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A characterisation of totally unimodular matrices is derived from a result of Hoffman and
Kruskal. It is similar in spirit to a result of Baum and Trotter. Its relation with some other
known characterisations is discussed and in the particular case where the matrices have (0, 1)
entries, we derive some properties of the associated unimodular hypergraphs. Similar results
for balanced and perfect matrices are also reviewed.
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1. Introduction

The purpose of this note is to review and establish some characterisations of
totally unimodular (t.u.) matrices. The main tool for this will be the theorem of
Hoffman and Kruskal on t.u. matrices.

Here | t] (resp. [ t]) will denote the lower (resp. upper) integer part of real
number t. If ¢ is a vector of real numbers ¢;, then | ¢| (resp. [ ¢]) will denote the
vector whose components are [ ¢;] (resp. [¢;]).

Recall that a matrix A is t.u. if the determinant of every square submatrix of A
has value 0, +1 or —1.

Given an mXxXn matrix A and an m-vector b, we define P(A,b)=
{x I Ax=<b; x=0}.

Baum and Trotter have obtained the following characterisation of t.u. matrices

[21.

Theorem 1.1. Let A be an m X n matrix of integers; the following statements are
equivalent:

(1) Aistu.,

(2) for each integer m-vector b and for each integer k = 1, every integer vector
x of P(A, kb) is the sum of k integer vectors y' of P(A, b).

In the next section we will derive a different characterisation which appears
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implicitly in Baranyai [1]; for doing this we will mainly use the well-known
characterisation of t.u. matrices given by Hoffman and Kruskal [9].

Theorem 1.2. Let A be an m X n matrix of integers; the following statements are
equivalent.

(@) Ais tu.,

(b) for each integer b, P(A, b) has only integer extreme points.

Another characterisation has been given by Ghouila-Houri {7]. Before stating
it, let us define for any real m-vector ¢ a polyhedron Q(A, ¢) where A is an
m X n matrix of integers by

Q(A, o) ={x|le] = Ax =[c]}; x = 0}.
Notice that if ¢ is an integer, then Q(A, ¢) = {x l Ax=c¢;x =0}

Theorem 1.3. (71. Let A be an m X n matrix of integers. Then the following two
statements are equivalent.

G Aistu.,

(ii) for each integer m-vector b, every (0, 1) vector x in Q(A, b) is the sum of
two (0, 1) vectors y', y* such that y' € Q(A,3b) fori=1,2.

In fact (ii) was given by Ghouila-Houri in the following form: Any subset J of
columns may be partitioned into two subsets J;, J, such that for each row s,

Z as; — 2 as;

ien i€n,

=1

Condition (ii) in Theorem 1.3 is equivalent to the following: For each (0, 1)
vector x there exists a (0, +1, —1) vector z such that z = x (mod 2) and a,z =0 if
ax =0 (mod 2) or e,z = +1 otherwise (s =1, ..., m). Here «, represents row s
of A. This condition is quite close to the condition given by Padberg [12] where
one considers all (0, +1, —1) vectors x.

A simple proof of Theorem 1.3 based on results of Camion was given by
Tamir [13].

Finally Section 3 will contain a discussion of these characterisations in terms
of hypergraphs. Relations with balanced and perfect matrices will be mentioned.

2. Properties and characterisation of t.u. matrices

A sequence (Bi, B2, ..., B) of real nonnegative numbers with YL, B, =1 is
called bicomposed if by repeatedly grouping any number of equal terms, one
may reduce it to a sequence consisting of at most two terms; for instance (0.3,
0.3, 0.2, 0.1, 0.05, 0.05) is bicomposed (it can be reduced to (0.6, 0.4)).
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We shall need the following preliminary result.

Lemma 2.1. Let A be an m X n t.u. matrix, ¢ a real m-vector and k a positive
integer. Then any integer x in Q(A, c) is the sum of k integer vectors y' such that
y e QA, (/k)e) fori=1, ...,k

Proof. We will use induction on k; the result is trivial for k = 1, so we assume
that it holds for all integers smaller than k. Let x° be an integer vector of Q(A, ¢)
and let b= Ax" (ie. lc)=b=[c). Then 7= (1/k)x" is in Q= Q(A, (1/k)b)N
{x | x = x%; since (A, I) is t.u. there exists an integer point y! in Q.

Notice that y' is in Q(A, (1/k)c), because Q(A, (1/k)b) C Q(A, (1/k)c); in order
to show this, we have to state the following inequalities:

W(/lel=i(1/k)bY,  [(k)bI=<[(1/k)cl. @.1

If for some s, b, = |c,], then {(1/k)b,] = I(1/K)(kIk)c, ]l = {(1/k)c, ] and if b, ={c,]),
then {(1/k)b,)=1(1/k)c,]. Hence the first inequality (2.1) is established. The
second one is proved in the same way.

Now let y=x°—y!; clearly y=0 and y is integer. Let b'=b— Ay'; then
y € Q((A, b"). By the induction assumption, y is the sum of k — 1 integer vectors
y%4 ..., y* with y' € Q(A, (1/(k —1))b") for i=2,...,k. We have to show that
Q(A, (1/(k - 1))b) C Q(A, (1/k)c), i.e.,

[/ (k= 1)1 =<[(1/k)cl, /k = 1)b'| = (1/k)c). (2.2)
Let us establish the first inequality (the second one could be handled in the same
way).
[(1/(k = 1)b"1=[Q/(k ~ D)(b — Ay")]
=[(1/(k~ )b —(1/k)b))]
=[(1/(k — )b +[— (1/k)b))]
= [(1/(k ~ 1)k = D/k)b1)
=[(1/k)b1 <[(1/k)c].

The last inequality holds from (2.1). Thus y' € Q(A, (1/k)e) for i=1,... , k.

Theorem 2.1. Let A be a t.u. m xXn matrix, b an integer m-vector and B =
(Bis ..., Bx) a bicomposed sequence. Then any integer vector x in Q(A, b) is the
sum of k integer vectors y' with y' € Q(A, B:b) fori=1, ..., k.

Remark 2.1. It is not known whether a decomposition of an integer vector x in
Q(A, b) into k integer y' € Q(A, B:b) exists for any sequence (B, ..., Bi) of real
nonnegative numbers with sum 1.

However given k positive integers ny, n,, ..., n, with 3%, n; = p, it follows
immediately from Theorem 1.1 that any integer vector x in P(A, pb) is the sum
of k integer vectors y’ with y' € P(A,nb) fori=1,... k.
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Proof of Theorem 2.1. Let us assume that 8 may be reduced to (vy;, y,) and let x
be an integer vector of Q(A, b); then y = y,x satisfies

lyibl=Ay=[yb], 0<=y=x

Hence there exists an integer ' in Q(A, y,b) with ' <x; let 7’ =x—§'=0. We
have Ay?=A(x—§5)=<b—|yb]=[(1—vy)bl=[v,b] and similarly Ay*=[y,b],
e, 7€ Q(A, v:b).
Now starting from (v, v,) we will get 8 by repeatedly dividing each term of
the sequence into a given number of equal terms. Let us examine the general
step of this procedure.

More precisely suppose we start from a sequence 6 = (4, ..., §,) and we get a
sequence € = (€, ... , €,) by splitting &, into r equal terms ey, ..., € (i.e. &= &/r
fori=1,..,r).

If we assume that we have obtained a decomposition of x into p integer
vectors z', ..., z” with

Z'EQ(A,8b) fori=1,..,p
we have to show that z! can be decomposed into r integer vectors w!, ..., w" with
wEQ(A eb) fori=1,..,r

According to Lemma 2.1, z' is the sum of r integer vectors w' such that
wi e Q(A, (8//r)b) = Q(A, €b) for i =1, ..., k. So we will finally get the required
decomposition of x.

Theorem 2.2. Let A be an m X n matrix of integers; the following two statements
are equivalent.

() Ais tu.,

(i) for each integer m-vector b and for each integer k =1, every integer x in
Q(A, b) is the sum of k integer vectors y' such that y' € Q(A, (1/k)b) for
i=1,..,k

Proof. From Theorem 2.1, (i) implies (ii) because (1/k, ..., 1/k) is bicomposed.
The converse is a direct consequence of Theorem 1.3.

3. t.u., balanced and perfect matrices

As can be expected, similar characterisations can be given for balanced and
for perfect matrices. We will use the terminology of Berge [4] for hypergraphs.

A matrix of zeros and ones is balanced if it does not contain any odd
submatrix with row sums and column sums equal to 2 [5].

It was shown by Berge [5] that A is balanced iff P(A’, ¢') has only integer
extreme points (for each submatrix A’ of A and for each compatibly dimen-
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sioned vector e’ with all components equal to 1). A hypergraph associated with a
balanced matrix will be called balanced as well.

Perfect matrices can be defined as cliques-nodes matrices of perfect graphs
[11]; it has been shown that a matrix is perfect iff P(A, e) has only integer
extreme points where e has all components equal to 1.

The results of the previous sections on t.u. matrices can be summarized as
follows.

Theorem 3.1 (total unimodularity). Let A be a m X n matrix of integers; the
following statements are equivalent.

(tu0) A is t.u.,

(tul) for each integer m-vector b and for each integer k =1, every integer
vector x of P(A, kb) is the sum of k integer vectors of P(A, b),

(tu2) for each integer m-vector b and for each integer k =1, every integer
vector x of Q(A, b) is the sum of k integer vectors y' satisfying

c=Ay =d, 0<y'

where ¢, =|bJk| and d, =[bJk]<1 (s =1,..., m).
For balanced matrices, we have:

Theorem 3.2 (balanced matrices). Let A be a m X n matrix of zeros and ones; the
following conditions are equivalent.

(b0) A is balanced,

(b1) for each integer k =1 and for each submatrix A', of A, every integer
vector x of P(A’, ke') (where e' is a compatibly dimensioned vector with all
components equal to 1) is the sum of k integer vectors of P(A’, e'),

(b2) foreach integer k =1 and for each integer m-vector b, every integer vector
x of Q(A, b) is the sum of k integer vectors y'
satisfying

where
cs=| bJk| and d,=[bJk] if b;=k,
c; =1 and d; = if by > k.

The corresponding statements for perfect matrices are:

Theorem 3.3 (perfect matrices). Let A be an m X n matrix of zeros and ones; the
following conditions are equivalent.

(p0) A is perfect.

(p1) for each integer k =1, every integer vector x of P(A, ke) (where e has
components equal to 1) is the sum of k integer vectors of P(A, e).

(p2) for each integer m-vector b and for each k = maxb;, each integer vector x
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of Q(A, b) is the sum of k integer vectors y' satisfying
c=Ay'=d, 0=<y
where ¢, = | bk, d; =[bJk]<1(s=1,...,m).

If Ais a (0,1) matrix, we may associate with it a hypergraph H defined as
follows: each row of A corresponds to an edge of H and each column of A to a
node of H; a; = 1& edge E; contains node j. If A is t.u., hypergraph H will be
called a unimodular hypergraph. Condition (tu2) has an immediate interpretation
in terms of node coloring in H. We define an equitable k-coloring (see [4, 14]) of
the nodes of H to be a partition of the node set X of H into k subsets X, ..., X,
such that for each edge E, and for each ¢ (1<c¢ <k)

UE|/kl=|X. N E,| <I|E,|/k).

Now if in (ii) we choose an integer x = (1, 1, ..., 1) (this implies that b, = X; a; =
|E,|), then any decomposition of x into k integer y' € Q(A, (1/k)b) will define an
equitable k-coloring of the nodes of H (y° will be the characteristic vector of X;
i.e. yi=11if node j is in X;). So we have:

Corollary 3.1 [14]. A unimodular hypergraph has an equitable k-coloring of
nodes for each k = 2.

Furthermore Theorem 1.3 applied to hypergraphs means that: A hypergraph H
is unimodular iff each subhypergraph H' has an equitable bicoloring. (H' is
obtained from H by deleting some nodes, i.e. by removing some columns of A.)

Remark 3.1. By replacing in Theorem 3.1 condition (tu1) by a condition (tul)
obtained by setting k =2 and by considering only (0, 1) vectors as in Theorem
1.3, we would get the same characterisation of unimodular hypergraphs:

(tu2) for each integer m-vector b, every (0, 1) vector x in P(A, 2b) is the sum
of two (0, 1) vectors y', y* with y' € P(A, b).

In terms of unimodular hypergraphs, this condition can be expressed as
follows: Given any integer m-vector b, any subset S of nodes verifying |S N
E,| =2b, for each edge E, may be partitioned into two subsets S, S, such that
|S; N E,|<b, for each edge E, and for i=1, 2. If S is fixed, choosing the
smallest possible values for b,, i.e. b, =[|S N E,|/21, (S}, S;) defines an equitable
bicoloring of the subhypergraph H' of H constructed on S.

One should observe however that if k > 2, a k-coloring (X, ..., X}) satisfying
| X, N E,| <[|E,|/k] for each edge E, and for each ¢ (1 = ¢ < k) is not necessarily
equitable.

Proof of Theorem 3.2. Condition (b2) for a balanced hypergraph H means that
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for each integer k =2, it has a good k-coloring, i.e., a partition of the node set
into k subsets X, X,,..., X, such that for each edge E, and for each color i
(=i=k)l{i I X; N E;# 0} = min(k, | E,|) (Berge [6] has shown that (b0) = (b2).

Condition (b2) obtained by considering only (0, 1) vectors x and by setting
k =2 would mean that any subhypergraph of H has a good bicoloring. It is also
known that (b2) = (b0).

Similarly condition (b1) means that in every partial hypergraph each 2-
independent set of nodes is the sum of two 1l-independent sets of nodes (a
p-independent set of nodes is an assignment of a value p(x)€{0,1,...,p} to
each node x in such a way that for each edge E, erExp(x)sp; if p=1, we
have a usual independent (or stable) set).

It is known that multiplying the nodes of a balanced hypergraph still gives a
balanced hypergraph; since a balanced hypergraph with rank k (i.e. max|E,| =
k) has strong chromatic number k [4], we have (b0) = (b1).

For showing (b1) = (b0), we may assume that A is not balanced. Hence there
exists a submatrix A’ of A such that P(A’, ¢') has a noninteger extreme point x*.
Since all entries in A’ are integers, we may choose an integer k =1 such that
x'=kx* is an integer point in P(A’, ke’). By assumption x' is the sum of k
integers y' with y' € P(A’, (1/k)ke’) = P(A’, ¢'); so x* =(1/k) D%, y'. Since x* is
an extreme point, we must have x* = y! = ... = yk; this is not possible because x*
is not integer while all y'’s are. Hence A is balanced.

Proof of Theorem 3.3. As for balanced matrices, the equivalence of (p0) and (p2)
is easily established: (p2) restricted to (0, 1)-vectors x and to k = max, b, means
that for any subhypergraph H' of H, the strong chromatic number is equal to the
rank in H'; or if A is the clique-matrix of a perfect graph G, then for any
subgraph G’, the chromatic number y(G’) is equal to «(G’) the maximum
cardinality of a clique in G'.

For showing (p1) = (p0), we may proceed exactly as in the proof of Theorem
3.2

Conversely, if A is the clique-matrix of a perfect graph, then any integer
vector x of P(A, ke) can be considered as the incidence vector of a subset of
nodes in a graph kG obtained from G by multiplying its nodes by k. kG and its
subgraphs are perfect. Since x € P(A, ke), no clique of the corresponding
subgraph of kG has more than k nodes, hence it can be colored with at most k
colors; this gives the required decomposition of x.

Another way of showing that (p0) = (p1) would be to apply a recent result of
Baum and Trotter [3] concerning the decomposition property of points in lower
comprehensive polyhedra. Essentially if A is the clique-node incidence matrix of
a perfect graph, then for any nonnegative integer vector w,

min{ly | YA = w;y =0 integer} = min{ly | yAz=w;y=0}



D. de Werra/ Totally unimodular matrices 21

This is equivalent to saying that for any positive integer k any integer x in
P(A, ke) is the sum of k integer y’ with y' € P(A, e).

As discussed by Lovasz [10], hypergraphs associated with perfect matrices
have duals which are normal. Condition (p1) restricted to k=2 and to (0, 1)
vectors means that in H itself (but not necessarily in its partial hypergraphs)
each 2-independent set of nodes is the sum of two 1-independent sets of nodes.
This is equivalent to the condition stated by Lovasz ([10], lemma 1): each
2-matching of H* (dual of H) is the sum of two 1-matchings.
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