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A characterisation of totally unimodular matrices is derived from a result of Hoffman and 
Kruskal. It is similar in spirit to a result of Baum and Trotter. Its relation with some other 
known characterisations is discussed and in the particular case where the matrices have (0, 1) 
entries, we derive some properties of the associated unimodular hypergraphs. Similar results 
for balanced and perfect matrices are also reviewed. 
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1. Introduction 

The  purpose  of  this note  is to rev iew and establish some character isa t ions  of  

totally un imodula r  (t.u.) matrices.  The  main tool  for  this will be the theorem of  

Hof fman  and Kruskal  on t.u. matrices.  
Here  [ tJ (resp. [ t ] )  will deno te  the lower  (resp. upper)  integer part  of  real 

number  t. I f  c is a vec to r  o f  real number s  ci, then [ cJ (resp. [ c ]  ) will denote  the 

vec to r  whose  c o m p o n e n t s  are [ci] (resp. [ci]). 

Recall  that  a matrix A is t.u. if the de terminant  of  every  square  submatr ix  of  A 
has value 0, + 1 or  - 1 .  

Given an m × n  matr ix A and an m - v e c t o r  b, we define P ( A , b ) =  

{x l A x < - b ;  x >O}. 
Baum and Trot te r  have obta ined  the fol lowing charac ter i sa t ion  o f  t.u. matr ices  

[21. 

Theorem 1.1. Let A be an m × n matrix of  integers; the following statements are 
equivalent: 

(1) A is t.u., 

(2) for each integer m-vector b and for  each integer k >- l, every integer vector 
x of  P (A ,  kb) is the sum of  k integer vectors yi o f  P (A ,  b). 

In the next  sect ion we will der ive  a different charac ter i sa t ion  which appears  

14 
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implicitly in Baranyai [1]; for doing this we will mainly use the well-known 
characterisation of t.u. matrices given by Hoffman and Kruskal [9]. 

Theorem 1.2. Let A be an m × n matrix of  integers; the following statements are 
equivalent. 

(a) A is t.u., 
(b) for  each integer b, P(A ,  b) has only integer extreme points. 

Another characterisation has been given by Ghouila-Houri [7]. Before stating 
it, let us define for any real m-vector c a polyhedron Q(A, c) where A is an 
m × n matrix of integers by 

Q(A, c) = {x I [c] -< Ax  <- [cl}; x -> 0}. 

Notice that if c is an integer, then Q(A, c )= {x l A x  = c; x->0}. 

Theorem 1.3. [7]. Let  A be an m x n matrix of  integers. Then the following two 
statements are equivalent. 

(i) A is t.u., 
(ii) for each integer m-vector b, every (0, 1) vector x in Q(A, b) is the sum of 

two (0, 1) vectors yl, y2 such that yi ~ Q(A, ~b) for  i = 1, 2. 

In fact (ii) was given by Ghouila-Houri in the following form: Any subset J of 
columns may be partitioned into two subsets J~, J2 such that for each row s, 

Condition (ii) in Theorem 1.3 is equivalent to the following: For each (0, 1) 
vector x there exists a (0, + 1, - 1) vector z such that z --- x (mod 2) and asz = 0 if 
asx =- 0 (mod 2) or asz = - 1 otherwise (s = 1 . . . . .  m). Here as represents row s 
of A. This condition is quite close to the condition given by Padberg [12] where 
one considers all (0, + 1, - 1) vectors x. 

A simple proof of Theorem 1.3 based on results of Camion was given by 
Tamir [13]. 

Finally Section 3 will contain a discussion of these characterisations in terms 
of hypergraphs. Relations with balanced and perfect matrices will be mentioned. 

2. Properties and characterisation of t.u. matrices 

A sequence (/31, ~ 2  . . . .  , /3k) of real nonnegative numbers with Y. kl  /3~ = 1 is 
called bicomposed if by repeatedly grouping any number of equal terms, one 
may reduce it to a sequence consisting of at most two terms; for instance (0.3, 
0.3, 0.2, 0.1, 0.05, 0.05) is bicomposed (it can be reduced to (0.6, 0.4)). 
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W e  shall need  the  fo l lowing p re l imina ry  result .  

Lemma 2.1. Let A be an m × n t.u. matrix, c a real m-vector and k a positive 
integer. Then any integer x in Q(A,  c) is the sum of k integer vectors yi such that 
yi E Q(A, ( l lk)c)  for i = 1 . . . . .  k. 

Proof .  W e  will use  induct ion  on k;  the  resul t  is tr ivial  for  k = 1, so we  a s s u m e  
tha t  it holds  fo r  all integers  smal ler  than  k. L e t  x ° be  an integer  v e c t o r  of  Q(A, e) 
and let b = Ax  ° (i.e. [el <-- b -< [el.  T h e n  y = ( l / k )x  ° is in 0 = Q(A, (Ilk)b) N 
{x ] x -< x°}; s ince (A, 1) is t.u. there  exis ts  an in teger  poin t  yt in 0 .  

No t i c e  tha t  yl is in Q(A,  (Ilk)e),  because  Q(A,  (Ilk)b)C_ Q(A, (Ilk)c); in order  
to show this,  we  have  to s ta te  the  fo l lowing inequali t ies:  

[(Ilk)el <- [(llk)bJ, [(llk)bl <- [(Ilk)el. (2.1) 

I f  fo r  s o m e  s, b, = [csJ, t hen  [(l /k)bd = [(1/k)[(k/k)c, ll = [(l/k)c,l  and if b~ = [csl, 
t hen  [(l/k)bsl>-[(l/k)cd. H e n c e  the  first inequal i ty  (2.1) is es tabl ished.  T h e  
second  one  is p r o v e d  in the  s a m e  way .  

N o w  let y = x ° - y ~ ;  c lear ly  y - 0  and y is integer.  L e t  b ~= b - A y e ;  then  
y E Q((A, b~). By the induct ion  a s sumpt ion ,  y is the  sum of  k - 1 in teger  vec to r s  
y2 . . . . .  yk wi th  y i E  Q ( A , ( I I ( k - 1 ) ) b  1) fo r  i =  2 . . . . .  k. W e  h a v e  to show tha t  

Q(A, ( l / (k  - l))b ~) C_ Q(A, (Ilk)e),  i.e., 

[ ( l / ( k  - 1 ) )b ' ]  <-- [ ( l / k ) c l ,  [ ( I l k  - l ) ) b ' l  ~ t ( l / k ) c l .  (2.2) 

L e t  us es tabl i sh  the  first inequal i ty  (the second  one  could  be  hand led  in the  s ame  

way) .  

[ ( l / (k  - 1))b'] = [( l](k - 1))(b - Ay ' ) I  

<- [ ( l / (k  - 1))(b - [(1/k)b])] 

= [( l / (k  - 1))(b + [ - (Ilk)b])] 

= [( l / (k  - 1))[((k - 1)/k)b]] 

= [(1/k)b| <- |(Ilk)el.  

T h e  last  inequal i ty  holds  f r o m  (2.1). Thus  yi ~ Q(A, (I lk)e) fo r  i = 1 . . . .  , k. 

Theorem 2.1. Let  A be a t.u. m × n matrix, b an integer m-vector and /3 = 
(/31 . . . . .  /3k) a bicomposed sequence. Then any integer vector x in Q(A, b) is the 
sum o1: k integer vectors yi with yi ~ Q(A,/3ib) for i = 1 . . . . .  k. 

R e m a r k  2.1. I t  is no t  k n o w n  w h e t h e r  a d e c o m p o s i t i o n  of  an integer  vec to r  x in 
Q(A, b) into k in teger  yi E Q(A,/3/b) exis ts  fo r  any  s equence  (/3i . . . . .  /3k) of  real  
nonnega t ive  n u m b e r s  wi th  sum 1. 

H o w e v e r  g iven  k pos i t ive  in tegers  n~, n2 . . . . .  nk with ~k=~ ni = p, it fo l lows  
immed ia t e ly  f r o m  T h e o r e m  1.1 tha t  any  in teger  v e c t o r  x in P(A ,  pb) is the sum 
of  k in teger  v e c t o r s  yi wi th  y / ~  P(A ,  nib) fo r  i = 1 . . . . .  k. 
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Proof of Theorem 2.1. L e t  us a s s u m e  tha t / 3  m a y  be r educed  to (yl,  3~2) and let x 
be  an integer  v e c t o r  of  Q ( A ,  b); then  y = y l x  satisfies 

[Tlb l<-Ay<-[~/ lb] ,  O<-y<-x .  

H e n c e  there  exis ts  an in teger  )71 in Q(A,  3qb) with )71 -< x;  let )72 = x -  )71 -> 0. W e  

have  A ~  2 = A ( x  - yJ) < b - [3qbJ = [(1 - 3q)b] = [y2b] and  s imilar ly  A y  2-> [y2b], 
i.e., )72 ~ Q(A,  y2b). 

N o w  star t ing f r o m  (3'1, Y2) we  will get  fl by  r e p e a t e d l y  dividing each  t e rm of  
the s equence  into a g iven  n u m b e r  of  equal  t e rms .  L e t  us e x a m i n e  the  genera l  
s tep of  this p rocedure .  

M o r e  prec i se ly  suppose  we  s tar t  f r o m  a s equence  8 = (81 . . . . .  By) and  we  get  a 
s e q u e n c e  ¢ = (~1 . . . . .  %) by  split t ing 81 into r equal  t e rms  E1 . . . . .  Er (i.e. E,. = ,~l/r 

fo r  i = 1 . . . . .  r). 
I f  we  a s s u m e  that  we  have  ob ta ined  a d e c o m p o s i t i o n  of  x into p in teger  

vec to r s  z ~ . . . . .  z p with 

z I E Q ( A , S i b )  f o r i = l  . . . . .  p 

we  have  to show that  z I can  be d e c o m p o s e d  into r in teger  vec to r s  w ~ . . . . .  w r with 

w" E Q(A,  eib) fo r  i = 1 . . . . .  r. 

Acco rd ing  to L e m m a  2.1, z I is the sum of  r in teger  vec to r s  w i such that  
w ~ E Q(A,  (~i /r)b)  = Q(A,  Eib) fo r  i = 1 . . . . .  k, So we will finally get  the requi red  

d e c o m p o s i t i o n  of  x. 

Theorem 2.2. L e t  A be an m x n ma t r i x  o f  integers ; the  f o l l owing  two  s t a t e m e n t s  

are equivalent .  

(i) A is t.u., 
(ii) f o r  each integer m - v e c t o r  b and  f o r  each integer k >- 1, every  integer x in 

Q ( A ,  b) is the s u m  o f  k integer vectors yi such  tha t  y i @  Q ( A , ( 1 / k ) b )  f o r  

i = 1  . . . . .  k. 

Proof. F r o m  T h e o r e m  2.1, (i) impl ies  (ii) because  (1/k, . . . .  1/k) is b i c o m p o s e d .  
T h e  c o n v e r s e  is a d i rect  c o n s e q u e n c e  of  T h e o r e m  1.3. 

3. t.u., balanced and perfect matrices 

As can  be  expec t ed ,  similar  cha rac te r i sa t ions  can  be  g iven  fo r  b a l a n c e d  and  
fo r  pe r f ec t  mat r ices .  W e  will use  the t e r m i n o l o g y  of  Berge  [4] fo r  hype rg raphs .  

A mat r ix  of  ze ros  and  ones  is ba lanced  if it does  not  con ta in  a n y  odd 
s u b m a t r i x  with r o w  sums  and co lumn  sums  equal  to 2 [5]. 

I t  was  shown  b y  Berge  [5] tha t  A is ba l anced  iff P ( A ' ,  e') has  on ly  in teger  
e x t r e m e  points  (for  each  submat r ix  A '  o f  A and fo r  each  c o m p a t i b l y  d imen-  
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sioned vector e' with all components equal to 1). A hypergraph associated with a 
balanced matrix will be called balanced as well. 

Perfect matrices can be defined as cliques-nodes matrices of perfect graphs 
[11]; it has been shown that a matrix is perfect iff P ( A , e )  has only integer 
extreme points where e has all components equal to 1. 

The results of the previous sections on t.u. matrices can be summarized as 
follows. 

Theorem 3.1 (total unimodularity). Let A be a m × n matrix of  integers; the 
following statements are equivalent. 

(tuO) A is t.u., 

( tul)  for each integer m-vector b and for  each integer k ~  l, every integer 
vector x of  P(A ,  kb) is the sum of  k integer vectors of  P (A ,  b), 

(tu2) for each integer m-vector b and for each integer k ~ 1, every integer 
vector x of  Q(A,  b) is the sum of  k integer vectors yi satisfying 

c<_Ay~<_d, O<_y i 

where c~ = Lbs/kJ and d~ = Fb~/k] <- 1 (s = 1 . . . . .  m). 
For balanced matrices, we have: 

Theorem 3.2 (balanced matrices). Let A be a m × n matrix of zeros and ones ; the 
following conditions are equivalent. 

(bO) A is balanced, 
(bl) for each integer k >_ 1 and for  each submatrix A', o f  A, every integer 

vector x of  P(A ' ,  ke') (where e' is a compatibly dimensioned vector  with all 
components equal to l) is the sum of k integer vectors of  P(A',  e'), 

(b2) for each integer k ~ 1 and for  each integer m-vector b, every integer vector 
x of  Q(A, b) is the sum of k integer vectors yl 
satisfying 

e<_Ayi<_d, O<_y ~ 

where 

c~=Lb~/gJ and ds-=rb~/kl ifb~<<-k, 
c~ = l and d~ = oo if b~ > k. 

The corresponding statements for perfect matrices are: 

Theorem 3.3 (perfect matrices). Let A be an m × tz matrix of  zeros and ones ; the 
following conditions are equivalent. 

(pO) A is perfect. 
(pl)  for each integer k >- 1, every integer vector x of  P (A ,  ke) (where e has 

components equal to 1) is the sum of  k integer vectors of  P (A ,  e). 
(p2) for each integer m-vector b and [or each k >- maxsbs, each integer vector x 
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of Q(A,  b) is the sum of  k integer vectors yi satisfying 

c<_Ayi<_d, O<_y i 

where cs = [bdkJ, ds = ~bdk] <- 1 (s = 1, ..., m). 

If A is a (0, 1) matrix, we may associate with it a hypergraph H defined as 
follows: each row of A corresponds to an edge of H and each column of A to a 
node of H ;  a~i = 1 ¢:> edge E~ contains node j. If A is t.u., hypergraph H will be 
called a unimodular hypergraph. Condition (tu2) has an immediate interpretation 
in terms of node coloring in H. We define an equitable k-coloring (see [4, 14]) of 
the nodes of H to be a partition of the node set X of H into k subsets X~ . . . . .  Xk 
such that for each edge E~ and for each c (1 -< c -<- k) 

llEsl/kJ <-IX,~ n Es I <- [IEsl/k[. 

Now if in (ii) we choose an integer x = (l,  1, ..., l) (this implies that b~ -- ~ j  asj = 
lEvi), then any decomposit ion of x into k integer yi ~ Q(A, (1/k)b) will define an 
equitable k-coloring of the nodes of H (yi will be the characteristic vector  of X~ 
i.e. y} = I if node j is in X/). So we have: 

Corollary 3.1 [14]. A unimodular hypergraph has an equitable k-coloring of  
nodes for  each k >- 2. 

Furthermore Theorem 1.3 applied to hypergraphs means that: A hypergraph H 
is unimodular iff each subhypergraph H'  has an equitable bicoloring. (H '  is 
obtained from H by deleting some nodes, i.e. by removing some columns of A.) 

Remark 3.1. By replacing in Theorem 3.1 condition ( tu l )  by a condition ( tul) '  
obtained by setting k = 2 and by considering only (0, l) vectors as in Theorem 
1.3, we would get the same characterisation of unimodular hypergraphs: 

(tu2)' for  each integer m-vector b, every (0, l) vector x in P(A,  2b) is the sum 
of  two (0, l) vectors yl, y2 with yi E P(A ,  b). 

In terms of unimodular hypergraphs, this condition can be expressed as 
follows: Given any integer m-vector b, any subset S of nodes verifying IS N 
Esl-< 2bs for each edge Es may be partitioned into two subsets S~, $2 such that 
IS inEsl<-bs  for each edge Es and for i = l ,  2. If S is fixed, choosing the 
smallest possible values for  bs, i.e. bs = [IS n EsI/2], ($1, $2) defines an equitable 
bicoloring of the subhypergraph H '  of H constructed on S. 

One should observe however  that if k > 2, a k-coloring (Xt . . . . .  Xk) satisfying 
IXc n Es I <- IlEal/k] for each edge E~ and for each c (1 -< c -< k) is not necessarily 
equitable. 

Proof of Theorem 3.2. Condition (b2) for a balanced hypergraph H means that 
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for each integer k -> 2, it has a good k-coloring, i.e., a partition of the node set 
into k subsets X~, X2 . . . . .  Xk such that for each edge Es and for each color i 
(1 -< i -< k) I{i IX,- n Es~ I~}[ = min(k, IE~l) (Berge [6] has shown that (b0) f f  (b2). 

Condition (b2)' obtained by considering only (0, 1) vectors x and by setting 
k = 2 would mean that any subhypergraph of H has a good bicoloring. It is also 
known that (b2) f f  (b0). 

Similarly condition (bl) '  means that in every partial hypergraph each 2- 
independent set of nodes is the sum of two 1-independent sets of nodes (a 
p-independent set of nodes is an assignment of a value p(x)E{0,  1 . . . . .  p} to 
each node x in such a way that for each edge E, x~x~Es p(x)<-p; if p = 1, we 
have a usual independent (or stable) set). 

It is known that multiplying the nodes of a balanced hypergraph still gives a 
balanced hypergraph; since a balanced hypergraph with rank k (i.e. max~lE~l = 
k) has strong chromatic number k [4], we have ( b 0 ) f f  (bl). 

For showing (b 1 ) ~  (b0), we may assume that A is not balanced. Hence there 
exists a submatrix A' of A such that P(A',  e') has a noninteger extreme point x*. 
Since all entries in A' are integers, we may choose an integer k >-1 such that 
x '= kx* is an integer point in P(A',  ke'). By assumption x' is the sum of k 
integers yi with yl ~ P(A',  (1/k)ke') = P(A',  e'); so x* = (l/k) ~'.k=l yi. Since x* is 
an extreme point, we must have x* = yl . . . . .  yk; this is not possible because x* 
is not integer while all yi 's are. Hence A is balanced. 

Proof of Theorem 3.3. As for balanced matrices, the equivalence of (p0) and (p2) 
is easily established: (p2) restricted to (0, 1)-vectors x and to k = maxs bs means 
that for any subhypergraph H '  of H, the strong chromatic number is equal to the 
rank in H ' ;  or if A is the clique-matrix of a perfect graph G, then for any 
subgraph G', the chromatic number 7(G') is equal to o~(G') the maximum 
cardinality of a clique in G'. 

For showing (p 1) f f  (p0), we may proceed exactly as in the proof of Theorem 
3°2. 

Conversely, if A is the clique-matrix of a perfect graph, then any integer 
vector x of P(A, ke) can be considered as the incidence vector of a subset of 
nodes in a graph kG obtained from G by multiplying its nodes by k. kG and its 
subgraphs are perfect. Since x ~ P ( A ,  ke), no clique of the corresponding 
subgraph of kG has more than k nodes, hence it can be colored with at most k 
colors; this gives the required decomposition of x. 

Another way of showing that (p0) f f  (p 1) would be to apply a recent result of 
Baum and Trotter [3] concerning the decomposition property of points in lower 
comprehensive polyhedra. Essentially if A is the clique-node incidence matrix of 
a perfect graph, then for any nonnegative integer vector w, 

min{ly [ yA  >- w; y >- 0 integer} = min{ly I yA  >- w; y >- 0}. 
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This is equivalent  to saying that fo r  any  posi t ive integer  k any  integer x in 
P ( A ,  ke)  is the sum of  k integer yi with yi ~ P ( A ,  e). 

As discussed  by  L o v a s z  [10], hyperg raphs  associa ted  with per fec t  matr ices  

have duals which  are normal .  Condi t ion  (p l) res t r ic ted  to k = 2 and to (0, 1) 

vectors  means  that  in H itself (but not  necessar i ly  in its partial hypergraphs)  

each 2- independent  set o f  nodes  is the sum of  two 1- independent  sets o f  nodes .  
This is equivalent  to the condi t ion s ta ted by  L o v a s z  ([10], l emma 1): each  

2-matching of  H *  (dual o f  H )  is the sum o f  two l -matchings .  
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