FI2 ~< 4,(x*, y*) and hence

that min{1)~, FI2} <~ to(x*, y*).
Thus, combining Cases 1 and 2, if x * e R then min{Fl~, F~2}~ < to(x*, y*). This

holds for 1 = 1 , . . . , n so that we get F ~2~ <~ to(x*, y*). []

From Theorem 2 we get upper and lower bounds on to* --- to(x*, y*). In fact, if
we continue the algorithm by bisecting the new hyperrectangle (obtained from the
old hyperrectangle by eliminating subregions according to Theorem 1), we get
another set of upper and lower bounds. After k minor iterations of the algorithm,
t~inob=min{toO) ' ~1(2),... , to(k)} is the "best" upper bound and hence is also the
approximation to the global optimum function value. Note that the previous results
show that the process can continue as long as at least one of the 2n linear programs

A.T. Phillips, J.B. Rosen / A parallel algorithm 4 2 9

P0 at each minor iteration provides a solution which satisfies the conditions of
Theorem 1 (i.e. some subregion can be eliminated). An initial algorithm (stage I),
based on these results, is now presented.

6. Stage I: The initial algorithm

Given a linearly constrained feasible region S2 (nonempty and bounded),
a concave separable quadratic function q~(x, y), a hyperrectangle R =

{x: fi~l ~< xg ~< fi~2, i = 1 , . . . ,n} and an a priori lower bound/ ' (o) on q,*, the general
algorithm can be stated as

Algl(R, ~ , r (°))
1. Construct the linear function F(x) + dry which agrees with ~b(x, y) at all vertices

of R.
2. Solve the linear program

(LU) min F(x)+d 'y
(x,y)e~Q

to get the vertex (x', y'). Set F (1):= max{F(x ') + d ry ' F(O)}, ~b(1):= O(x', y'), xo:=
x', Yo := Y', and k := 2. If ~p(l) _ F(1) ~< eA~ then stop and accept (xo, Yo) as the global
solution vertex with corresponding function value ~b (1).

3. For each 1 = 1 , . . . , n construct the linear function Fi l (x)+ d'y which agrees
with ~b(x, y) at all vertices of RI1 and the linear function Fll(X)+d'y which agrees
with ~b(x, y) at all vertices of Rt2, where Rll = x: x ~ R, fill ~< xl ~< fit3} and Rt2 = {x: x c

R , fil3 ~ Xl ~ f i l 2 } , and where/313 = (fill -~- fi/2)/2.
4. Solve the multiple-cost-row linear program

(LUg) rain Fv(x)+d~y
(x,y)eg2

for l = 1 , . . . , n and j = 1, 2. Let (Xlj, Yo) be the solution vertex corresponding to
problem LUg. Also, let F~(xo)+ d'y~ be the corresponding optimal function value,
and denote this by F 0.

5. For each 1 = 1 , . . . , n i fFa > min{~b (k-l), tp(x~l, YII)} then set fill := fit3. Likewise,
if/'12 > min{~P (k-l), ~0(xt2, Y12)} then set f i l 2 : = f i l 3 "

6. Set

/ ' (k)= max min{Fi1,Ft2} and 0 (k)= min {q'(xll,yl,), O(x12, y12)}.
1 - 1 , . . . , n l = 1,...,n

7. If /'(k)<F(k-1) then set /'(k):=/'(k-l). If 0(k)> 0 (k-l) then set q,(k):= 0(k-l).

Update (Xo, Yo) to be vertex (of O) with corresponding function value 0(k).
8. If 4'(k?-- F (k) <~ ezl~ then stop and accept (xo, Yo) as the global solution vertex

with corresponding function value ~b (k).
9. If no eliminations were made in step 5, then stop. Otherwise, set R:=

{x: fi~l<~x~<<-fi~, i = 1 , . . . , n}, k:= k + l , and go to 3.

430 A.T. Phillips, ZB. Rosen / A parallel algorithm

The justification for the algorithm is given by the theorems of the previous section.
That is, since x* • R initially, then Theorem 1 implies that the actions taken in step
5 of the algorithm will guarantee that x* • R for the next minor iteration (i.e. x* is
in the new hyperrectangle which was obtained by eliminating subregions of the old

hyperrectangle). Inductively, these arguments apply to each minor iteration k =
2, 3, . . . of the algorithm. Similarly, the upper and lower bounds of steps 6 and 7
are justified by Theorem 2 of the previous section. Note that q,~k) is really just the
incumbent function value ~O~ob at minor iteration k of the algorithm. We use the
name qj(k) instead of ~Oi.~b to represent the incumbent value at this point because

we will use the n a m e ffJincb in a more general way in a later section.

7. Stage II: Restarting when no further eliminations are possible

An important drawback of the algorithm as it stands (stage I only) is that termination
at an e-approximate solution (for a specified small e) is not guaranteed. That is,
at some minor iteration k the algorithm may be forced to stop if no subregion can
be eliminated and ~b ~k) - F ~k~ > eAq~. At such a time we have available an incumbent

vertex v with associated function value ~binob, a lower bound F, and a hyperrectangle
R such that x * • R (and R c Rx). To resume the algorithm we now pick some
direction ei and bisect R along that direction to get two new hyperrectangles R1
and R2. This is done by adding one additional bound (upper or lower) to the
constraints. That is, we add a single upper bound to the feasible region O (to get

O1) to ensure that the region R2 is excluded from feasibility when R1 is the

hyperrectangle under consideration. Likewise, a corresponding lower bound is
added to S2 (to get g22) to ensure that the region R1 is excluded from feasibility
when R2 is the hyperrectangle under consideration. Thus, two independent subprob-

lems are generated with O1 and ~22 as the feasible domains and R1 and R2 as the
respective hyperrectangles. It is important to note at this point that the addition of
this bounding constraint to the feasible region O is not required to ensure conver-
gence of the algorithm. In fact, all of the convergence properties to be presented

later are obtained independent of the feasible region under consideration after all
eliminations and bisections. The bounding constraint is added to O in order to
facilitate pruning of the feasible region under consideration at each major iteration
of the algorithm.

Let the hyperrectangle R ={x: ~ j l < ~ x j ~ j 2 , j = 1 , . . . , n}. Pick i • { 1 , . . . , n} and

let/3i3 = (j3il +/3i2)/2. Then for R~ = {x: x e R and xi ~</3~3} and R2 = {x: x • R and

Xi~]~i3 } w e let Ol=O('~{(x,y):xi~fli3} and 0 2 = O c ~ { (x , y) : x i > ~ f l i 3 } . We can
then apply the algorithm Algl(R~, 12~, F) to the feasible region O1 with hyperrec-

tangle R1, incumbent vertex v with associated function value (upper bound) ~0~b,
and lower bound F. Similarly, and in parallel, we can apply the algorithm

Algl(R2,122, F) to the feasible region O2 with hyperrectangle R2. Clearly, the
procedure can again be applied to the hyperrectangles (with associated feasible

A.T. Phillips, 3.18. Rosen / A parallel algorithm 431

regions O~ and 02) obtained from this second application of the algorithm. In
addition, if at any time the lower bound for a subproblem is not less than the current
incumbent function value then that subproblem may be "pruned" , i.e. eliminated
from further consideration. In this way the new procedure is a parallel branch and
bound algorithm.

The choice of the bisected direction ei can be made in many ways. One such
choice is to pick i such that

A,(fl ,2- fl,,) 2= m a x ,~j(~j2-- ~jl) 2
j= l,...,n

where the hyperrectangle R = {x:/3j~ ~< xj ~ flj2,J = 1 , . . . ,n}. It is easily shown that
the error E (x) over the hyperrectangle R is bounded above by

j= l

The ith term of this error over R is ½A,(fli2- ft,)2. Since direction ei was the bisected
direction, the ith term of the error over the two sub-hyperrectangles R~ and R2 is
1 A ~(f l i2- f l ,) 2. Hence, each subproblem has an upper bound on the error which

strictly decreases as the algorithm proceeds. Since the ith term of the error is the
largest of the error terms and it strictly decreases by a factor of four at each major
iteration (the point at which a new constraint is added), then at some major iteration

with hyperrectangle R = {x: fljl <~ xj <~ fij2,J = 1, . . . , n}

~Aj(/3j2-/3j,)2~ < eA~o/n f o r j = 1 , . . . , n

so that E (x) <~ edq~ for all x e R, and hence finite convergence to an e-approximate
solution is guaranteed.

8. The parallel branch and bound algorithm

Given a linearly constrained feasible region O ' (nonempty and bounded) and a
concave quadratic function 0'(x, y), the parallel branch and bound algorithm can
be stated as

Alg2(~' , l-l')

1. Reduce the problem to separable form to get the separable quadratic function
0(x, y) and the transformed feasible domain /2 (nonempty and bounded).

2. Compute the enclosing hyperrectangle Rx and the range A~ by solving (in
parallel) the multiple-cost-row linear program

(MCR) max a [l x + a l 2 y
(x,y)e~

432

where

A,T. Phillips, J.B. Rosen / A parallel algorithm

! i = 1 ,n , ~ ei, i = 1 , , n, and ai2 i n+ 1,
an [0, i = n + l , n + 2 , d i = n + 2 ,

for each i = 1 , . . . , n + 2 to get the vertices v l , . . . , v,+2 with cor responding opt imal

funct ion values ~ 1 , . . . , ~,,, DYmax , -DYm~. Set the initial hyperrec tangle R{ Z~:=
{x: 0 ~ x ~ < / 3 , , i = 1 , . . . , n} and the initial feasible domain 12{~: = O. Compu te Aq~

(as descr ibed in Section 3.0).
3. Set S : = 0 , I(~):={1}, t o i ~ b : = m i n { t o (v l) , , to(1)n+2)}, L]I): = -0% and k := 1.

4. Set 1 (g+~:= 0.
5. For each j c 1 (k~ do 5.1-5.5 (all j c I ~ in parallel)
5.1. Apply Algl(R~ k), O~k), L)k~) to get the uppe r b o u n d to~k), the lower bound

F I k), and the candida te vertex vJ k).
5.2. I f to}k)--F}k"< ca,:# then set S := S w { (k , j) } and go 5.5.

R (k) = { X : f l ~ ' < ' ~ ' k d i = 1 , n} 5.3. Denote the current hyperrectangle by _~j ~ ~ ~,~2, • • •,
and pick i c { 1 , . . . , n} such that

~ (1 2 t k , j _ f~k,j~2 x [f ~ k d _ (Rkj~2 i\l~i2 /~il] = max ,tsk~s2 ~,sl., •
s = l , . . . , t l

5.4. Set/33 ~ := ~ ~J °(~÷~) "- {x: x ~ R~ ~ o(~÷~ ' - (/3/2 + /3n)/2. Set ,,2j_~ . - and x,<~/33 ~} and .,~j .--
o (k + D ._ o(~+1~-- y2!~ ~ {(x, y): x i < ~ } and , , : j . - {x: x ~ R} ~ and xi/>]33~}. Set "~2i-, "- ,

~(k+~)'--F!~ and I (~+~):=FJ ~. Set I (~+~" O) ") c~ {(x, y): x~ ~> fl3~J}. Set ~2~-~ . - -~ , ~z~ .=
I (~) w {2j - 1, 2j}.

5.5. Cont inue step 5.0.
6. I f I (k+~)=0 then set k := k + l and go to 4.

7. Set t o : = t o] ~ = m i n to)~ for all (k , j) ~ S , F : = m i n F) ~ for all (k , j) ~ S , and
/2 := ~)}s r).

Notat ional ly , I ~ represents the set of subscripts (names) of the subprob lems to
be solved at ma jor i terat ion k of the algori thm, i.e. it is merely a way to keep t rack
of which subprob lems are to be solved at a given major i terat ion k. Clearly, when
I (g~= 0 the p rob lem is solved. The set S represents the set o f index pairs (k , j) such

that the subprob lem character ized by the hyperrec tangle RJ ~ and the feasible region
was solved within the to lerance cage. U p o n te rmina t ion of the algori thm, the

solut ion vertex v with associa ted funct ion value to and lower bound F satisfies the
obvious

Theorem 3. to - F <~ eAq~ and F <~ tO* <~ to.

Proof. t o :=min to) k) for all (k , j) ~ S and F : = m i n F) k) for all (k , j) c S , where S =
{(k, j) : to~k)_ F } k) ~ eAq)}. Suppose F = F 7 ~ where (q, p) ~ S. Then, ~t'p'lt(q)-- --pF'(q) <~ EA@
and hence, to - F = O - F ~ q~<~ O(v q~ -F(f l ~<~ eAq~. Also, x* c R} k~ for some (k , j) ~ S so
that F - V (q~ < F~ k) <~ O* <~ to since F} k~ is a lower b o u n d on to*, and to is always an

uppe r b o u n d on to*. []

A. T. Phillips, J.B. Rosen / A parallel algorithm 433

Four important additions need to be made to the initial algorithm Algl in order
to properly update the incumbent function value ~Oin~b, allow pruning, and keep the
upper bound for each subproblem as tight as possible. We add to Algl the following

four steps:

2.1. I f ~p(1)< ~/incb then ~tincb := ~(1)

else ~(~):= ~tincb.
2.2. I f F (~) i> ~b~b then terminate this problem (i.e. prune).

7.1. I f 0(k)< ~%cb then q'incb:---- ~ o(k)
else 0 (k):= 0i,ob.

7.2. I f F (k) t> 0~ob then terminate this problem (i.e. prune).
Note that in Alg2 the final function value (the approximate global solution) ~b is

really just the incumbent function value tp~b and that 0~,,~u is intended to be a value
available to all subproblems (i.e. a globally shared value).

9. Convergence analysis

To analyze the worst case performance of the algorithm, we assume that for each

subproblem generated no eliminations can be performed (as given by Theorem 1).
Since at each minor iteration we cannot discard any of the feasible region ,q, we
are forced to generate two new subproblems for each problem at the current major
iteration. Assume also that we cannot prune any of the subproblems. Then, in order
to terminate, we must satisfy E(x)<~ eA~ over each hyperrectangle R~ k) for s =
1 , . . . , 2 k-~ and at some major iteration k. That is, we must have

over each R(s k) = {x: ~il <~ xi <~/3i2, i = 1 , . . . , n} for s = 1 , . . . , 2 k-1. It suffices to con-
sider only one such hyperrectangle RJ k) since A/3i --=/3i2 -- /3, i = 1 , . . . , n, is the same
for all R~ k) for s = 1 , . . . , 2 k-I because no regions were ever eliminated (see Figure

1). Hence, if the condition stated above holds over some RJ k) then it holds over all
R~ k), s = 1 , . . . , 2 k-1.

Let k; be the number of bisections along coordinate direction e~ required to reduce
the original hyperrectangle R~ 1) to the current hyperrectangle R~ k). As an example,
k, is the number of bisections of e, along the path R]')-~ R~2)~ R(23)--) R(34)--) • • "-~ R (k) ,!
in Figure 2. Note that k is the number of levels in the complete binary tree (complete
since no pruning or eliminations occur). Also, k - 1 represents the sum of the number

R(k) of bisections in each direction along the path from R~ 1) to __j . Consider now the
ith term of the error

434 A.T. Phillips, J.B. Rosen / A parallel algorithm

R~ ~

Fig. 1. A tree of b isected subprob lems .

where fii is the optimal solution to the problem MCR in step 2 of Alg2. Hence, if

1 2 2 k . ~ . . ~af l i /2 ' ~ e & # / n f o r i = l , . , n

R (k) then E(x) ~< eAq~ over . .j as desired. Thus, we require that ki be the least integer
such that

ki~log2\geAqD, I for i = 1 ,n.

It follows that the total number of bisections along the path from R] 1) to R I k~ is
bounded above by

([na R2\1/2)
I ~,-.i} + . k - l = i=, ~' k,~< ,=,~ log2 \ 8 - ~ / 1

Since k represents the number of levels in the complete binary tree, then the total
number of bisections required for the algorithm to terminate is 2 k-~ - 1. It can then

A.T. Phillips, J.B. Rosen / A parallel algorithm 435

A A A A
R(4) R(4) R(4) R(4) R(4) R(4) R(4) R(4)

I ~'2 "'3 " 4 " 5 "'6 ='7 " 8

J

Fig. 2. The worst case expansion of the tree.

be shown that the total number of bisections required for termination is bounded
above by

i=1 \2eAq~/ - 1.

Using the error bounds of Section 3, the worst case number of bisections is also
bounded above by

In addition, the total number of subproblems in the tree (i.e. calls to Alg l) is 2 k - 1

and, therefore, is bounded above by

Hence, the total number of linear programs solved is bounded above by

~ L V s ~ 2 (n + l) i=, ~ k2--~,/ - n + l < 2 (n + l)

Since x* d Rx, the initial bounding hyperrectangle, then x* E R} k) for some j e
{l, 2 , . . . , 2k-l}. By the analysis above, 4:~ k~ --F~k)<~ eA~ for all s = 1, 2 , . . . , 2 k-~ so
that ~bJ k) - FJ k) <~ eaq~. Note that since x* E R~ k) we get FJk)~ 0* ~< ~/,}k). By step 5.2

436 A.T. Phillips, J.B. Rosen / A parallel algorithm

of Alg2, the pair (k , j) is put into the solution set S, and since to---min 0~ ~ for all
(s, r) ~ S we get that to - to* <~ to)k)_ tO* <~ O~ k~ -- F]k) ~ eAq~ which proves the

Theorem 4. The solution vertex v with associated function value tO provided Alg2
satisfies tO- tO * <~ eAq~ and is obtained in a finite number o f steps.

Hence, tO is an e-approximate solution to the original concave separable quadratic
minimization problem.

10. Parallel implementation

The speedup achieved by a parallel algorithm running on N processors is often
defined as the ratio between the time taken by a given parallel computer executing
the fastest serial algorithm for a problem and the time taken by that same parallel
computer executing the parallel algorithm using N processors (Quinn, 1987). Note
that the fastest serial algorithm may be quite different from the parallel algorithm
being examined. Unfortunately, there is often no consensus as to which serial
algorithm is the fastest for a given class of problems (for example, mathematical
programming problems such as linear programming). Hence, we use a more practical
definition of speedup; that is, speedup is the ratio between the time taken by a given
parallel computer executing the parallel algorithm using only one processor and
the time taken by that same parallel computer executing the parallel algorithm using
N processors. In fact, we also discount any overhead incurred by the parallel
algorithm when it is executing on only one processor (so that it more closely imitates
a serial algorithm).

The algorithm is highly parallel in nature and is therefore a good candidate for
parallel computation. The most obvious parallelism occurs in the solution of the
multiple-cost-row linear programs (MCRLP), and in the branching and solution of
the independent subproblems.

The parallelism at the MCRLP level has finer granularity than the parallelism at
the subproblem level. For each subproblem there are 2kn + 1 linear programs, for
some k ~> 1, to be minimized over the same feasible region. At each minor iteration
of the algorithm performed on each subproblem, 2n of the linear programs (i.e. one
MCRLP) can be done in parallel. In addition, an initial MCRLP which begins the
solution procedure consists of n + 2 linear programs (to be minimized over the same
feasible region), and therefore can also be performed in parallel.

At the subproblem level, each subproblem at major iteration k is independent of
the other subproblems at that major iteration (except for the sharing of the incumbent
function value 0i,cb) and is defined by its hyperrectangle R~ k~ and corresponding

Q(k) Hence, the algorithm can be applied to each subproblem in feasible region __j .
parallel, but unlike the MCRLP level, we cannot guarantee that a particular number
of parallel subproblems will need to be solved at each major iteration (i.e. the

A.T. Phillips, J.B. Rosen / A parallel algorithm 437

number of subproblems may vary anywhere from 0 to 2 k-~ at each major iteration
k of the algorithm). Because considering the parallelism at the subproblem level
does not interfere with the parallelism at the MCRLP level, both the subproblems
and the MCRLPs within each subproblem could be done in parallel.

For parallelism at the subproblem level, a speedup greater than one can be
observed only for problems in which more than one level of the solution tree is
expanded. Furthermore, all N processors are used only when N or more subprob-
lems at the same level (major iteration) k remain to be solved. On the other hand,
it is also possible in this case to observe speedups greater than the number of
processors (Phillips and Rosen 1987b).

For parallelism at the MCRLP level, all N processors are active at each level of
the solution tree (N < n is assumed), to that the percent of processor utilization
can be very high. For this reason, and since speedups greater than the number of
processors are also possible in this case (Phillips and Rosen, 1988), the implementa-
tion of the algorithm that is presented considers only the parallelism at the MCRLP
level.

11. Test problems

The algorithm was tested on three kinds of problems: small examples constructed
by hand, medium size examples obtained from the literature, and large sparse
randomly generated problems with no known solutions. Eleven example problems
(Phillips and Rosen 1987b) were constructed by hand and tested. In addition, the
five medium size problems from the literature (Rosen and van Vliet 1987) were
tested to allow the direct comparison of the proposed method with two other
available methods for solving problem (SQ). The other two methods compared were
the stochastic approach of Rosen and van Vliet (1987) and the zero-one integer
programming approach of Glinsman and Rosen (1986). Finally, the randomly
generated problems were constructed so that the feasible region was nonempty and
bounded, and A1 and A2 were sparse constraint matrices with eight nonzero elements
per column (Chvfital, 1983). More precisely, the random problems generated had
the following form:

O(x, y) = o ~ (x) + O2d'y,

~D(X) = (21-) ~ ~i(Xi--O)i) 2,
i~l

/2 = {(x, y): A l x + A 2 y <~ b, x >I0, y I>0},

where x~N" , y6I~ k, A ~ " , ff~cI~", de l~ k, A ~ e R , A2G~ rnxk, and 01, 02~N.

Note that this form of the quadratic function differs from that of problem SQ

only by a constant. The parameters 01 and 02 are designed to allow scaling of the
nonlinear and linear terms so that neither one totally dominates the other. For the
test problems generated randomly, they were fixed at 01 = -0.001 and 02 = 0.1. Note

438 A.T. Phillips, J.B. Rosen / A parallel algorithm

that when the components of 02d are large (as compared to the components of
(½)01A) the problem is primarily a linear program, and hence much easier. The

particular choices of 01 and 02 were selected so as to generate difficult problems.
The constant O5 c R n represents the unconstrained maximum of the quadratic

function. Again, the choice of 05 was made so as to generate difficult problems.
More precisely for o5 near the interior of the polytope, the problem is generally

much harder since many local minima may exist. Choosing o3 exterior to the polytope
tends to generate much easier problems.

12. Results

12.0. Computational results on the CRAY2

This section describes the computational results obtained on the CRAY2 supercom-
puter for the example problems, medium size problems from the literature, and the
randomly generated problems described in the previous section. In all of the test
problems a solution vertex was recognized as the global solution if it was
e-approximate for e = 0.001.

The CRAY2 supercomputer, located in the Minnesota Supercomputer Center, is
a four processor vector M I M D supercomputer with a 4.1 ns (nanosecond) clock
cycle, 256 million words of central memory, and the UNICOS operating system.
The compiler used was a developmental version of the CFT77 Fortran compiler.
The parallel results cited below were obtained by using all four processors of the
CRAY2 in a dedicated environment.

12. I. Results for small and medium size problems

The tables in this section summarize the results obtained for the example problems
and the medium size problems from the literature. Table 1 presents the results
obtained from testing the program sequentially on the set of hand constructed

examples. In all cases, the parameters 05 = - 1 . 0 and 02= 1.0 were used, and a
solution vertex was recognized as the global solution if it was e-approximate for
e = 0.001. Problems "example" and "p rob l5" required the expansion of three levels
of the solution tree and the solution of five subproblems in order to obtain an
e-approximate solution. Problem "p rob l0" required the expansion of two levels of
the tree and the solution of three subproblems. All other problems required only
one level of the tree and the solution of one subproblem.

Table 2 compares three different algorithms on five test problems from the
literature (Rosen and van Vliet, 1987). Each algorithm was tested sequentially on
either the CRAY2 or the Cyber 845 (Glinsman and Rosen's algorithm only). This
table clearly shows that for these concave quadratic problems, the algorithm of

Phillips and Rosen with e = 0.001 is the most efficient. Note that for smaller values
of e, the algorithm of Phillips and Rosen would perform less favorably. The algorithm

A.T. Phillips, J.B. Rosen / A parallel algorithm

Table 1

Sizes and sequential solution times (secs) for
the eleven hand-constructed test problems on
the CRAY2

name m, n, k Time

example 5, 2, 0 0.026
probl 5, 6, 0 0.022
prob2 5, 6, 0 0.020
prob3 5, 6, 0 0.026
probl0 4, 2, 0 0.017
probl 1 4, 3, 0 0.015
probl2 4, 3, 0 0.014
probl3 10, 3, 0 0.022
probl4 10, 3, 0 0.020
prob 15 4, 4, 0 0.029
prob20 9, 2, 1 0.023

439

Table 2

Comparison of solution times (secs) of three different algorithms on the CRAY2 for the five
test problems from the literature

name\algorithm m, n, k P&R87 R&vV87 G&R86 a

R&vV87.1 5, 10, 0 0.11 1.50 10.34
R&vV87.2 10, 20, 0 1.43 18.69 20.47
R&vV87.3 20, 20, 0 3.21 73.84 211.87
R&vV87.7 20, 30, 0 9.16 118.76 417.26
R&vV87.8 20, 40, 0 16.52 195.53 328.55

a Time on the Cyber 845.

of Rosen and van Vliet, a l though not as efficient as the algori thm of Phill ips and

Rosen for the cases tested, applies to the b roader class of general differentiable

concave problems, and hence may be more suited to non-quadra t i c problems. In

addi t ion , its per formance could be enhanced if run in parallel. The detai led results

concern ing the stochastic algori thm of Rosen and van Vliet and the 0-1 integer

approach of G l i n s m a n and Rosen are avai lable in Rosen and van Vliet (1987) and

G l i n s m a n and Rosen (1986), respectively.

12.2. Results for large-scale problems

An impor tan t property of this algori thm is that an e -approximate solut ion is

guaranteed in a finite n u m b e r of steps. Cons ider ing only the first level of the solut ion

tree (stage I), the current i ncumben t vertex Vincb with cor responding func t ion value

~0incb is clearly not guaran teed to be e-approximate . But computa t iona l experience

has shown that Vinob is in m a n y cases either the global solut ion vertex v*, or is such

that the relative error 4~,cb--tO*)/Aq~ is small. In addi t ion, it has been computa-

t ional ly observed that the t ime required to complete stage I as a func t ion of k is

440 A.T. Phillips, J.B. Rosen / A parallel algorithm

Time

2 0 -

1 5 - -

1 0 - -

5 --

secs)

][

t
t

t
~ k

0 50 10030 200 400

Fig. 3. Time (sequent ia l) vs k wi th m = 20 and n = 25 on the CRAY2. Stat is t ics for s tage I of the so lu t ion

only. (10 p rob lems of each size and e =0 .1) .

Time q

20

1 5 -

1 0 -

5 -

secs)

t

t
t

~ k
0 50 100 200 400

Fig. 4. Time (sequent ia l) vs k wi th m = 20 and n = 50 on the CRAY2. Stat is t ics for s tage I o f the so lu t ion

only. (10 p rob lems of each size and e ~ 0 . 1)

A.T. Phillips, .1.17. Rosen / A parallel algorithm 441

approximate ly linear. Figure 3 demonstrates this by showing the t ime (min imum,

max imum, and average) required to complete stage I for m = 20, n = 25, and various

values of k. Figure 4 is s imilar for m = 20 and n = 50. Fur ther results concern ing

solut ions obta ined by stage I a lone can be found in Stuart, Rosen, and Phillips

(1988) for problems with m as large as 160, n as large as 100, and k as large as 400.

As stated earlier, in all of the r andomly generated test p roblems a solut ion vertex

was recognized as the global solut ion if it was e -approximate for e = 0.001. Figure

5 displays the n u m b e r of CPU seconds required on the CRAY2 to obta in

Time (secs)

90

80

70

60--

50--

4 0 -

3 0 -

2 0 -

10--

t
~ k

50 100 200 400

Fig. 5. Time (sequential) vs k with m = 20 and n = 25 on the CRAY2. Statistics for stages 1 and II of
the solution. (10 problems of each size and e = 0.001).

442 A.T. Phillips, J.B. Rosen / A parallel algorithm

Time (secs)

30-

2 5 -

2 0 -

1 5 -

1 0 -

5 -

x I
k

0 50 100 200 400

Fig. 6. Time (parallel) vs k with m ~ 20 and n = 25 on the CRAY2. Statistics for stages I and lI of the
solution. (10 problems of each size and e = 0.001).

e - a p p r o x i m a t e so lu t ions for large sparse r a n d o m l y genera ted p rob lems solved

sequent ia l ly (i.e. on one p rocessor) wi th m = 20 const ra ints , n = 25 non l inea r vari-

ables, and the n u m b e r o f l inear var iables k vary ing f rom 0 to 400. For each value

o f k, the range of so lu t ion t imes are ind ica t ed by the bar , and the average so lu t ion

t ime is d e n o t e d by X. Not ice tha t the case k = 0 is s ignif icant ly more difficult than

the cases k = 50 and 100. This is not surpr is ing since for k = 0, the p rob l e m to be

solved is a pure ly non l inea r one. As k increases mode ra t e ly (to 50 and 100) the

presence o f the l inear terms make the p r o b l e m more l inear and hence somewha t

easier. But as k gets large (such as k = 200 and 400) the to ta l number o f p r o b l e m

var iables increases and again the p r o b l e m becomes more difficult. F igure 6 d i sp lays

the co r r e spond ing para l l e l so lu t ion t imes (min imum, m a x i m u m , and average) for

the same set o f test p rob lems .

F igure 7 d i sp lays the n u m b e r of C P U seconds requ i red on the C R A Y 2 to solve

r a n d o m l y genera ted p r o b l e m s sequent ia l ly wi th 20 const ra ints , 50 non l inea r vari-

A.T. Phillips, J.B. Rosen / A parallel algorithm

Time (secs)

443

160-

140 --

120--

100-

8 0 -

6 0 -

4 0 -

2 0 -

~ k
0 50 100 200 400

Fig. 7. Time (sequential) vs k with m = 20 and n = 50 on the CRAY2. Statistics for stages I and II of
the solution. (10 problems of each size and e = 0.001)

ables, and the n u m b e r of l inear variables varying from 0 to 400. Figure 8 shows the

cor responding parallel so lut ion times.

Figures 9 and 10 display the speedup ob ta ined by the parallel imp lemen ta t i on of

the algori thm over the sequent ia l version. It is clear from these figures that in certain

cases speedups greater than four (the n u m b e r of processors used) can actual ly be

observed. Fur thermore , in some cases an average speedup of four can be observed.

Al though the algori thm is guaranteed to ob ta in an e -approximate so lu t ion in a

finite n u m b e r of steps, this guaranteed b o u n d (worst case), on the l inear programs

444 A.T. Phillips, J.B. Rosen / A parallel algorithm

Time (secs)

40-

35-

30-

2 5 -

2 0 -

15-

10-

5 -
E

X

t -
"~k

0 50 100 200 400

Fig. 8. Time (parallel) vs k with m = 20 and n = 50 on the CRAY2. Statistics for stages I and II of the
solution. (10 problems of each size and e =0.001).

solved, grows exponent ia l ly as n (4 n / e) "/2 (see Section 9). Obviously if this represen-

ted the average computa t iona l per formance of the algori thm, it would be of no

practical interest. For tuna te ly this is not the case. Figure 11 displays the n u m b e r of

l inear programs (min imum, maximum, and average) solved in order to obta in an

e-approximate solut ion for the r andomly generated test problems. Whereas the

theoretical upper b o u n d predicts that at most 1.645 × 1064 l inear programs would

need to be solved (in the worst case) for a p rob lem of size n = 25 (independen t of

A.T. Phillips, J.B. Rosen / A parallel algorithm

Speedup

445

5.00-

4.50-

4.00-

3.50"

3.00-

2.50-"

2.00-

1.50-

1.00 ~ k
0 50 100 200 400

Fig. 9. Speedup vs k with m =20 and n =25 on the CRAY2. (10 problems and e = 0.001)

k), compu ta t i ona l exper ience indica tes that no more than 6300 l inear p r o g r a m s

were requ i red for any pa r t i cu l a r p rob l em with n = 25. Resul ts for the case n - - 5 0

are s imi lar and therefore not repor ted .

F ina l ly , because the n u m b e r of l inear p rog rams m a y be large if an e - a p p r o x i m a t e

so lu t ion is desi red, then the n u m b e r o f p ivots requ i red to ob ta in the so lu t ion may

become prohib i t ive . For tuna te ly , because the mul t ip le -cos t - row a p p r o a c h to solving

the l inear p rog rams is efficient, the average n u m b e r o f pivots pe r l inear p rog ram

remains small . In fact, the compu ta t i ona l results ind ica te that the average n u m b e r

446 A.T. Phillips, J.B. Rosen / A parallel algorithm

Speedup

i

t

~ k
0 50 100 200 400

Fig. 10. Speedup vs k with m =20 and n =50 on the CRAY2. (10 problems and e =0.001)

of pivots per linear program was never more than 36. More precisely, in cases for
which at least two levels of the solution tree were required to obtain an e-approximate

solution (i.e. stage I alone did not provide an e-approximate solution), the average

number of pivots per linear program never exceeded ten. Only in the cases for which

stage I alone was sufficient to obtain the e-approximate solution did this average

exceed ten (but it never exceeded 36). Hence, although a potentially large number
of linear programs may need to be solved to obtain an e-approximate solution for

a given problem, the number of pivots per linear program is small, and therefore
the overall solution time remains reasonable.

A.T. Phillips, J.B. Rosen / A parallel algorithm

LPs

~r (63001

2400 - .

447

2100

t t .k
0 50 100 200 400

Fig. 11. Number of linear programs per problem vs k with m =20 and n=25 on the CRAY2. (10
problems of each size and e = 0.001).

13. Conclusions

The computa t ional results included in this paper demonst ra te that the algori thm is

an efficient method for finding an e-approximate solution for large-scale concave

quadrat ic global minimizat ion problems. Fur thermore, for shared memory parallel

machines, the method is very effective in obta ining average speedups approach ing

the number of processors.

448

Acknowledgments

A.T. Phillips, J.B. Rosen / A parallel algorithm

This r e s e a r c h was s u p p o r t e d in pa r t by the N a t i o n a l Sc i ence F o u n d a t i o n g ran t s

D C R - 8 4 0 5 4 8 9 a n d D C R - 8 4 2 0 9 3 5 , the A i r F o r c e Off ice o f Sc ien t i f ic R e s e a r c h g r an t

A F O S R 87-017, by the M i n n e s o t a S u p e r c o m p u t e r Ins t i tu te , and C r a y R e s e a r c h ,

Inc. In a d d i t i o n , A.T. Ph i l l i p s ' r e s ea r ch was s u p p o r t e d by an Off ice o f N a v a l R e s e a r c h

(O N R) G r a d u a t e F e l l o w s h i p .

References

V. Chv~tal, Linear Programming (W.H. Freeman and Company, New York, 1983).
J.E. Falk and K.R. Hoffman, "A successive underestimation method for concave minimization problems,"

Mathematics of Operations Research 1(3) (1976) 251-259.
D.H. Glinsman and J.B. Rosen, "Constrained concave quadratic global minimization by integer program-

ming, "Technical Report 86-37, Computer Science Department, University of Minnesota, Minneapolis,
MN (1986).

R. Horst, "An algorithm for nonconvex programming problems," Mathematical Programming 10 (1976)
312-321.

B. Kalantari, "Large scale global minimization of linearly constrained concave quadratic functions and
related problems," Ph.D. diss., University of Minnesota, Minneapolis, MN (1984).

P.M. Pardalos and J.B. Rosen, "'Methods for global concave minimization: A bibliographic survey,"
SlAM Review 28(3) (1986) 367-379.

P.M. Pardalos and J.B. Rosen, "Constrained global optimization: Algorithms and applications," in: G.
Goos and J. Hartmans, eds., Lecture Notes in Computer Science 268, Springer-Verlag, Berlin 1987).

A.T. Phillips and and J.B. Rosen, "Anomalous acceleration in parallel linear programming," Technical
Report UMS188/58, University of Minnesota Supercomputer Institute, Computer Science Department,
University of Minnesota, Minneapolis, MN (1988).

A.T. Phillips and J.B. Rosen, "A parallel algorithm for constrained concave quadratic global minimiz-
ation," Technical Report 87-48, Computer Science Department, University of Minnesota, Minneapolis,
MN (1987a).

A.T. Phillips and J.B. Rosen, "A parallel algorithm for constrained concave quadratic global minimization:
Computational aspects, "Technical Report UMSI 87/101, University of Minnesota Supercomputer
Institute, University of Minnesota, Minneapolis, MN (1987b).

M.J. Quinn, Designing Efficient Algorithms for Parallel Computers (McGraw-Hill, New York, 1987).
J.B. Rosen, "Global minimization of a linearly constrained concave function by partition of feasible

domain," Mathematics of Operations Research 8(2) 1987 215-230.
J.B. Rosen and P.M. Pardalos, "Global minimization of large-scale constrained concave quadratic

problems by separable programming," Mathematical Programming 34(2) (1986) 163-174.
J.B. Rosen and M. van Vliet, "A parallel stochastic method for the constrained concave global minimiz-

ation problem," Technical Report 87-31, Computer Science Department, University of Minnesota,
Minneapolis, MN (1987).

E. Stuart, J.B. Rosen and A.T. Phillips, "Fast approximate solution to constrained global minimization
problems," Technical Report 88-9, Computer Science Department, University of Minnesota,
Minneapolis, MN (1988).

