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We consider the problem of routing vehicles stationed at a central facility (depot) to supply 
customers with known demands, in such a way as to minimize the total distance travelled. The 
problem is referred to as the vehicle routing problem (VRP) and is a generalization of the 
multiple travelling salesman problem that has many practical applications. 

We present tree search algorithms for the exact solution of the VRP incorporating lower 
bounds computed from (i) shortest spanning k-degree centre tree (k-DCT), and (ii) q-routes. 
The final algorithms also include problem reduction and dominance tests. 

Computational results are presented for a number of problems derived from the literature. 
The results show that the bounds derived from the q-routes are superior to those from k-DCT 
and that VRPs of up to about 25 customers can be solved exactly. 

Key words: Vehicle Routing, Lagrangean Relaxation, Shortest Spanning Trees, Dynamic 
Programming Relaxation. 

1. Introduction 

We are considering a problem in which a set of geographically dispersed 
" cus tomer s "  with known requirements  must  be served with a fleet of "veh ic les"  
stationed at a central facility or depot  in such a way  as to minimize some 
distribution objective. It is assumed that all vehicle routes must  start  and finish 
at the depot. 

The vehicle routing problem (VRP) is a generic name given to a whole class of 
problems involving the visiting of " cus tomer s "  by "vehicles" .  The VRP (also 
known in the literature as the "vehicle scheduling" [8, 9, 10], "vehicle dispatch- 

ing" [4, 11, 20] o r  s i m p l y  as t h e  " d e l i v e r y "  p r o b l e m  [1, 14, 21]) a p p e a r s  v e r y  

f r e q u e n t l y  in p r a c t i c a l  s i t u a t i o n s  n o t  d i r e c t l y  r e | a t e d  to  t h e  p h y s i c a l  d e l i v e r y  o f  

g o o d s .  F o r  e x a m p l e ,  t h e  c o l l e c t i o n  f r o m  m a i l - b o x e s ,  t h e  p i c k u p  o f  c h i l d r e n  b y  
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school buses,  house-call tours by  a doctor,  prevent ive maintenance inspection 
tours, the delivery of laundry, etc. are all VRPs  in which the "de l ive ry"  
operat ion may  be a collection, collection and/or delivery, or neither, and which 
may not even be of a physical  nature. 

The basic VRP considered here is as follows. 

A graph G = (X, A) is defined by the set X of its vert ices and the set A of its 
arcs. 

Let  X '  = {xi ] i = 1 . . . . .  N} be used for the set of N customers  and let x0 be the 
depot. X = X '  U {x0}. 

A cus tomer  xi has the following requirements:  
(a) a quanti ty q~ of some product  to be delivered by a vehicle, 

(b) a " cos t "  ui required by a vehicle to unload the quantity qi, at x~. 
We assume that M identical vehicles each of capaci ty Q are stationed at the 

depot  and that the total " cos t "  (e.g. "d i s tance"  or " t ime")  of a vehicle route 
must  be less than or equal to a given number  T. 

The number  of vehicles is assumed to be large enough for a feasible solution 
to exist. 

We further  assume that the "cos t "  of the least cost path f rom every ver tex  xi 
to every ver tex x i is given as c~j. It is required that the total quantity on each 
vehicle route is less than or equal to Q, and that the total " cos t "  of each route 
(computed as the sum of the costs c~j of the arcs (x~, xj) forming the route, plus 
the sum of the u~ for those cus tomers  xi on the route) is less than or equal to T. 

The object ive in the VRP that is considered here is to design feasible 
rou t e s - -one  for  each vehic le - - in  order to supply all of the customers  and 
minimize the total " cos t "  of all the routes.  For  the purpose  of this paper,  the 
"cos t "  c~j mentioned above  can be taken to be either travel  distances or travel  
times be tween the customers.  

The VRP defined above  is a generalization of the travelling salesman problem 
(TSP). However ,  although for  this latter problem exact  methods of solution have 
been developed which can solve problems of one or two hundred customers  [5], 
for  the VRP no such algorithms exist. In fact  the largest size of general VRPs 
reported solved in the literature involve problems with ten or twelve cus tomers  
[9] although very special types of VRPs have been solved for  larger sizes [4]. 

In this paper  we develop a number  of exact  branch and bound algorithms for 
the general VRP defined above.  These algorithms are based on bounds derived 
from: (i) the shortest  spanning tree with a fixed degree at one specified vertex,  
and (ii) minimum q-routes,  q = 1 . . . . .  Q. These are routes,  on which the total load 
is exact ly q, starting f rom the depot  passing through a subset  of the cus tomers  
and returning back to the depot.  
Langrangean penalty procedures  are used to compute  these bounds.  

We also consider and computat ional ly  evaluate two different branching 
schemes for  the tree search and introduce some dominance tests. Computat ional  
results on a number  of problems are presented.  
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2. Problem formulation 

We give below a formulation of the VRP as an integer program. This 
formulation is a simplification of the ones given in [6, 12]. 

Let  ~sk = 1 if vehicle k visits customer x i immediately after visiting customer 

Xi, ~ijk -~ 0 otherwise. 
The VRP is: 

minimize , l ,  
i : O  j=O k=l 

N M 

subject to ~ ~ ~:iSk = 1, j = 1 . . . . .  N, (2) 
i=0 k = l  

N N 

/:0X!~ipk--j~=0~PSk=0'= k : l , . . . , M ,  p : 0  . . . . .  N, (3) 

~ ( q i ~ ! ~ i , k ) < - - Q ,  k : l  . . . . .  M, (4) 
i=1 1 : o  

Cij~ij k + E ui ~ijk -< T, k = 1 . . . . .  M, (5) 
i=0 j~o i ~  j=0 

N 

E ~0./k : 1, k = 1 . . . . .  M, (6) 
j = l  

M 

y ~ - y j + N  ~'~:0k - < N - l ,  i # j = l  .... N (7) 
k = l  

~i~k E {0, 1} for all i,j, k, (8) 

y~ arbitrary. 

Expression (2) states that a customer must be visited exactly once. Expression 
(3) states that if a vehicle visits a customer,  it must also depart  f rom it. 
Expressions (4) and (5) are the capacity and "cos t "  limitations on each route. 
Expression(6) states that a vehicle must be used exactly once. Expression (7) is the 
subtour-elimination condition derived for the travelling salesman problem by 
Miller, Tucker  and Zemlin [19], and which also forces each route to pass through the 
depot;  (8) are the integrality conditions. 

It is quite clear that the above formulat ion is too complex to be useful in 
solving VRPs of non-trivial size. 

3. The computation of lower bounds 

In any branch and bound procedure the calculation of bounds on the value of 
the solution to a remaining problem (at some node of the tree) is of the utmost  
importance to the efficiency of the algorithm. In this section we describe two 
different lower bounds for the VRP. These bounds are imbedded into tree search 
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procedures  and the resulting algorithms are described in the following section. In 
order to simplify the presentat ion we will henceforth assume symmetr ic  [c~j] 

matrices,  and use both cij and c~ to mean the cost  of arc (i,1) or arc l 
respectively.  

3.1. Bound from the minimum k-degree centre tree (k-DCT) 

It  is quite apparent  that the value of the solution to the M-TSP is a lower 
bound to the value of the solution to the VRP using M vehicles, since the VRP 

is the M-TSP with additional constraints.  We will, therefore,  in this section 
derive a bound for the M-TSP and then specialise it for the VRP. 

Consider the solution to an M-TSP shown in Fig. l, where the depot  is 
numbered  x0, and where M = 4 is the number  of routes.  The removal  of arcs 
(x0, A), (x0, B), (x0, C) and (D, E),  one f rom each r o u t e - - f r o m  this so lu t ion- -  
produces a tree where the degree of x0 is k = 5. We will call a tree where the 

degree of x0 is k a k-degree centre tree (k-DCT). In general, if any set So of 
y -< M arcs adjacent  to x0 and any set S1 of M - y  arcs not adjacent  to x0 are 
r e m o v e d - - o n e  arc f rom each r o u t e - - t h e  resulting graph is a k -DCT with 
k = 2 M - y .  The arcs forming the solution to the M-TSP are, therefore,  dis- 

tinguished into three sets: those arcs forming a k-DCT (with an associated variable 
~l = 1 if arc l is in the k-DCT and ~t = 0 otherwise);  those arcs forming a set So (with 
~:o = 1 if arc I is in set So and ~o = 0 otherwise);  and those arcs forming a set S~ (with 

~ = 1 if l is in set $1 and ~ = 0 otherwise).  
The M-TSP can now be formulated as follows: 

m 

minimize z = ~ ct(~t + ~o+ ~I), (9) 

subject  to ~ ~t -> 1, VSt C X, S, # O, (10) 
/ ctst, st) 

~t = 2 M -  y ,  (11) 
I@A o 

J 
Fig. 1. 
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2 ~ t  =N,  
/=1 

2 5 9  

(12/ 

,~0 ~0 = y, (13) 

~ l = M - y ,  (14) 
IEA-A o 

( ~ + ~ + ~ : ~ ) = 2 ,  i = l  . . . . .  N, (15) 
IU-A i 

~t E {0, 1}, (16a) 

~o E {0, 1}, (16b) 

~I E {0, 1}. (16c) 

y arbitrary. 

where m = IA{ is the total number of arcs; 
(St, St) is written for the set of all arcs with one terminal vertex in the 
vertex set St and the other terminal vertex in the complement  set ~ ;  
Ai is the set of all arcs incident at xi. 

Constraints (10) impose the connectivi ty of the k-DCT, constraint (11) im- 
poses the degree on vertex x0, constraints (12), (13) and (14) specify the number of 
arcs required and constraints (15) impose that the degree of every  vertex (other than 
x0) in the M-TSP solution is 2. In the above formulation, y was considered as a 
variable, although it could have been fixed a priori to the constant value M. 

Alternatively, if it is known (by any other means) that the maximum number 
of single-vertex tours (i.e. tours of the type x 0 - x i -  x0) in the M-TSP solution is 
M,, then y can be fixed a priori to any integer in the range M1-< y-< M. The 
solution to the problem defined by equations (9) to (16) would then remain 
optimal for  any such fixing of y. This is so because at least y = M1 arcs adjacent  
to x0 (set So) must be removed from the optimal solution to the M-TSP (together 
with another M - y arcs not adjacent to x0, i.e. set SO to get a k-DCT. 

For  an M-TSP, with N -> M + 1, we must have M, -< M - 1 and hence y can be 
chosen as M -  1-< y-< M. In the above formulation, we have not substituted a 
constant (M or M -  1) for y, because in the M-TSP relaxation that follows the 
optimum solution is not invariant with y and we wish to choose that value of y 
(M~ - y -< M)  which maximizes the bound. 

Let  Ai, i = 1 . . . . .  N, be non-negative penalties associated with constraints (15). 
The Lagrangean relaxation of these constraints produces three decomposed 
problems P, P0 and P,  for  a given value of y, with the general objective: 

m N 

V(A, y) = ~ 6,wt - 2 ~_~ hi (17) 
i = l  
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where PI = ct + At, + Aj t, it and jt are the two terminal vertices of arc l, A0 = 0, and 
where wl is written for ~, ~0 and ~I, respectively, for the three problems. 

For a given value of y and A, let V(A, y) be the optimal solution value of 
problem P defined by (17), (10), (11), (12) and (16a), let V°(A, y) be the optimal 
solution value of problem P0 defined by (17), (13) and (16b) and let V~(A, y) be 
the optimal solution value of problem P~ defined by (17), (14) and (16c). A lower 
bound to the M-TSP is therefore: 

H = Max {Max [V(A, y) + V°(A, y) + V1(A, y)]}. (18) 
MI<-Y<-M A>0 

The above bound is clearly also valid for the VRP. Moreover,  the additional 
constraints in the VRP can be used to derive a better value of MI than the value 
M - 1 applicable to the M-TSP, thus increasing the bound further. A value of M1 
for the VRP can be obtained as follows. Let  the customers be ordered in 
decreasing order of the ql. M~ single customer routes can at most supply a 
quantity ~ q  qi and the remaining vehicles must, therefore, be able to supply 
the remaining quantity, i.e. 

N 

( M -  MOQ-> ~ qi. (19a) 
i = I ~ l +  1 

Similarly, each customer x~ contributes an amount of at least t~ = 
ui +½(cli~ + ciiz) to the "cost"  of a route, where x~, is the "nearest"  and x~ 2 the 
second "nearest"  customer to customer x~. Thus, if the customers are ordered in 
descending order of the t~ we obtain an expression similar to (19a) as: 

N 

( M - M ] ) T  >- ~ ti. (19b) 
i=MI+I 

we can now choose M~ as the largest value which satisfies both inequalities (19a) 
and (19b). 

3.1.1. Computat ion of  V(A, y) 
For a given A and y, problem P is a k-DCT, (k = 2 M -  y); the problem's 

solution is T~ and has value V(A, y). T~ can be computed very easily by 
calculating the shortest spanning tree (SST) of G [3], and noting the degree d of 
vertex x0. If d -- k tree T~ is derived, if d < k a positive penalty/~ is placed on 
vertex x0 and the costs Coj are replaced by c0j - / z ,  and if d > k a negative penalty 
p~ is placed on vertex x0 and the costs Coj replaced by c0j-/x.  In the last two 
cases the SST is recomputed and the procedure repeated until d = k. 

It is easy to show that the above procedure is finite. Le t  us assume that 
initially d < k. For every arc (x0, xi) ~ T~ compute Ai as: 

Ai = ~oi -- max [~t] (20) 
l E E  i 



N. Christofides, A. Mingozzi and P. Toth/ Exact algorithms for vehicle routing 261 

where E~ is the set of arcs of T~ on the path f rom x0 to x~, and c0 and gt are the 
arc costs modified by  the lagrangean penalties as defined in the last section. 

Let  l(i) be the arc which produces  the above maximum.  I f / x  is then chosen 
a s :  

/x = min [Ai I (Xo, xi) f~ T~], (21) 
i 

each iteration described above will introduce o n e  extra  arc, namely arc (x0, x~,) 
and remove  arc I(i*), where i* is the value i which minimizes (21). 

A similar proof  of finiteness can be given when d > k. 

3.1.2. Computation of V°(A, y) 
The solution to problem P0 involves choosing the y smallest arc costs c0i, 

i = 1 . . . . .  N to obtain the value V°(A, y). 
However ,  a bet ter  choice of the set So of y arcs can be obtained as follows: 

Let  us associate with each route r in the M-TSP solution two 
costs ?~ and ~ ,  these being the costs of the two arcs joining route r to x0. We 
will assume ~ - >  ~ and note that for one-cus tomer  routes ~ - - 6 ~  since both 
costs refer  to the same arc. In addition, let us order the routes in ascending 
lexicographical order of the vector  (0f, 0f) and renumber  them so that route r 
refers  to the rth route in this order. Since for each of the first y routes we can 
choose for elements  of So the longest of the two arcs linking each route to the 
depot,  it is clear that the cost of the set So of arcs can be as high as: ~ = ~  ~ .  

Now let all the costs 60i of arcs adjacent  to the depot  be ordered in ascending 
order with the first M~ costs in the ordered list repeated once so that they appear  
twice in the ordered list. Let  h(p) correspond to the cost  in the p th  position of 
this list. It  is then quite clear that for any feasible solution to the M-TSP we have 
~ - >  h(2), 6 ~ -  > h(4), 6 3 -  > h(6), etc., and in general 6~ -> h(2r) for any r = 1 . . . . .  M. 

Hence:  

L°(,L y) = ~ h(2r)-< ~ e~ (22) 
r= l  r= l  

is a lower bound on the cost  of the arcs in set So. 

L°(A, y) computed  f rom (22) can be used instead of V°(A, y) in the com- 
putation of the bound f rom equation (18). This is so because  the constraint:  

el~ ° _> L°(A, y) 
lEA o 

could have been added to the M-TSP formulat ion given by equations (9)-(16). 

This constraint  is redundant  for the M-TSP but is no longer redundant  in the 
problem P0 resulting f rom the Lagrangean relaxation of the M-TSP. (Indeed, a 
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number  of other constraints redundant  for the M-TSP but not so f o r  one of the 
resulting problems P, P0 or P~ could have been added to improve on the optimal 
values V, V ° and V I of these problems.)  

3.1.3. Computation of VI(A, y) 
Let  6~[i] be the cost  of the shortest  arc incident at customer  x~ excluding arcs 

f rom the depot. Le t  the quantities ~[1] be ordered in increasing order and let the 
cus tomers  be renumbered  so that cus tomer  x~ refers  to the ith cus tomer  in the 
ordered list. We then have: 

M - y  
v'(h, y)= Y~ e,[1]. 

i=1 

3.1.4. Calculation of the bound (LB0) 
In this section we give a procedure  for the calculation of the lower bound 

f rom the k-DCT---referred to hereaf ter  as LB0. 

Step 0 (initialization). Set the best  lower bound z* = 0. Le t  z* be the value of 

the best  solution so far. Set y = Ml. 
Step 1 (initialization). Set K O U N T  = 1; & = 0, i = 0 . . . . .  N and k = 2M - y. 

Step 2 (shortest  k-DCT). Calculate the shortest  spanning k -DCT T* as 
mentioned above.  

Step 3 (additional arcs). Compute  L°(h, y) and V~(h, y) and let So and $1 be 
the sets of arcs which produced the values of L°(A, y) and Vl(h, y). 

Step 4 (graph G). Form the graph G = (X, T~ U So U SO where T* is used to 
imply the set of  arcs in the tree T*. Let  zL = sum of the costs of all arcs in G. zL 
is a lower bound on the value of the solution to the VRP. If  z* < zL set z~ -- ZL. 
If  Z~ -- Z~ stop (go to back-tracking step in main algorithm), else if z* < z* go to 
Step 5. If z*---ZL and K O U N T  = maximum number  of iterations allowed go to 
step 7. Else K O U N T  = K O U N T  + 1, go to Step 5. 

Step 5 (penalties). If  the degree dl of ver tex xi with respect  to graph G is 2 
(i = 1 .... , N )  and do = 2M, stop. (zL* is the best  lower bound that  can be obtained by 

this procedure.)  Otherwise compute  penalties: 

(ZI~ - -  ZL) (di [~i), i = 0 . . . . .  N 
xi = x i + ~  f ~  21~/2 - = (dj - / 3 j )  ] 

where/3i  = 2 if iS  0 and/3i = 2M for i - 0 and a is a constant.  
Step 6 (cost matrix [c~i] ). Modify the cost  matr ix  [c~j] as: 

c~j = c o + )q + hi. 

Go to Step 2. 
Step 7 (update y). If y = M stop, else set y = y + 1; go to Step 1. 
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3.2. M i n i m u m  q - r o u t e s  

Houck  et al. [17] introduced n-paths for  the TSP: these are special cases of 
dynamic programming relaxation, procedures for  obtaining bounds to com- 
binatorial problems and are described in [7]. Here we use such procedures to 

develop bounds for the VRP. 
Let  W be the set of all possible loads (quantities) that could exist on any 

vehicle route, i.e. 

W = q ~ qi~i = q ~ Q, for some ~, ~i ~ {0, 1} . 
i = !  

Let  the elements of W be ordered in ascending order and let w --- [WI. We will 
denote by q( l )  the value of the lth element of W and by 7r(q) that l* so that 
q( l* )  = q. 

The total load on a path q~ -- (xo, xi,, xi2 . . . . .  x~k) is defined as Y~x,e~ ~x0/qi- (Note 
that q~ is not necessarily a simple path.) 

Let  ft(x~) be the cost of the least cost path from x0 to x i ¢  xo with total load 
q( l ) .  Fig. 2 shows a possible such path called a q - p a t h .  A q-path with the 
additional arc (xi, xo) is called a terminal q-route and has cost f~(xi) = fl(x~) + C~o. 

Let  the solution to the VRP consist of the M routes: 

R1 = (Xo, Xil ,  "°. , Xipl, XO) with load q(/0;  

R2 = (Xo, xi2 . . . . .  xi,2, Xo) with load q(12); 

R u  = (Xo, xiu . . . . .  xipM, Xo) with load q(IM).  

If the cost of a route Rk is denoted by C ( R k )  then 

Jf ~k (xi~k) =- flk (xi~) + c i~k,o <- C ( R k ) ,  k = 1 . . . . .  M .  

The path corresponding to f t (x i )  is not necessarily simple but it is not easy to 
impose the condition that no vertex is visited by the path more than once. On the 
other hand it is quite easy to impose the restriction that the path should not 
contain loops formed by three consecutive vertices. (For example, the path in 
Fig. 2 contains the loop Xk, X ,  Xk.) With this restriction imposed, a better  lower 
bound can be calculated. 

~ r  

\ ° Yi 
ore2 ~_.~ rc 4 

3Co 

Fig. 2. 
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3.2.1. q-paths  with no loops 
Let pt(x~) be the vertex just prior to x~ on the path corresponding to f~(xi). 
Let ckt(x~) be the least cost path from the depot to x~ with load q(l)  and with 

~rt(xi) # pt(x~), where ~'l(xl) is the vertex just prior to x~ on the path correspond- 
ing to ¢kt(xl). 

Fig. 3 shows two possible paths corresponding to f~(xi) and ~bl(x~). 
For a given value of I, let g(x~, x~) be the cost of the least cost path from x0 to 

x~ with x i just prior to x~ and without loops. 
Then: 

= I fr(Xj) + q,i, if pr(xj) ~ xi (23) g(xj, Xi) 
l ~br(xj) + q,~, otherwise 

where 1' is such that q(l ')  = q( l )  - qi. 
Given the function g computed from (23), functions f and ~b can now be 

computed for the given l as follows: 

fl(xi) = min[g(xj, xi)], ] 

xj I (24a) 
pt(xi) = x~ 

where x~ is the value of x i corresponding to the above minimum; 

qbl(xi) = min [g(xk, xi)], 
xk ~p~(~,~ t (24b) 

e , (x , )  = ! 

where x~ is the value of Xk corresponding to the above minimum. 
From the above expression it is clear that the path corresponding to f~(xi) has 

no end loops. 
The initialization of the functions f, ~, p and ~ is as follows: 

fl(xi) = &t(xi) = ~ for l such that q(I) # ql, 

/ / 

~t(:?Ci ) 

:?C o 
Fig. 3. 
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fl(Xi) =" Co,i; pl(Xi) = XO] 
qbl(Xi) = ~ / for 1 such that q(l)  = qi. 

3.2.2. Through q-routes 
Let  q,t(x~) be the value of the least cost route, without loops, starting from the 

depot, passing through x~ and finishing back at the depot  with a total load q(l). 
Such a route will be called a through q-route, qJl(Xi) must be composed of either 
the two best q-paths to xi whose total loads add up to q ' ( l ) -  q( l )+  q~, or a best 
path and a second-best  path to x~ whose total loads add up to q'(l). 

qJt(xi) can then be computed as follows: 

f~tq)(xi) + f~qV)-q)(X,) 
if p,<q)(X~) ¢ p~qv)_q)(x~), 

~bl(Xi) = Mien 
qi<--q<--~q'(l) 

qEW 
Min [f.<q)(xi) + 4,#¢¢t,)-q)(xi); ~b#¢q)(xi) +/.¢¢,)_q)(xi)] 
if p~.tq)(xi) = P.t¢ct)-q)(xi). 

We note here that the computational effort involved in computing the q-paths is 
linearly related to w. Thus, if w is large this operation can be quite time 
consuming. 

3.3. Calculation of  bounds f rom the q-routes 

Let  the total number of feasible single routes possible in the VRP be indexed 
r -- 1 . . . . .  E Let  the index set of customers in route r be Mr, the cost of the route 
be dr and the total load of the route be Kr = ~i~M, qi. Le t  Ni be the index set of 
routes visiting customer x~. 

if route r is in the optimal VRP solution, 
otherwise. 

The VRP is then: 

Min ~ dryr, (25) 

s.t.  ,~ff'u,. Yr = 1, i = 1 . . . . .  N ,  (26)  

P 

Yr = M, (27) 

Yr E {0, 1}. (28) 
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3.3.1. B o u n d  LB1 
Let us renumber the set of routes r = 1, ..., ?, by partitioning the set into N 

blocks, where block i (i = 1 . . . . .  N)  is associated with the index i of the last customer 
x~ on the routes in the block. Within a block the routes are indexed b y  
s = l  . . . . .  ~. 

Let ~s = {10 otherwise.if r ou t e s  of block i is in the solution, 

The above formulation (equations (25)-(28)) becomes: 

Min "~ ~ di,~, (25') 
i ~ l  s = l  

s.t. ~ _  ~is = 1, j = 1 .... , N, (26') 
(i, s)~Nj 

i=1 s ~ l  

~,s E {0, 1}. (28') 

where the ordered pair (i, s) is used for the label of the route s of block i, and/qrj 
is the set of ordered pairs (i, s) identifying routes containing customer xj. d~s is 
the cost of route (i, s). 

The problem defined by (25') to (28') can be relaxed by replacing constraints 
(26') with the following set of weaker constraints: 

~ i ,  ~< 1, i = 1 . . . . .  N, (26'a) 
s = l  

~,  ~ Ki~,fi~ = Or (26'b) 
i=1 s = l  

where Kis is the load of route (i, s) and Qr = ~ - 1  qi. 
The problem defined by (25'), (26'a), (26'b), (27') and (28') can now be reduced 

by observing that for a given i and a given load q on a route, route (i, s*) 
dominates all other routes (i, s), s = 1 . . . . .  ~, s ~  s*, if 

dls, < di~ and Kis = Ki~* = q. 

Thus, for each i and each q E W only one route need be considered. Let  us 
call this route (i, l), with I -- ~-(q). There are now w routes to consider for each i. 

The relaxed problem becomes: 

Min dil!~il, (29) 
i=1 



N. Christofides, A. Mingozzi and P. Toth/ Exact algorithms for vehicle routing 267 

w 

s.t. ~ f l t - < l ,  i = l  . . . . .  N, (30) 

N w 

N w 

~ ~i, = M, (32) 
i - I  I -1  

f i t  ~ { 0 ,  1}. ( 3 3 )  

A lower bound on the value di~ (i.e. the cost of the minimum cost route with 
total load q(l) and having x; as the last customer visited) is the cost mit --- f~(xi) of 
the least cost q-route with q = q(l). Hence a bound LB1 can be obtained as the 
value of the solution of problem B 1 defined by the objective function: 

i=1 •=1 

subject to constraints (30)--(33). 
Problem B 1 can be solved conveniently by dynamic programming as follows. 
Let  hi(b, a) be the optimum solution to problem B 1 with the right-hand side of 

(31) replaced by b and the right-hand side of (32) replaced by a, and with fit = 0 
for j > i, l = 1 . . . . .  w. The function hi(b, a) can be computed recursively from 

a ) =  Min[hi ,(b, a ), Min{hi l(b - q, a - 1 )  + mi. ~,a)} ] (34) hi(b, 
L q E W  I 

for: a = 2 , . . . , M ;  i = a  . . . . .  N - M + a ;  Q r - ( M - a ) . Q < - b < - m i n [ a ' Q ,  Qr]. 
The function is initialized as: 

hi(b' l )= { m~i'#(b) ififbCW'b~W. 

The lower bound to the VRP is then 

LB 1 = hN(Q~, M). (35) 

3.3.2. Bound LB2 
We again consider the VRP formulation given by equations (25)-(28). 
Let  us substitute y, by: 

1 
Yr ='Kr 2 ~irqi. (36) 

i~M r 

The formulation of the VRP given by equations (25)-(28) now becomes 

^ 

i ~ M  r 
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s.t. ¢,r=l ,  i = l  . . . . .  N, (38) 
rEN i 

1 "~M~jrqj ' i E M r ,  r = l  . . . . .  ~, (39) ~ir = Kr-r j 

E E (40) 
r= l  i~M r 

~ir ~ { 0 ,  1}. ( 4 1 )  

Constraints (39) ensure that ~, = 1 if and only if ~j, = 1 Vj E Mr and hence y, = 1. 
Thus, constraints (38) correspond to constraints (26). 

Le t  the above problem be relaxed by (i) removing constraints (39) and (ii) by 
replacing set Mr for route r by the complete set I = {1 . . . . .  N}. The resulting 
relaxed problem can be somewhat  strengthened by adding the constraint 

N 

E E qi~ir = Q T ,  (42) 
r=l i=1 

which was redundant  for  the formulation given by equations (37)-(41) but which 
is no longer redundant  for  the new relaxed problem. 

In the relaxed problem defined by equations (37), (38), (40), (41) and (42) (with 
Mr replaced by  I),  only one route need by considered for each customer x~ and 
for each possible value of load q on the route (q E W). This is clear f rom the 
fact  that if two routes rl and rz both contain customer x~ and have loads 
Krl = K,2 = q, then if dq <- dr2, route rl dominates route r2 in the relaxed problem. 
Le t  us call the undominated route (i, l) with l = 7r(q). We will denote the cost  of 
this route by d~j. There are now w routes to consider for  each i. The relaxed 
problem now becomes 

N w 

Min ~: la i t~ i , ,  

s.t. 

(43) 

w 

__~l ~'il = 1, i = 1 . . . . .  N ,  (44) 

/~r w 

/~r w 

~i~ ~ {0, 1}, 

(46) 

(47) 

where dis -- ditqi/q(l). 
Note that if no route passing through i with load q(l) exists, then dij = oo. 

di~/q(l) represents the marginal cost of supplying customer i, on a route with load 
q(l), with a unit quantity and hence di~ is the "cost  contr ibut ion" of customer i. 
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It is quite apparent that the cost ~bt(x/) of the minimum cost through q-route 
passing through customer x/ and having load q(l) is a lower bound on dtt. Thus, 
the solution of problem B2 defined by the objective function 

N w 

Min ~ ~ bit~i t (48) 

and constraints (44)-(47), where bit = @t(xt)" ql/q(l), is a lower bound to the VRP. 
bit is a lower bound on d/t and is obtained by relaxing the restrictions that in a 
feasible solution the degree of every vertex is 2. 

In Section 3.2 we gave a procedure for computing t, bt(xi) for every i = 1 . . . . .  N 
and every 1 = 1 . . . . .  w. 

3.3.3. The computation of bound LB2 
A simple bound LB2 can be computed by ignoring constraints (45) and (46) 

and minimizing (48) subject to only (44) and (47). The resulting bound is: 

N 

L B 2 =  ~ Min [bit]. (49) 
t=l  I = l , . . . , w  

A better bound LB2' can be derived by considering a Lagrangean relaxation of 
constraints (45) and (46) in the usual way. 

3.3.4. Penalty procedures [or improving the bounds 
The solution corresponding to bound LB1 can be obtained by backtracking 

using recursions (34), (24a) and (24b). This solution represents a graph, such as the 
one shown in Fig. 4, which shows three q-routes and since some of these routes 
are not simple and the routes are not necessarily pairwise vertex disjoint the 
resulting graph G in Fig. 4 contains vertices (customers) with degrees with 
respect to G greater than 2 and some customers with degree 0. 

Let  us now place penalties Ai (i -- 1 . . . . .  N)  on the vertices xi computed from 
an expression similar to that used for the M-DCT bound, i.e. 

/~i = Ai  + Or" 1- N ZI~I - -  ZL 11/2 ( d i  - 2) (50) 

and modify the cost matrix [cJ  as: ctj = ctj + At + Aj. 
The functions [, p, ~b and # can now be computed for the new matrix [cJ ,  etc. 
At the end of the t th iteration: 

N 

LB 1 = hs(QT, M) - 2 ~ Ai (51) 
i -1  

where hN(QT, M),  computed from recursion (34) with respect to the modified 
matrix ctj, is a bound to the VRP. 

For the case of bound LB2, we can f ind--by backtracking--the q-route Gi 
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\ ""~I.. ~ .  degree6 .q 

. . "  w. / . , r  . -  
~ " ' ~ " - ~ "  

o 
0 

o -----  degree 0 

Fig. 4. 

corresponding to qJl,(xi), where ii is the value of 1 producing the minimum in the 
expression 

Min [tpl(x,)] 
l=, . . . . . .  L q- 3-J" 

Let 8~ be the degree of xk with respect to Gi. Compute 

N 

dk = ~ ~],qi/q(li). 
~_[.= 

The degrees dk should all be equal to 2 in any feasible solution to the VRP. 
An iteration of the ascent procedure now involves computing the h~ from 

expression (50), modifying the costs ci i, recomputing [, p, ~b, ~? and tk and so on. 
At the end of the tth iteration 

N 

- 2 ( 5 2 )  L B 2 = ~  min .q~ 
i=l t=l ...... L q(l) J i~l 

is the bound to the VRP. 

3.4. Computational aspects of  bound calculations 

The value of bound LB0 obtained from the minimum DCT as a function of the 
number of penalty iterations in the ascent procedure is given in Fig. 5. Also 
shown in Fig. 5 is the bound LB2 obtained from the q-routes. Fig. 5. refers to a 
21-customer VRP that has previously appeared in the literature as test problem 3 
in reference [9], but without the constraints on maximum route distance, and 
with customer delivery times assumed zero. The value of the optimum solution 
to this problem is 374.3 units of length involving 4 vehicles. 

As a means of comparison, the solution to the unconstrained 4-TSP is of value 
315. 

In the branch and bound procedure it is clear that backtracking can occur as 
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2 0  

i terations 

soon as the bound at some iteration exceeds z* (the value of the best solution 
found so far). In order to avoid unnecessary computations during the iterations 
we use a fitted polynomial describing the value of the bound as a function of the 
iteration number to predict the expected number of iterations necessary for the 
bound to exceed z*. If this number is very  high or if the final expected value of 
the bound is below z*, the ascent iterations are terminated and branching takes 
place. 

Le t  T be the maximum number of iterations allowed and let: 

LB(T)  
7 /=  LB(1) '  

where LB(t)  is the value of the bound after iteration (t). Let  ~/be computed for 
the initial node of the branch and bound tree. If, at some arbitrary node v of the 
branch and bound tree r lLBV(1)<z* (where LBV(1) is the bound after  the first 
iteration at node v) then no further iterations are made to try to improve the 
bound. 

If ~LB~(1) -> zu* a block of t~ iterations (fixed a priori) is made, a polynomial is 
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fitted to the values LBV(t), t = 1 .... , tz and that value of t* for  which LBV(t *) = 
z* is calculated. If t* -> T the ascent is abandoned. If t* < T another block of t~ 
iterations is performed,  a new polynomial is fitted to LB ' ( t ) ,  t = 1 . . . . .  t~, etc. 

4. Branching strategies 

The computational results shown in Section 7 were derived by using two 
possible branching strategies as follows. 

4.1. Branch  on an arc (Rule  BB1) 

With this type of branching, an arc (x~, xi) is chosen for branching at a node 
of the search tree in order to extend a partially completed route (x0, Xk . . . . .  X~). 

The alternative branching is to reject  arc (xi, xj) as a possible extension of the 
route. 

4.2. Branch  on a route (Rule  BB2) 

With this type of branching a node of the search tree corresponds to a 

single feasible route Sj. The state at this node (say at stage h) is represented by 
the ordered list: 

L = {Sj,(x,,), Sj2(x,2) . . . . .  Sjh(X'h)}, 
where Sj,(x~,) is a feasible single route (the jrth) which includes a specified 
customer xlr and other customers which are not already included in the previous 
routes Sjl(xil) . . . . .  Sir ~(Xir_l)" In this section we will use the word route to imply 
the unordered set of customers forming the route. The set 7r(X~r), say, of all feasible 
routes Sj(x~,) passing through a customer x~ r, is generated by forming all possible sets 
of customers (including customer x~r) so that the total demand of customers within a 
set is less than or equal to Q. The cost of the route through the jth such set Sj(Xi,) is 
then computed by solving a corresponding TSP. The state represented by list L is 
shown diagrammatically in Fig. 6 where 

h 

Fh = X - Y~ S# (x 0 
r = l  

is used for the set of " f r ee "  (i.e. as yet unrouted) customers following stage h. 
Once the bottom of the tree is reached, say at stage M when FM = 0, the list L 

contains a solution to the VRP consisting of M routes. 
A forward branching from some stage h involves the choice of a customer 

xi,+~ ~ Fh and the generation of a list zr(xih+~) of all feasible single routes passing 
through this customer.  It is quite apparent that the smaller the number of 
branching possibilities at any stage h the more efficient the tree search, and it is 
therefore  obvious that x~h+ ' should be chosen from Fh SO as to make the list 7r 



N. Christofides, A. Mingozzi and P. Toth/ Exact algorithms [or vehicle routing 273 

I ~ stage 
\~ \ \ \  

/•. Sj, (x~,) 
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h~stag e l I ~ n N h 

'/ ~ ~)Sj,h (xi,) 
Sjh (Xih) 

State represented 
by list L 

Fig. 6. 

List E (xiz) of all 
feasible single routes 
passing through x i2 
and other customers 
from F I 

(xi,+,) as short as possible. This would tend to be the case if x~h~ ~ is chosen to be 
an "isolated" customer far from the depot,  or if it ha~ a large demand qih+," 

It is computationally expensive simply to generate all routes passing through 
x~ h directly and then eliminate infeasible ones by imposing various tests. It is. 
therefore,  desirable to incorporate some of these reduction tests into the 
route-generating process and thus eliminate at an early stage routes that would 
have otherwise been found to be infeasible at a later time. Some of these tests 
are facilitated by the considerations in the next  section. 

5. Reduction and dominance tests 

Consider the matrix B = [b,] introduced during the calculation of bound LB2. 
Le t  l* be the value of l for which 

b, t = min [b,]. 
l 

Reduction R1. If for  some i and l: 

LB2 - bit T + b, >- z* (53) 



274 N. Christofides, A. Mingozzi and P. Toth/ Exact algorithms for vehicle routing 

then element b~j of matrix B can be set to 0% where LB2 is given by equation 
(52). 

Reduction R2. Le t  us suppose that in some solution S, customer Xk is supplied 
by a route with load q(l). A lower bound on the value of S is then: 

where V is the maximum contribution to bound LB2 of a set of customers Y 
whose total demand is q ( l ) -  qk, i.e. 

V-m YcxMax{xk} [xi~cY bit, ] xiGY~--J ql = q(l)--qk ]. (54) 

An upper bound I7 on V can be computed by ignoring the integrality restrictions 
in expression (24) above in exactly the same way as the Dantzig bound is calculated 
for the knapsack problem. If 

Z bi,~ + q,,(Xk) - Q - 2 ~i hi >- z* 
i#k 

then element bkl of matrix B can be set to oo. 

5.1. Inclusion and exclusion of  customer pairs 

5. I.I. Exclusion 
We will now assume that B has been reduced by applying reductions R1 and 

R2 above. Let  us consider two customers Xk and x i. If  these two customers are 
on the same route (say R) in the optimal solution, then the cost C(R) of this 
route is 

C(R) >- Cog q- Ckj "~ Cjo 

and the maximum load on route R must be -< Q. Hence,  if Xk and xi are on the 
same route~ 

v = b"T + (Cok + ckj + cjo).(qi + qk)lQ - 2 E 

is a lower bound on the optimal solution. Thus, if V -> z* it follows that x~ and xj 
cannot  be on the same route. We will call [xk, x~] a prohibited pair of customers 

and set element (k, j) of a matrix P = [Pkj] to -- I. 

5.1.2. Inclusion 
Let  us again consider two customers x~ and x~ 2 and form the reduced VRP 

without these two customers.  The lower bound on the reduced VRP is at least 
~#~,,~2 bil,*-2 ~ i ~ , ~ 2  &, because if the route corresponding to qJt,*(x~) contains 
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customers x~, or x~: or both, then the route not containing these customers must 
have greater or equal value. The addition of customers x~ and x~ 2 to the reduced 
VRP will increase the cost of the VRP solution by at least 

V = ~ min [c~,~, + c~,v , - c~,~, ] q~, + q~, + qv, <- Q]. 
i=1,2 ~i, Yi 

If arc (x~ l, x~2) is excluded from the solution, then the addition of x~, and x~ 2 to 
the reduced VRP will increase the cost of the solution by an amount  V' given by 
the same expression as above but with x~,, xr, ~ x,: and x~:, xv~ ~ x~. 

Hence a lower bound to the VRP with arc (x~, x~ 2) excluded is 

N 

bi,~- 2 ~,  ~i + V', 
i~ctl, Ct 2 i--1 

and if this bound is greater than or equal to z~: it follows that arc (x~,, x,~ 2) must 
be in the solution in which case we set element P~,~2 = 1. 

All elements of matrix P not set to -+ 1 by the exclusion and inclusion tests are 
assumed to be set to 0. 

Matrix P can be used to reduce the number of branchings in the tree search 
algorithms for both the type of branching based on the arcs (BB1) and the 
branching based on a route (BB2). 

5.2. Feasibility and dominance 

We will now describe some simple feasibility and dominance tests that could 
be used to eliminate nodes of the branch and bound tree. 

(i) When using branching scheme BB 1 the representations of state include a 
partially finished route. If this route can be improved by a 3-optimal local 
optimization procedure [18] the corresponding node can be rejected. 

(ii) When using branching scheme BB2 let Sj~ (x~ h) and S~ (xih) be two nodes 
(routes) emanating from the same vertex at level (h - 1). 

Let  UB (F~) be an upper bound and LB (F~) be a lower bound on the total cost 
needed to supply the customers in F~, 

C[Si~(x~h)] + UB (Fh ~) --< C[Sj~(xih)] + LB (F~), 

where C(S) is the cost of the single feasible route S, then node S~ (xl,) 
dominates node Si~ (xih) and the latter can be removed from the list 7r(x;h). 

Both for the branching scheme BB1 (at a step when a route currently being 
formed is completed) and for scheme BB2: 

(iii) If it could be shown that the remaining free vehicles are not capable (e.g. 
because of insufficient capacity) of supplying the unrouted customers,  the node 
can be rejected. 

(iv) If for two nodes a and/3,  the cost of the routes represented by a is less 
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than or equal to the cost of the routes represented by/3 and the VRP remaining 
at node a is the same problem or a subproblem of the VRP remaining at node/3, 
then/3 is dominated by a, and node/3 can be rejected. 

6. Example 

W e  will illustrate the procedures described in the earlier sections by means of 
an example involving N = 10 customers and M = 4 vehicles. The distance matrix 
[c 0] and the customer demands are given below; 0 refers to the depot. The 
vehicle capacity is 24 units. 

0 1 

Distance C~j 
matrix 

2 3 4 5 6 7 8 9 10 

0 - -  24.1 27.6 17.2 23.3 11.1 16.0 7.0 20.2 9.8 22.0 

1 24.1 - -  21.2 9.2 16.1 26.0 28.1 31.2 38.0 33.0 46.2 

2 27.6 21.2 - -  15.5 35.3 20.2 40.4 32.7 28.0 37.2 45.8 

3 17.2 9.2 15.5 - -  20.0 17.0 26.1 24.0 28.8 26.9 39.0 

4 23.3 16.1 35.3 20.0 - -  31.3 17.0 29.2 42.7 28.1 42.4 

5 11.1 26.0 20.2 17.0 31.3 - -  27.1 13.4 12.0 18.6 25.6 

6 16.0 28.1 40.4 26.1 17.0 27.1 - -  18.0 35.5 14.4 27.6 

7 7.0 31.2 32.7 24.0 29.2 13.4 18.0 - -  18.0 5.3 15.0 

8 20.2 38.0 28.0 28.8 42.7 12.0 35.5 18.0 - -  23.0 22.6 

9 9.8 33.0 37.2 26.9 28.1 18.6 14.4 5.3 23.0 - -  14.3 

10 22.0 46.2 45.8 39.0 42.4 25.6 27.6 15.0 22.6 14.3 - -  

Demands 
i = 1 2 3 4 5 6 7 8 9 10 

qi = 1 5 6 12 13 13 3 9 21 10 

(A) We will first use a tree search procedure using branching rule BB1 with 
bound LB0. 

A heuristically obtained initial feasible solution gives an upper bound of 225.0. 
The lower bound LB0 computed for the root node of the branch and bound tree 
is 211.0, computed after 30 penalty iterations. The complete tree is shown in Fig. 
7. The number next to a node is the bound LB0 corresponding to that node; the 
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number in each node is the number of the customer to be visited next on the 
emerging route. A bar above the customer number represents negation (i.e. that 
customer is not the next one to be visited). Fig. 7 represents a depth first 
procedure and the tree is generated by "branching to the left" whenever 
possible. Thus, the first solution found during the search is at the 23rd generated 
node (marked with an asterisk) and another 26 nodes are generated to prove that 
the solution is optimal. The optimal solution is: 

route 1: 0--9-7-0 
route 2: 0--5-8-0 
route 3: 0-4--1-3-2-0 
route 4: 0-6-10-0 

and the optimal value is 222.7. 
(B) We will now illustrate the use of bound LB2 on the same example. In 

attempting to calculate a lower bound for the route node of the branch and 
bound tree using expression (22), with penalties calculated according to expres- 
sion (20), and allowing a maximum of 20 penalty iterations, a bound of 222.7 
was derived at the 7th iteration. The routes $1(xl) which produced this bound 
from equation (22) represented a feasible solution to the VRP, i.e. 

~bl,(9) and tp l , (7)  corresponded to route 1 above; 
$l,(5) and $ 1 , ( 8 )  corresponded to route 2 above; 
~bl,(6) and $1,(10)  corresponded to route 3 above; 
~1,(4), $l,(1), $1,(3) and ~kl,(2) corresponded to route 4 above. 

The procedure is therefore terminated having obtained the optimum solution 
with no branching of the branch and bound tree being necessary. 

(C) We will now illustrate the use of bound LB0 with the branching rule of 
Section 4.2. The complete tree search is shown in Fig. 8. At the first level three 
nodes are generated, each node representing a feasible route through a chosen 
customer (customer 9 for level 1). (The starting upper bound is again assumed to 
be 225.0.) Following a search where the branching is from the node with the 
lowest computed bound at every stage, the tree shown in Fig. 8 is generated. In 
this figure the bound is shown next to the node and the customers forming the 
corresponding route are shown inside the node. Obviously, with four routes, 
there are only four levels to this tree having a total of 22 nodes. 

7. Computational results 

In this section we investigate the computational performance of the three 
algorithms illustrated in the example, also including the dominance tests of 
Section 5. Ten problems are used for the tests ranging from N = 10 to N = 25 



278 N. Christolfdes, A. Mingozzi and P. Toth/ Exact algorithms for vehicle routing 

211 [ O ~ UB=225. 

198[ 9 l 223 

21010 I 213.21 

2181 6 } 225.2 [  6 I 199 /  7 ~ 223.2 

226(7 ) 21 .9(17 ) 213.  

infeasible 

224.8{  10 I 2 0 7 . 3 [  5 I 222.6 

217 .7 [  3 } 225.11 3 } 212 .7[  ~ I 213.31 8 I 224 223. 

225.5,( 1 ) 225( I ) 222.4( 0 ) 223( 0 ) 213.2(2 ) 222.2 

,..L, 

2 1 5 . 6 (  1 ~ 223[ 1 ~ 225[  0 I ( 0 ~ 223[  2 ] 223 

infeasible 

216.61 3 l 221.21 

2 2 2 . 7 ~ *  ~ 218 

SolutiOnUB.222.7found infeasible// infeasible 

0-9-7-0 224 I ~  
0-5-8-0 
0-4-1-3-2-0 infeasible v 
0-6-10-O 

Fig. 7. Branch and bound tree for the example using bound LBO and branching rule BB1. 
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customers. Some of these problems are from the literature; others are derived 
directly from these. The ten test problems are shown in Table 1. 

The depot in problems 6 to 10 in Table 1 is at the same location as the depot in 
the 50-customer problem in [9]. In all problems no time constraints are con- 
sidered. 

Tables 2 and 3 give the computational performance of the three algorithms, 
Algorithm 1 is the tree search with branching rule BB1 and bound LB0; 
algorithm 2 is the same as algorithm 1 with bound LB2; algorithm 3 is the tree 
search with the branching rule of BB2 and with bound LB0. 

Table 2 shows the values of the optimal solution to the problems, together 
with the values of bounds LB0 and LB2 for the root node. Also shown are the 
values of the solutions obtained by the use of vehicle routing heuristics, namely 
the best of the "2-phase" and "tree" heuristics of [6]. 

Table 3 shows the computing times and total number of nodes in the branch 
and bound tree for algorithms 1, 2, and 3. Also shown are the computing times 
required to run both of the abovementioned heuristics. All computing times 
shown in Table 3 are seconds on the CDC 7600 using the FTN compiler. All 
codes are in FORTRAN 4. 

Although the heuristic used has always obtained an optimal solution for every 

problem, it should be noted that this is mainly due to the fact that the problems 
are of small size and relatively free of constraints. I t  should also be noted from 
Table 2 that bound LB2 is on average within 2.4% of the optimum solution value 
and on no occasion is the bound worse than 6.9%. This would suggest that on 
many practical occasions, a currently available solution to the VRP may be 

Table 1 
Tes t  problems 

Problem 

N M Q Details 

1 10 4 24 Given as an example  
2 12 4 6000 See [9] 
3 12 3 6500 Other  data as for problem 2 
4 21 4 6000 See [9] 
5 21 6 4000 Other  data as for problem 4 
6 15 5 55 Cus tomers  are the first 15 of 

the 50-customer problem in 19] 
7 15 3 90 Other  data as for problem 6 
8 20 6 58 Cus tomers  are those  numbered  11 

to 30 in the 50-customer prob- 
lem in [9] 

9 20 4 85 Other  data as for problem 8 
10 25 8 48 Cus tomers  are those  numbered  

16 to 30 in the 50-customer prob- 
lem in [9] 
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g u a r a n t e e d  ( b y  u s i n g  t h e  b o u n d )  to  b e  c l o s e  e n o u g h  t o  o p t i m a l  n o t  to  w a r r a n t  t h e  

c o n t i n u a t i o n  o f  t h e  s e a r c h  f o r  a n  i m p r o v e d  s o l u t i o n .  

Table 2 
Computational results: values 

Problem Solution value Initial lower bounds 

Optimal Heuristic LB0 LB2 

1 222.7 222.7 211.0 222.7 
2 290.0 290.0 228.6 269.8 
3 244.0 244.0 225.1 240.3 
4 374.3 374.3 325.4 369.1 
5 494.7 494.7 400.0 474.0 
6 334.1 334.1 298.1 321.4 
7 277:9 277.9 252.1 265.5 
8 429.9 429.9 381.2 429.7 
9 357.6 357.6 260.0 346,4 

10 606.3 606.3 488.9 602,9 

Table 3 
Computational results: times (seconds on the CDC 7600 using the FTN compiler) 
and total number of nodes 

Problem Algorithm 1 Algorithm 2 Algorithm 3 Heuristic 
time nodes time nodes time nodes time 

1 0.2 49 0.1 1 0.1 22 0.1 
2 40.0 3389 28.2 1208 0.9 73 0.1 
3 7.2 70 3.3 30 0.7 7 0.1 
4 * 28.1 158 * 0.4 
5 * 244.0 4026 * 0.5 
6 54.0 3336 11.6 194 4.0 227 0.3 
7 33.7 2148 60.9 498 26.6 1651 0.2 
8 * 8.1 6 75.8 4628 0.4 
9 * 139.2 886 * 0.4 

10 * 118.6 1718 * 0.6 

* Time limit 250 sec. 

A c k n o w l e d g m e n t  

T h e  a u t h o r s  w o u l d  l i ke  t o  t h a n k  S O G E S T A ,  U r b i n o  ( I t a l y )  f o r  s u p p o r t i n g  t h i s  

w o r k .  T h e y  w o u l d  a l s o  l ike  to  t h a n k  t w o  a n o n y m o u s  r e f e r e e s  f o r  t h e i r  s u g -  

g e s t i o n s  t h a t  h a v e  l ed  t o  s e v e r a l  i m p r o v e m e n t s  a n d  a l s o  D r .  J o h n  B e a s l e y  f o r  

u n d e r t a k i n g  s o m e  o f  t h e  c o m p u t a t i o n a l  t e s t s .  
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