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1. Introduction 

Degeneracy is a phenomenon that may arise, e.g., in linear programming (LP for 

short), bottleneck LP, multiparametric LP, linear vectormaximization, etc. I f  it does 
arise then it certainly influences any vertex-searching method for mathematical  
models based on a system of linear inequalities and in some cases it leads to 
misinterpretation of optimal solutions. 

Consider a vertex x°cX,  X:={xcRn:Ax<~b,x~O}, A c R  "x~, bcR m. Trans- 

forming X by means of slack variables ui = xn+i/> 0, i = 1 , . . . ,  m, into 

(x) 
2:={YeRm+"I'ZIY=b'y>~O}' Y= u 

a basis B (i.e. an m x m submatrix) of.,~ is one-to-one assigned to x °, provided that 
x ° is nondegenerate. 

I f x  ° c X is a degenerate vertex, i.e., it is overdetermined (more than n hyperplanes 
pass through x°), a set of  bases B°: = {B°lu = 1 , . . . ,  U}, U >  1, is associated with 
~c °. Denote by y(O) e Rm+, the basic feasible solution of ,4y = b, y i> 0 that corresponds 

;o x °. Further, denote by o'~{1 . . . .  , m} the degeneracy degree of x °, i.e., o- is the 
aumber of  zero-elements of  y(O) that occur among the basic variables of  y(O). 

From the historical point of  view, in 1976-77 the problem arose to find all or a 
~art of  neighbouring (adjacent) vertices of  a given degenerate vertex x ° e X with 
ninimal effort [10]. We tried then to approach this problem from a graph-theoretical 
)oint of  view. 

Assuming X # 0, and, for simplicity, bounded,  the set X defines obviously a 
:onvex polytope. Suppose there is no degenerate vertex x e X. Then it is possible 
o represent any convex polytope by the so called graph of the polytope G'(X) [20]. 
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The nodes of  G'(X)  correspond to vertices of  X (or: to bases of  X)  and every 
edge of  G'(X)  is one-to-one assigned to an edge (1-face) of  X. Any basis B can be 
also represented by a simplex-type tableau (without the reduced costs row). 
"Travell ing" from a vertex x i ~ X (associated with the basis Bi) to another vertex 
xi '~ X, i # i' (associated with the basis Be) along an edge (x ~, x i') c X corresponds 
to a unique basis-exchange Bi to Bi, (or vice versa). In tableau representation this 
corresponds to a Gauss-Jordan  elimination step with a positive pivot (because of 

+ 

y/> 0). Denote this exchange by B~ ~ Bg,. 
Suppose now that x ° is degenerate. Then the graph of the polytope, G'(X) ,  misses 

essential information about  the degeneracy structure of x °. We therefore introduced 
a so called (positive or proper)  degeneracy graph (DG for short), o. G+ .= G°(x°), the 
nodes of  which correspond to the bases B ° associated with x ° and the edges of 
which are defined as {B °, o u'  , o + B,,}, u, = 1 , . . . ,  U, u ~ u ,  iff B,~-~ B°,. Embedding G ° 
into G'(X)  we obtain the so called representation graph, G(X) ,  of the polytope X. 
I f  U = 1 then G'(X)  = G(X) .  

Consider as an example a cube X := {x ~ R [ xl ~< 1, x2 <~ 1, x3 ~< 1, xl,2,3 >/0} 
(Fig. 1.1a) and its graph representation (Fig. 1.1b). 

We now add the constraint xl + x2 + x3 <~ 3 which preserves X, but now the vertex 
x ° is overdetermined (Fig. 1.2a). Symbolizing by a frame the D G  G ° of x ° we obtain 
the representation graph G(X' )  of the "new" cube 

X ' : = { x ~ 3 ] x I  <~ I, x2 <~ I, x3<~ I, x~ + x2+ x3~3, xl,2,3>~O} 

(Fig. 1.2b). 

Let us have a closer look at a hypothetical graph G ° (Fig. 1.3) of  a degenerate 
vertex that has 3 neighbours corresponding to B 1, B 2 and B 3. Hypothetical because 
G ° of x ° in the above cube X '  would be a too simple graph with only 4 nodes. The 
nodes in frames are the so called transition nodes with the property that they connect 

G ° with an "outer"  node, i.e., with a node belonging to G(X)  but not to G °. The 
remaining nodes of  G ° are called internal nodes. 

In this paper  we shall give a concise survey of results concerning the theor~ 
and some applications of the DG's .  
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2. Some theoretical results 

We proved [10, 12] that in G ° there exists a tree ~ o ~  G ° that connects x ° with all 
ts neighbours. In Fig. 1.3 such a tree is illustrated by bold lines. Thus having found 

;uch a tree the initial problem to find all neighbours of  a degenerate x ° is solved. 
In order to determine efficiently a tree (~o we developed a method called the 

N-tree-algorithm ( N  for neighbour) [15, 17]. It is is a special tree-algorithm which 
s combined with a lexicographic selection rule. We found that the degree of the 
ransition nodes might play a role in selecting the "best"  starting node for the 
V-tree-algorithm. This might lead to the determination of a so called minimal tree 
-,~i,~'° (a tree with minimal number  of  nodes). We conjectured that the greatest 
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integer smaller or equal to U/( t r+ 1) is an upper  bound on the number  of nodes 
needed to form a minimal tree. A series of  tests is running with a corresponding 
subroutine that finds a transition node with the maximal degree as starting node. 
Recent computing results confirm the above conjecture and they show a possible 
direction for further improvement  of  the procedure [16]. We hope for new clues to 
determine -o Gmin from further research into the theory of DG's .  We enlarged our 
research to DG's  in which the edges can be defined via basis-exchange using negative 
pivots. Allowing negative pivots only we called the corresponding D G  the negative 
D G  G °. I f  any nonzero pivot is admissible we call the corresponding D G  the general 
D G  G °. 

We found [27] that the general D G  is always connected, while the proper or 
negative DG ' s  may be unconnected. 

Investigating the bounds of the number  U of nodes B ° of  B ° the upper  bound 
is obviously 

and we found [27, p. 50] that the lower bound is 

Umln = 2~-1(n - o" + 2). 

Currently a series of empirical tests is running in order to find U ~ [ Umin, Urea×] in 
real cases. The preliminary results show that U is not much larger than Umin even 

though Umi~ is itself a substantial number. For example, when n = 50 and o" = 5 

then Umin and /-/max have the values 752 and 3479761 respectively. 
We studied the general structure of  DG's  and we started with the construction 

principle for the case o - ~ 2  [17, 34]. The results are summarized in Theorem 2.1. 
Given the main characteristics o- and n (x e R n with the degeneracy degree cr) of 

a D G  we concisely write o" x n-DG. In Theorem 2.1 the notation of a line graph 
L(G)  appears. L(G)  is a graph the nodes of  which correspond to the edges of  G, 
and two nodes of L(G)  are adjacent nodes if[ the corresponding edges of G are 
adjacent edges. K (p l  . . . .  ,pr) is the complete r-partite graph such that the car- 
dinalities of  the node sets in the partition are Pl,  • • . ,  Pr (for details see [ 17] or [34]). 

Theorem 2.1. A graph G is a 2 x n-DG iff G is isomorphic to a line graph 

L ( K  ( P l , . . . ,  Pr)) 

where r, P I , . . . ,  P~ are positive integers with r ~> 2, ~ ~= 1 Pi = n + 2 (p l ,  P2 > 1 for r = 2) 

The properties of a 2 x n -DG are summarized in: 

Theorem 2.2. The 2 x n-DG of  Theorem 2.1. has the following properties: 
(i) the diameter is <~2. 

(ii) the number of nodes is ½((n +2)2 -~ [=1  p2). 
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(iii) the number of  edges is ~ : 1  Pi(n+~-P') • 

(iv) the connectivity is 2n +2--Pr_l --Pr. 

For or = 1 the DG's are complete graphs with n + 1 nodes [27, p. 116]. Further 
investigations into the structure of DG's with o- > 2 are currently being performed. 

3. Degeneracy graphs and linear programming 

3.1. Linear programming and simplex-cycling 

Consider the linear program 

(LP) max cTx, C ~ ~n. 
x ~ X  

Speaking about the connection between (LP) and degeneracy the first idea coming 
to one's mind is simplex-cycling [4, 21]. Several anticycling methods have been 
developed during the past 35 years (see, e.g., [3, 5, 7, 33]) since Charnes [6] published 
the first known perturbation scheme in 1952. Anticycling devices are embedded into 
professional LP-software despite a discussion in the literature [18, 25, 26, 29, 32] on 
whether cycling appears in real-world applications or not. In our opinion more 
attention should be paid to the connection between the structure of  the matrix (AIb)  
enlarged by the row (c T, 0) and cycling than to attempt to improve or invent new 
anticycling methods. In other words, (AIb)  implies B ° and hence induces G °, and 
in G ° there exist in general closed lines (circuits for s h o r t - -  see also Fig. 1.3). The 
question is then to identify the properties of  G ° that cause simplex cycling. We 
approached this problem from two points of view: firstly using known properties 
of the DG's and secondly introducing new concepts. For the first approach it was 
necessary to enlarge the notion of a DG by the so called LP-DG [28]. We then 
found that a circuit of G ° is a simplex cycle iff the circuit can be enlarged to a so 

:aph 

nplex-cycle 
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called star-shaped graph embedded into the LP-DG (Fig. 3.1); the depicted graph 
is based on the Beale cycling example [4]. 

The second approach is not exclusively based on the theory of the DG's. Given 
(A, b, c) and a circuit C of G°; then it is possible to induce in a certain way a 
point-set M ( C )  such that C is a simplex-cycle itt the gradient of the objective 
function satisfies c ~ M ( C )  [35]. We are currently trying to develop a method which 
solves the problem: given (A, b, c) and a degenerate vertex x °, determine whether 
c e  M ( C )  for at least one C of G °. If  so, simplex-cycling occurs. We are at the 
very beginning of finding an efficient method to solve this problem. 

3.2. Degeneracy in an optimal solution 

Suppose that (LP) has an optimal solution with optimal degenerate vertex x °. Let 
us select those nodes/~o of B ° which are associated with optimal bases. In general 
only a part/~o c_ B ° forms the set of optimal bases associated with x °. The subgraph 
G ° c  G o induced by/~o is then called an o-DG (o for optimal). We studied various 
properties of G °. 

We first investigated the number of nodes in /~0. We proved [28] some results 
which are summarized in: 

Lemma 3.1 
(i) The case tha t / }o= B o exists. 

(ii) There is a triple (A,  b, x °) to which no objective function z = cTx can be assigned 
such that ~o = BO. 

(iii) The case exists that one and only one basis o f  x ° is an optimal basis. 

(iv) For the case that one and only one basis o f  x ° is an optimal basis the necessar) 

condition is that G ° _ has at least one isolated node. 

-o Go Denote by G+ and the positive and negative o-DG's, respectively. 
We studied the connectivity properties of the o-DG's [28] and f o u n d - -  among 

other things - -  that a simultaneous dual degeneracy plays an important role in thi~ 
connection which corresponds to very recent results by Greenberg [19]. Our result,, 
[28] are summarized in: 

Lemma 3.2. 
(i) Two optimal bases B °, B° ,c  ~o, k ~ k', for  which B°k <->Bk~, are always dua 

degenerate. 
(ii) ~o G+ is trivial (i.e., any component o f  G ° consists o f  exactly one node) iff ther 

is no dual degeneracy. 

(iii) G ° can be unconnected. 

3.3. Sensitivity analysis under degeneracy 

Sensitivity analysis with respect to the right hand side ("RHS-ranging") or wit 
respect to the objective function coefficients ("Cost-ranging") has now become 
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constituent part of commercial LP-software. However, in case of degeneracy the 
corresponding subprograms yield erroneous results [9, 13, 24]. 

Performing sensitivity analysis in a nondegenerate case means [11] considering 
a scalar parameter A, e.g., in the RHS, to determine the parameter interval A such 
that for all A c A the optimal basis associated with the optimal vertex x s X does 
not change (remains optimal). However, if x ° s  X is a degenerate optimal vertex, 
the set /~o is assigned to x °. What would then be invariant? In [9, 13, 24] it is 
suggested to determine A ° for each /~o associated with x °. Then the parameter 
interval is the union A = [_jK A~, K being the number of all bases in/~o. Changing k= l  

the RHS implies, however, that/~o and B ° change. 
We propose, therefore, the following formulation for sensitivity analysis with 

respect to the RHS b under degeneracy: 
Determine A such that for all A ~ A at least one basis/~o ~/~o remains optimal. 

With respect to the cost ranging the corresponding formulation reads: 
Determine T (the overall parameter interval) such that for all t ~ T at least one 

"0  Bu ~/~o remains optimal, or equivalently, x ° remains the optimal vertex. 
We are studying the economic impact of these formulations. An interesting 

contribution to these questions is found in [19]. The above "definitions" can easily 
be enlarged to the case with parameter-vectors. 

3.4. Shadow prices under degeneracy 

The determination of shadow prices under (primal) degeneracy is closely related 
to sensitivity analysis. It is known (see, e.g., [1, 2, 8, 9, 19, 23, 31]) that under primal 
degeneracy there does not exist the shadow price of a resource bi. It has been proved 
that in such a case there exist two shadow prices, one for "buying one unit" and 
one for "selling one unit" of bi. For details see [13]. Hence, the problem is not any 
more the existence of shadow prices under (primal) degeneracy but how to determine 
them. In [24] methods have been proposed, unfortunately without complete proofs. 

Therefore, we are currently investigating the questions [30]: I f  for instance the 
o-DG C ° is not connected (see Lemma 3.2(iii)) is it sufficient to consider only one 
component (maximal connected subgraph) of 6 ° ?  If  yes, which of the components 
should be chosen? Or does it not matter which one? 

3.5. Degeneracy and redundant constraints 

Degeneracy is closely related to weakly redundant constraints. A weakly (w. for 
short) redundant constraint passing through x°~ X causes its overdetermination 
and thus degeneracy. Hence w. redundancy is a sufficient condition for degeneracy 
because the latter is not necessarily caused by w. redundancy only. Concerning the 
sources of degeneracy, compare also [19]. 

From a formal point of view it is known [22] that a w. redundant constraint can 
be omitted without influencing the set X. If  degeneracy is caused by w. redundancy 
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would  then  this c i rcumstance  not  s impl i fy  sensi t ivi ty  analys is  and  the de te rmina t ion  

o f  shadow pr ices?  

We f o u n d  that  in the  case o f  sensi t ivi ty  analys is  with respect  to b and  shadow 

prices it is not  poss ib le  to omi t  the  w. r e d u n d a n t  cons t ra in ts  and  then de te rmine  

the shadow price or  the p a r a m e t e r  in terval  in the usua l  sense.  We p roved  [14] that  

omi t t ing  the  w. r e d u n d a n t  const ra ints  l eads  to false resul ts  in general .  This is not  

t rue for  sensi t ivi ty  analys is  with respect  to c. 

This is, inc identa l ly ,  in cont ras t  to fo rmal  me thods  for  de te rmin ing  r e d u n d a n t  

const ra in ts  [22]. These  me thods  a im to de te rmine  the r e dunda nc i e s  in o rde r  to omi t  

them. Hence ,  the n u m b e r  o f  const ra ints  is r educed  which  reduces  the  C P U  t ime for  

compu t ing  an  op t imal  so lu t ion  o f  (LP).  However ,  omi t t ing  the w. r e d u n d a n t  con- 

s traints  m a y  heavi ly  inf luence the  economic  in t e rp re t a t ion  o f  the op t ima l  solut ion,  

the  de t e rmina t i on  o f  s h a d o w  prices  and  sensi t ivi ty  analys is  with respect  to b. 

Note added in proof 

After  the  manusc r ip t  o f  this  p a p e r  had  been  submi t t ed  the  authors  f o u n d  a " p r o o f "  

tha t  degene racy  p r o b l e m s  are not  by  a long way  out  o f  cons ide ra t ion  [36, 37, 38] 

and  wish to hint  to a very recent  s ta te-of- the-ar t  o f  degene racy  [39]. 
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