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We present an algorithm for minimax optimization that combines LP methods and quasi- 
Newton methods. The quasi-Newton algorithm is used only if an irregular solution is detected, 
in which case second-order derivative information is needed in order to obtain a fast final rate 
of convergence. We prove that the algorithm can converge only to a stationary point and that 
normally the final rate of convergence will be either quadratic or superlinear. The per- 
formance is illustrated through some numerical examples. 
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1. Introduction 

In this paper  we consider the problem of minimizing the minimax object ive 
function 

F ( x )  =- max ff(x) (1) 
l_<j~<m 

where the functions fj are supposed to be smooth,  and x = (xl, x2 .... , x,)  T. 
An excellent theoretical t rea tment  of minimax optimization can be found in 

the book of D e m ' y a n o v  and Malozemov [10S. Algorithms for  minimizing (1) by 
using only first derivative information have been published by several  authors 
during the past  10 years. Lately it has become clear that in some situations 
second derivative information is necessary  in order to obtain fast  final con- 
vergence. Examples  of algorithms based upon this are those of Hett ich [14], Han  
[13], Chara lambous  and Moharram [6], Hald and Madsen [12], Watson  [21] and 
Corm [8], 

The object ive  function (1) is in general a non-differentiable funct ion having 
directional derivat ives in all directions. Normal ly ,  the minimum is situated at an 
edge, that is a point where two or more functions are equal, cf. Fig. 1 which 
shows level curves  for  minimax object ive functions in 2 variables. In Fig. la  
there is no smooth valley through the solution and the minimum is numerically 
very well determined: no second derivat ive information (posit ive definiteness) is 
needed,  the minimum is character ized by only first der ivat ives of the 3 funct ions 
fj which determine the minimum. Therefore  it is possible to construct  algorithms 
based on first derivative information,  with fast  final convergence  in cases like la. 
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It was proved in [17] that the stage 1 (see below) algorithm of this paper, which 
is of the type mentioned, has quadratic final rate of convergence to the solution 
x* when any subset of the set {f~(x*)[fi(x*)= F(x*)} has maximal rank. This 
condition is the so-called Haar-condition, which ensures that no smooth valley 
passes through the solution. 

In lb of Fig. 1 there is a smooth valley through the solution, namely along the 
dotted line. In this case some second-order information may be needed: For 
directions through the valley the minimum is not characterized by first deriva- 
tives only (however, this is still the case for all other directions). This suggests 
that in situations like lb (where the number of functions determining the 
minimum is not larger than the number of unknowns) some second-order 
information, or approximate second-order information, is needed in order to 
obtain a fast final rate of convergence. But the fact that the level curves of F 
have sharp corners is still useful: In Fig. lb, for example, first derivatives will, 
with a quadratic rate of convergence, give the information that the solution is at 
the dotted line, so the dimension of the problem is reduced from 2 to 1 in this 
case. In general such a valley is always characterized by the fact that some 
functions are equal. Suppose that the number of such functions is s and the 
functions are fi, J E A(x*), i.e. F(x*) = fi(x*) > fi(x*) for j E A(x*) and i~ A(x*). 
Then the following must hold in the valley and at the solution, 

fio(x)-fi(x)=O, jEA(x*) ,  (2) 

where J0 E A(x*), so by linearizing these, we can obtain a quadratic convergence 
to the valley. If the Haar-condition is satisfied at the solution then s >- n + 1 and 
the Jacobian of the system (2) has rank n, so there is no valley (Fig. la). In this 
case a Newton iteration applied to (2) gives quadratic convergence to the 
solution and it requires only first derivatives of the functions fj. If, however, 
s <-n or the Jacobian of (2) is rank deficient at x*, then some information is 
needed in addition to (2). We use some equations that correspond to the 
Kuhn-Tucker equations in nonlinear programming, namely the following (see for 
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instance [14]): 

Ajf}(x) -- 0, 
jEA(x) 

(3) 

A i = l  
jEA(x) 

for x = x*. Fur thermore Aj. -> 0 for j E A(x*) .  Solving (2) and (3) for  the minimax 
problem is equivalent to solving the Kuhn-Tucker  equations in nonlinear pro- 
gramming when the number of active constraints is less than the number of 
unknowns [14]. 

The minimax algorithm that we propose in this paper consists in two parts. 
Normally, the algorithm of [15] is used; this is called stage 1. But if a smooth 
valley through the solution is detected,  then a switch is made to an algorithm 
which solves (2) and (3) through a quasi-Newton iteration. This is called stage 2. 

If it turns out that the stage 2 iteration is unsuccessful (for instance if the active 
set f j  . . . . .  fs has been wrongly chosen), then a switch is made back to stage 1. 
The algorithm may switch several times between stage I and stage 2. However ,  
our experiences indicate that normally only very few switches will take place, so 
the iteration will finish either as a quadratically convergent  stage 1 iteration or as 
a superlinearly convergent  stage 2 iteration according as the Haar-condition is 
satisfied or not at the solution. 

2. Details of the algorithm 

In the following we give a rather complete description of the algorithm. We 
omit only a few computational details which are not of importance for the 
understanding of the algorithm. These may be found in [12]. 

The algorithm consists of four parts: The stage 1 iteration, the stage 2 
iteration and two sets of criteria for switching. 

2.1. The stage 1 iteration 

This is the iteration of [15]. At the kth stage of the algorithm we have an 
approximation Xk of the solution and we wish to use the gradient information at 
Xk to find a better approximation Xk+l. Therefore  we find the increment as a 
solution hk of the linear minimax problem 

Minimize (as a function of h) F(xk, h)  =-- max~,-(xk) +fi(Xk)Th}, 
l<~i<_m 

subject to the constraints IIhll~ -< Ak (4) 

where Ak : Ck-~llhk-]l[~, with Ck-~ = 0.5, 1, or 2 according as the iteration number 
k - 1 is unsuccessful,  not unsuccessful,  or successful. If the objective function F 
decreases,  then Xk+~ : X k  + hk, otherwise Xk+~ = Xk. Note that no line search is 
involved. 
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2.2. The stage 2 iteration 

We suppose that a set of indices A has been determined in 2.3; A is called the 
current  active set and is an approximat ion of the set of indices that are active at 

the solution x*, 

A* - A(x*)  =- {j ] J:i(x*) = F(x*)}. (5) 

Now an approximate  Newton  iteration is applied to the sys tem 

A.J;(x) : 0 ,  
jEA 

h i - 1 = O, (6) 
iEA 

[ jo(X)- f i (x)=O, j E A ,  i~Jo 

where j o ~ A  is fixed. (The unknowns are (x,,I)). The Newton  iteration is 
approximate  because  we don ' t  use ['~(x), so the derivatives of  the first set of 
equations in (6) with respect  to x are approximated  by finite differences on the 
first iteration and then updated for the subsequent  iterations. Every  time a 
switch f rom stage 1 to stage 2 is made a new finite difference approximation is 
calculated. 

2.3. Conditions for  switching to stage 2 

It is not disastrous to start a quas i -Newton iteration with an incorrect active 
set A, since in that case a switch back to stage 1 will be made after some 
iterations (see [12, Theorem 1]). But in order to avoid unnecessary  iterations we 
use a rather restrictive set of criteria which must all be satisfied before the 
quasi -Newton iteration is started: the switch is only made if (8)-(10) below are 
satisfied. 

For each stage 1 iteration the active set A = Ak is defined as 

Ak =- {j I F(Xk)  -- f j(Xk) <-- el} (7) 

where el is a small posit ive number  specified by the user. Suppose that the latest 
3 different iterates, Xk, XR-S~, Xk-j2, have been calculated in stage I. Then a switch 
to stage 2 is made if there exist ,Xj >_ 0, j ~ Ak, with E h s = l, such that 

Ilhkll~ = Ak, (8) 

Ak  h -'- Ak  h = Ak,  (9) 

E~A t~'/f)(Xk){ ~ (2 (10) 
j ~ 2 

where e2 > 0 .  (In practice (10) is only tested when (8) and (9) are satisfied, and 
{As} is found by a linear least squares calculation.) 

The condition (8) will hold near  a non-Haar  solution (see Lemma  1 below), 
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whereas it will not hold near a solution that satisfies the Haar-condition because 
of the quadratic convergence in this case (cf. [17]). The condition (9) tests the 
stability of the active set, whereas (10) holds when Xk is close to a solution x* 
with A* = Ak (see (3)). 

2.4. Causes for  switching back to stage I 

The rules of this section are tested for in each quasi-Newton step. These rules 
guarantee that the convergence properties of the method used in stage 1 are not 
wasted by the stage 2 iteration. A switch to stage 1 is made if one of the 
conditions (11), (12), or (13) below fails to hold. 

We denote by r(x, ~) the vector of left-hand sides of the nonlinear system (6), 
i.e. the residual vector of (6) at the point (x, A). In order to continue the stage 2 
iteration we require that the residuals decrease: 

IIr(x~+,, ak+,)[[ <-- rl Hr(xk, ak)ll (11) 

where 0 < r / <  1. We have used rt = 0.999. 
It is also tested that no function with an index from outside the active set 

becomes dominating, i.e. 

F(Xk+O = max f/(xk+ 0. (12) 
i~A 

Finally we test that all multipliers corresponding to the active set are non- 
negative, 

A! k+l)>-0, i ~ A .  (13) 

Notice, that it is not required that the minimax objective function F decreases 
in each stage 2 iteration. Often F will increase in the first stage 2 iteration. 

3. Convergence properties 

We use the same smoothness assumption as in [12], namely the following, 

fi(x + h) = fj(x) + f~(x)~h + o(llh H), (14) 

f~ is continuous, j = 1 . . . . .  m. 

A stationary point of F is a point for which the generalized gradient (cf. [7]) 

O*F(x) =- conv{f~(x) I f,.(x) = F(x)}, (15) 

cony being the convex hull, contains 0. It follows that a stationary point is a 
point where the equalities (3) are satisfied. It is shown, for instance in [17], that 
any local minimum of F is a stationary point, and on the other hand that if the 
Haar-condition is satisfied at a stationary point x*, then x* is a strict local 
minimum. 
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In [12] we examined the global convergence properties of the algorithm 
presented here and proved the following result: 

Theorem 1, I f  the sequence {xk} generated by the algorithm is convergent, then 
the limit point is. a stationary point. 

Here we concentrate on the local convergence properties. It is assumed that 
the algorithm generates a convergent sequence of points, and we prove that if a 
few assumptions are satisfied then the iteration finishes either as a quadratically 
convergent stage 1 iteration or as a superlinearly convergent stage 2 iteration. 

One of the assumptions we need for the theorems of this paper is that the 
functions which correspond to the active set A* are strongly active: 

3.1. Strongly active functions 

We say that the function fi is strongly active at the stationary point x if 

f i ( x )  : F ( x ) ,  

0 f~ conv{f~(x)[ f i (x)= F(x) ,  j ~  i}. (16) 

We know that any local minimum y of F is a stationary point. It follows that any 
function f~ that is strongly active at y is necessary for y being a minimum: y is 
not a stationary point (and thus not a local minimum) of the minimax objective 
function (1) when the strongly active function fi is left out. 

Following the terminology of linear programming we say that a stationary 
point is degenerate if there are active functions that are not strongly active. 
Otherwise the stationary point is non-degenerate. 

In the local convergence theorems we assume that the solution x* is a 
non-degenerate stationary point. 

We will need the following results, Propositions 1 and 2, where y is a 
stationary point, s is the number of elements in the active set A = A(y),  A t are 
the multipliers of (3), and v i are the vectors 

( ' t '  
vj = f}(y) ] E A. (17) 

Proposition 1. I f  the stationary point y is non-degenerate, then 
(i) X~>0, j E A ,  

(ii) {vj J j E A} is linearly independent, 
(iii) {Aj} is the only solution o f  (3) when x = y, 
(iv) s < - - n + l .  

Proof. When x = y, (3) is identical to the equation 

h~v i = (1, 0, 0 . . . . .  0) r, ;tj _ 0. 
j~-A 

(18) 
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If Aj. = 0, j E A, then fj would not be strongly active, and therefore (i) is true. If 
E/~ivj = 0, then every multiplier tz t, j E A, must be 0, since otherwise it would be 
possible to satisfy (18) with a set of non-negative multipliers, one of which could 
be 0, and this contradicts (i). Thus (ii) is true. (iii) and (iv) are consequences of 
(18) and (ii). This completes the proof. 

Proposition 2. f f  s = n + 1, then the stationary point y is non-degenerate if and 
only if the Haar-condit ion holds at y. 

Proof. Under the Haar-condit ion 0 cannot be a non-trivial linear combination of 
less than (n + 1) derivatives f~(y),j  C A .  Therefore ,  if s = n + 1, then every 
function fi, J E A, must be strongly active. 

On the other hand, suppose that y is non-degenerate,  and that the Haar 
condition is not satisfied at y. This means that there exists a non-trivial linear 
combination of less than (n + 1) of the derivatives f~.(y), j E A, which is O. We 
formulate this in the following way: 

tz~f;.(y) = 0, tzi = 0 .  (19) 
tEA 

Here Z izt# 0, since otherwise {A t +/.tj} would be a solution of (3) in conflict to 
(iii) of Proposition 1. It is not a restriction to assume Y,/.tj = 1. Thus {/~} is a 
solution of (3) which is a contradiction because of (i) and (iii) in Proposit ion 1, 
since ~i = 0. This proves Proposit ion 2. 

3.2. Local  convergence results 

First we prove that the local bound in (4) will become active when a non-Haar 
solution is approximated by a stage 1 iteration. 

Lemma 1. I f  the number o f  active functions at the stationary point y is less than 
(n + 1), then there exist ~ > 0 and a neighbourhood V of  y such that for  any x E V 
either the system of  linear functions 

{f'k(X)th +fk(X) I k = l . . . . .  m} (20) 

has no minimax solution or it has a minimax solution h with IIh[[ >- 8. 

Proof. By definition F(y)  = fi(Y) > fi(Y) for j E A(y)  and i~= A(y).  Since fk and f~, 
are continuous there exist 8 > 0 and a neighbourhood V of y with the following 
property:  if j ~ A(y)  and i~  A(y), then 

f~(x)Th + f i (x)  > f~(x)Th + fi(X) 

for any x ~ V and [Ih[[ < 8. This means that if any linear function with index 
i~= A(y)  is active at a minimax solution h of (20), then I[hll _> & 

Therefore ,  if (20) has a minimax solution with Ilhll -< 8, then this solution is a 
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minimax solution of the system 

{f)(x)Th + fj(x) [ j @ A(y)}. (21) 

If (21) has a minimax solution/~, then there exist non-negative multipliers X i such 
that E Ajf)(x) = 0 and E X i = 1, the sums being taken over ] ~ A(y). Since A(y) 
has at most n elements this means that {f)(x)[j  @ A(y)} is linearly dependent.  
But in this case there exists a vector  v~  0 which is orthogonal to {f j(x)[]  E 
A(y)}. Therefore  any vector h = l~ + tv, t ~ R is a minimax solution of (21). By 
choosing t suitably we obtain [IhJ[-> 3. 

Thus (20) always has a minimax solution with Hh][->~ unless no minimax 
solution exists and the lemma is proved. 

Lemma 2. Under the assumptions of Lemma 1 the following holds: If  a stage 1 
iteration is performed at the point Xk E V and with Ak <--6, then I]hk[] =Ak 
provided IIh~ll is chosen as large as possible in case of several solutions in (4). 

Proof. If (20) has no solution for x = xk, then the solution of the restricted 
problem only exists because of the local bounds. Therefore  IIhkl] = Ak in this 
case. 

If (20) has only solutions with IIh]l > Ak the local bounds must be active at the 
solution hk of (4), i.e. Ilhkll--a . Finally, if (20) has a solution hi with Jlh~[] <-Ak, 
then there is also a solution h2 of (20) with IIh2]l > Ak because of Lemma 1. Since 
the set of minimax solutions of (20) is a convex set this implies that there is a 
solution h3 of (20) with IIh3rl--Ak. Thus we have again Ilhk]J = A k .  This proves 
Lemma 2. 

In the following two convergence theorems it is assumed that xk-~x* which 
means, according to Theorem 1, that x* is a stationary point, s* is the number of 
active functions at x*. 

Theorem 2. Suppose that Xk ~ X* and that x* is non-degenerate. Then Ak = A* =- 
A(x*) for all large values of k provided el in (7) is chosen small enough. 
Furthermore, if there is only a finite number of stage 2 iterations, then s* = 
(n + l) and the rate of convergence is quadratic. 

Proof. Because of the continuity of the functions fj, j = 1 . . . . .  m, the set defined 
in (7) equals A*, for k_> K~ say, if e~ > 0  is sufficiently small. Therefore,  if 
iteration number k _> K~ is a stage 1 iteration, then A i = A* for j _> k. However ,  
since (7) is only tested in stage 1 we have to deal with the case where the 
iteration finishes in stage 2, and the last switch takes place for k < K~. Therefore,  
suppose that every  iteration with k - Kl is a stage 2 iteration. Then the active set 
is constant for k>-K~,Ak =-A, say. We must prove that A = A * .  Since (11) is 
always true for k-> K1 the equation (6) must hold for x = x*. Because of (12) 
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some of the indices in A belong to A*, and then the last set of equations in (6) 
implies that A _C A*. But since all functions f / , j  ~ A*, are strongly active we 
cannot  have A C A* because of (i) in Proposit ion 1. Therefore  Ak = A = A* for 
k -> KI and the first part of Theorem 2 is proved. 

Next  suppose that there is only a finite number of stage 2 iterations: every  
iteration with index k -> K2-> K~ is a stage 1 iteration. Since Ak = A* for  k -> Kj 
(9) is true for k --- K3 ~ K2.  Since equations (3) are satisfied at x = x* (10) is true 
for any k >- K 4 -  K3. Since no shift to stage 2 takes place for k >- K4 this means 
that (8) never holds for k->/(4. But since the convergence of {Xk} implies that 
A k ~ 0  it follows from Lemma 2 that (8) will be satisfied unless s* = n + I. Thus 
s* = n + 1. The theorem is now a consequence of Proposit ion 2 since it was 
proved in [17] that the iteration used in stage 1 has quadratic convergence under 
the Haar-condition. 

In our numerical experiments with the algorithm we have noticed that when 
the Haar-condit ion holds at the limit point x* of the iteration then no shift to 
stage 2 takes place, i.e. the iteration is identical to that of [15]. It is a 
consequence of Theorem 2 that if the Haar  condition does not hold at a 
non-degenerate limit point of the iteration [15], then the two iterations are not 
identical: there will be infinitely many stage 2 iterations. 

Until now we have not made any assumptions about the quasi-Newton 
iteration used in stage 2. In the following theorem we assume that the stage 2 
iteration is locally and linearly convergent  in the sense of Dennis and Mor6 l1 1]: 
the iteration Zk+~ = Zk-  IBk~r(zk) is locally and linearly convergent at z* if there 
exists E > 0 and ~ > 0 such that Ilz0- z*ll < E and I}B0- r'(z*)[[ < ~ imply that the 

iteration is well-defined and converges linearly to z*. 

Theorem 3. Suppose that Xk converges to the non-degenerate stationary point x* 
and that the quasi-Newton iteration used is locally and linearly convergent at 
(x*,)t*).  If  there is an infinite number of stage 2 iterations, then every iteration 
from a certain point is a quasi-Newton iteration with the active set A - - A *  
provided that el in (7) is chosen small enough, that 71 in ( l l )  is close enough to l, 
and that the step length used in the finite differences of  2.2 is su~ciently small. 

Proof. It follows from Theorem 2 that we can a s s u m e  Ak-= A* for  every  k. 
Because of the continuity of f/ we can also assume that fj(Xk) <-- F(Xk) for  every  
jJ~ A* and k -> 0. 

Now suppose that there are infinitely many switches from stage 1 to stage 2. 
When a stage 2 iteration is started {)ti} is found by a least squares calculation 
(see (10)), and from (iii) of Proposit ion 1 and the continuity it follows that A i is 
close to A * , j E A * ,  when IIXk-X*ll is small. If the finite difference ap- 
proximations of 2.2 are sufficiently accurate then the conditions for local and 
linear convergence are satisfied on every  start of a quasi-Newton iteration with 
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Xk close to x*, i.e. zk = (Xk, •k) close to z* = (x*, A*). Then the quasi-Newton 
iteration will converge (at least) linearly to z* unless it is stopped. But if the shift 
is made close enough to x*, then (13) will always hold since A* > 0 (Proposition 
1), and because of the linear convergence. Also (11) will always be satisfied 
provided 7t is not less than the linear convergence constant q. Therefore no 
switch to stage 1 will take place, and thus the assumption of infinitely many 
switches is contradicted. This proves the theorem. 

Theorems 2 and 3 show that when x k converges to a non-degenerate point then 
the rate of convergence is at least as good as the rate of convergence of the 
method used in stage 2 provided we use a locally and linearly convergent 
quasi-Newton iteration. Broyden's method, [2], has the required properties, and 
if _r'(x*, A*) is regular and r satisfies a Lipschitz condition at (x*, A*), then the 
rate of convergence is superlinear as shown in [3]. Since equations (6) can be set 
up such that the Jacobian is symmetric it is also possible to use Powell's 
symmetric Broyden update [18] which has superlinear convergence under the 
conditions mentioned above (see [3]). Under a few additional assumptions we 
will also have superlinear convergence when using the DFP or the BFGS update 
[3]. 

4. Numerical examples 

The algorithm which has been implemented and tested, differs slightly from 
the one, which is described in the previous chapters. 

The algorithm, which has been tested, minimizes the objective function 

F ( x )  =- max [f/(x)[. 
l<_i<_m 

Therefore in Examples 3 and 4 some rather large constants have been introduced 
in the residuals Yi to prevent negative functions from determining P'. 

The matrix B approximating the Jacobian matrix r' in stage 2 is updated using 
Powell's symmetric Broyden update. However, some parts of r' consist of only 
first derivative information, which is available, so in order to utilize this 
information, these parts of r' are substituted in B. This modification of the 
update turned out to improve convergence properties, as might be expected. 

The requirement, that Ilrll~ must be reduced by a factor at least ~ in each 
stage-2 iteration is dispensed in the first stage-2 step after a switch: Ilrll~ is 
allowed to be increased by a factor up to 3. This does not influence the 
convergence properties. 

The performance of the algorithm is illustrated through five mathematical 
test examples and one set of examples originating from network design. We have 
chosen the parameters in the optimizations as described below. 



J. Hald, K. Madsen/ Methods [or minimax optimization 59 

e~ in (7) and e2 in (10) are chosen by the algorithm in the following way: 

~T(Xk) = 0 .01~'(Xp,  

_ _I0 .5  mia  IIST / )ll , s, > 1, 

Ez(Xk) [O.OlfT(Xk)/Amax, Sk= l 

where Amax is a user specified upper bound on the stage-2 step lengths, and Sk is 
the number of elements in the current active set Ak. 

The step length t used during numerical differentiations has been given the 
value t = 10 -5 everywhere. Also Amax = 1 in all cases. In Examples 1-5 we have 
used A0 = 0.5 and in 6 and 7 A0 = 0.1. 

In Table ! the performance of the new algorithm, the stage 1 algorithm alone 
and some other algorithms are compared. 

The computer used is an IBM 370/165, the calculations being performed in 
double precision, i.e. 14 hexadecimal digits. 

Example 1. This is the set of functions 

f ~ ( x )  = 10, (x2 - x~), 

A ( x )  = 1 - x j .  

We minimize the function # ( x ) =  maxlf;(x)l which has the same banana-shaped 
valley as the Rosenbrock function [20]. Starting point (-1.2,  1) 7, solution (1, 1) a', 
where #(x)  = 0. 

Table 1 
Number of function evaluations. Note that in [6] second derivatives are required 

This algorithm 

Example n m Stage2 ~=~ .10  -14 e=½.10  -5 

Other algorithms, e->~. 10 -5 

Ill [41 [51 [6] [8] [15] [16] 

I 2 2 0 21 21 21 21 
II 5 21 0 12 10 10 10 
III.l 7 5 1 28 23 150 106 490 83 
III.2 7 5 2 33 29 61 77 531 84 
IV.I 4 4 1 19 16 37 64 22 44 
IV.2 4 4 1 21 18 52 37 48 
V 4 20 1 28 25 50 60 
VI.1 6 11 2 51 46 155 67 80 707 48 
VI.2 6 11 1 26 21 95 162 67 253 29 
VII. 1 8 11 3 76 73 2300 262 
VII.2 8 11 4 81 74 2466 217 
VII.3 8 11 2 58 53 61 31 
VII.4 8 11 1 33 26 1097 165 
VII.5 8 11 2 83 74 1680 320 
VII.6 8 11 2 67 57 998 252 
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Example  2. This is the set of  func t ions  

xl + xEYi -eYe, j = l ,  21 
f j ( x )  = 1 + 2 3 . . . .  

x sY i  + x n Y i  + x s y i  

where  Ys = -1(0 .1)1 ,  and P is minimized.  The  example  was used  in [15]. Start ing 
point  (0.5, 0, 0, 0, 0) r, solut ion (0.999878, 0.253588, -0 .746608,  0.245202, 
-0 .037490)  T, where  P ( x )  = 0.000122. 

Example 3. We cons ider  the nonl inear  p rogramming  problem:  

minimize f ( x ) =  

subjec t  to g2(x) = 

g 3 ( x )  = 

g4(x) = 

g s ( x )  = 

(X~ - 10) 2 + 5(X2 -- 12) 2 + x 4 + 3(x4 -- 1 1) 2 + 10x56 + 7X26 

+ X~ -- 4X6X7 -- 10X6 -- 8X7 + 1000, 

--2X] -- 3X~ -- X3 -- 4X 2 -- 5X5 + 127 >-- 0, 

--7X~ -- 3X2 -- 10X] -- X4 + X5 + 282 --> 0, 

--23X~--X2--6X2+8XT+ 196 >--0, 

- 4 x ~ -  x 2 + 3x~x2 - 2 x  2 -  5x6 + 1 lx7 --> 0 

which is used in [5]. Fol lowing [5] the solut ion is found  by  minimizing the 
minimax ob jec t ive  F where  f~ = f and fi = f - 1 0 g ~ ,  i = 2, 3, 4, 5. In 3.1 the 
starting point  is (3, 3, 0, 5, 1, 3, 0) r as in [5] and in 3.II it is (1, 2, 0, 4, 0, 1, 1) r as 
in [6]. The  solut ion is (2.33050, 1.95137, -0 .47754,  4.36573, -0 .62449,  1.03813, 
1.59423) T, where  F ( x )  = 680.63. 

Example 4. This  is the R o s e n - S u z u k i  problem,  [19]: 

minimize f ( x )  = x~ + x 2 + 2 x  ] + x 2 -  5 x l  - 5x2 - 21x3 + 7x4 + 100, 

subjec t  to g z ( x )  = - x ~ -  x~ - x 2 - x~  - x t  + x2 - x s  + x4 + 8 >- O, 

g s ( x )  = - x  2 - 2 x  2 - x 2 - 2 x ~  + x l  + x4 + 10 -> 0, 

g 4 ( x )  = - - X  2 - -  X 2 - -  X 2 - -  2xl + x2 + X4 + 5 ~> 0 .  

The  solut ion is found  by  our  minimax algori thm af te r  having used the 
t rans format ion  descr ibed  in Example  3. In example  4.1 we use  the starting point  
( 0 , 0 , 0 , 0 )  r, and in 4.I1 the starting point  is ( 2 , 2 , 5 , 0 )  T. The  solut ion is 
(0, 1,2, - 1) T, w h e r e / ( x )  - 100 = - 4 4 .  

Example  5. This  is a minimax vers ion  of  the 
minimax prob lem is to 

minimize F ( x )  = max I/i(x)l, 
i<_i<_m 

where  

Davidon  2 problem,  [9]. T h e  

f i ( x )  = (Xl + x2ti - exp(ti)) z + (xs + x4 sin(tD - cos(tl)) 2, 

ti = 0.2i, m = 20, n = 4. 
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The starting point is (25, 5, -5 ,  -1) x and the solution is (-12.24368, 14.02180, 
-0.45151, -0.01052) r, where ff'(x)= 115.70644. 

Example 6. As in [16] we use minimax optimization for minimizing the maximum 
reflection coefficient of a 10:1 three-section transformer with 100% bandwidth. 
We use the same two starting points as in [16]. 

Example 7. The same problem as in Example 6 except that the transformer has 
four .~ 'ctions. We use the same six starting points as in [16]. 

The results are shown in Table 1. In the 5th and 6th column it is shown how 
many function (including gradient) evaluations was required to obtain 14 and 5 
decimals accuracy respectively. The 4th column gives the number of times a 
switch to stage 2 is made. The rightmost 7 columns give the number of function 
evaluation used by other algorithms to solve the same problems. In none of 
these cases the accuracy is better than 5 decimals. The algorithm of [15] is 
identical to the new algorithm, if in this no switch to stage 2 is allowed. 

The first two examples are regular, i.e. the Haar-condition is satisfied at the 
solution, and no switch to stage 2 is made. Notice that the algorithm passes 
through the valley of Example 1 without detecting a non-Haar solution. In all the 
examples a fast final convergence was observed which means that the true active 
set has been identified in the Examples 3-7 all of which represent non-Haar 
solutions. 

5. Conclusion 

It has been proved (Theorem 2 and Theorem 3) that if there is convergence to 
a non-degenerate stationary point and if a couple of constants are properly 
chosen, then either we get quadratic final rate of convergence in stage 1 
(Haar-solution) or the iteration will be a pure quasi-Newton iteration from some 
point (non-Haar solution), provided the quasi-Newton method used in stage 2 is 
locally and linearly convergent. If Powell's symmetric Broyden (PSB) formula 
was used, then the quasi-Newton algorithm would be locally and superlinearly 
convergent. It is easy to show, that our modified PSB quasi-Newton method is 
locally and linearly convergent and our experiments have indicated that it is 
slightly faster than the straightfoward use of PSB. Further it has been proved 
(Theorem 1) that if there is convergence, then the limit point is a stationary 
point. Our numerical experiments seem to confirm these theoretical results. 
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