
Mathematical Programming 45 (1989) 547-566 547
North-Holland

A TOLERANT A L G O R I T H M FOR LINEARLY C O N S T R A I N E D
O P T I M I Z A T I O N CALCULATIONS

M . J . D . P O W E L L

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,
Cambridge CB3 9EW, England

Two extreme techniques when choosing a search direction in a linearly constrained optimization
calculation are to take account of all the constraints or to use an active set method that satisfies
selected constraints as equations, the remaining constraints being ignored. We prefer an intermedi-
ate method that treats all inequality constraints with "small" residuals as inequalities with zero
right hand sides and that disregards the other inequality conditions. Thus the step along the search
direction is not restricted by any constraints with small residuals, which can help efficiency greatly,
particularly when some constraints are nearly degenerate. We study the implementation, conver-
gence properties and performance of an algorithm that employs this idea. The implementation
considerations include the choice and automatic adjustment of the tolerance that defines the
"small" residuals, the calculation of the search directions, and the updating of second derivative
approximations. The main convergence theorem imposes no conditions on the constraints except
for boundedness of the feasible region. The numerical results indicate that a Fortran implemen-
tation of our algorithm is much more reliable than the software that was tested by Hock and
Schittkowski (1981). Therefore the algorithm seems to be very suitable for general use, and it is
particularly appropriate for semi-infinite programming calculations that have many linear con-
straints that come from discretizations of continua.

Key words: Convergence theory, degeneracies, linear constraints, matrix factorizations, nonlinear
optimization, semi-infinite programming.

I. An outline of the algorithm

T h i s p a p e r c o n s i d e r s a n a l g o r i t h m fo r m i n i m i z i n g a g e n e r a l d i f f e r e n t i a b l e o b j e c t i v e

f u n c t i o n { F (x) l x ~ ~Q c R ' } s u b j e c t to t h e l i n e a r c o n s t r a i n t s

a x = b j , j = l , 2 , . . . , m ,

a~x<~bj, j = m ' + l , . . . , m , (1 .1)

li<~[x]i<~ui, i = l , 2 , . . . , n ,

w h e r e S2 is t h e set o f p o i n t s t h a t s a t i s fy t h e c o n s t r a i n t s , a n d w h e r e t h e c o n s t r a i n t

g r a d i e n t s {aj}, t h e r i g h t h a n d s ides {bi} a n d t h e b o u n d s {li} a n d {ui} a re g i v e n , [x]~

b e i n g t h e i t h c o m p o n e n t o f x. I t is a s s u m e d t h a t F(x) a n d i ts first d e r i v a t i v e v e c t o r

V F (x) c a n b e c a l c u l a t e d fo r a n y x c ~2. S o m e F o r t r a n s o f t w a r e t h a t i m p l e m e n t s a n d

t h a t h e l p e d to c r e a t e t h e g i v e n p r o c e d u r e w a s w r i t t e n b y t h e a u t h o r f o r I M S L , so

p a r t i c u l a r a t t e n t i o n was g i v e n to r e l i a b i l i t y a n d r o b u s t n e s s .

548 M.J.D. Powell / Linearly constrained optimization calculations

The following preferences of the author are included in the algorithm: (1) the
preservation of feasibility, apart from the effects of computer rounding errors, after

a vector of variables has been found that satisfies all the constraints, (2) the use of
line searches to force convergence, (3) the avoidance of very small changes to the
variables due to near or actual constraint degeneracies when the variables are far

from their optimal values, (4) the employment of the matrix factorizations of
Goldfarb and Idnani (1983), and (5) the approximation of the second derivatives
of F(•) by positive definite matrices that are updated by the BFGS formula. This
section presents a brief discussion of these features that provides an outline of the

method.
Several optimization algorithms preserve feasibility when all the constraints are

linear (see, for instance, Fletcher, 1988; Gill, Murray and Wright, 1981), but the
user may provide an initial vector of variables, Xl ~R" say, that violates some
constraints. In this case our algorithm applies a standard technique, described in
Section 2, that either replaces xl by a feasible vector or recognises that the constraints
are inconsistent. Feasibility is important in software for general use, partly because
the purpose of some constraints may be to keep x away from regions of ~ where
F(x) is not defined.

Line search procedures are iterative, and each change to the variables made by -
an iteration has the form

Xk+l = Xk + ~kdk, (1.2)

where k is the iteration number, % is a positive step-length and dk is a search
direction in 0~". Our algorithm sets dk to the value of d that minimizes the quadratic

approximation

Ok(d) = F(Xk) + dTVF(xk) +½dTBkd, d 6 R", (1.3)

to F(Xk + d) subject to some linear constraints on d that are derived from expression
(1.1), Bk being a positive definite matrix that should be viewed as an approximation
to the second derivative matrix V2F(Xk) when F (-) is twice differentiable. Thus, in
the usual case when dk ~ O, the vector of variables x = xk + adk is feasible for all
sufficiently small positive c~, and we have the downhill condition

dTVF(xk) < O. (1.4)

Having generated dk ~ 0, our algorithm picks a step-length c~k that makes x~+l
feasible and that gives a reduction F(xk÷l) < F(xk) in the objective function. Careful
use of the flexibility in the choice of ~k is important to achieving convergence in
many line search algorithms for unconstrained optimization (see, for instance, Wolfe,
1969), but now the feasibility of Xk+~ imposes an upper bound on ak. In particular,

if the step from Xk to Xk + dk includes a move from the interior to the boundary of
an inequality constraint, then we have the condition ak ~< 1. Because this restriction
can cause severe inefficiencies, an important feature of our technique is that it never

deliberately puts Xk + dk on the boundary of a constraint that is satisfied as a strict
inequality at xk.

M.J.D, Powell / Linearly constrained optimization calculations 549

In order to illustrate one purpose of this remark, we consider the minimization
of the second component of x in ~2 when the boundary of the feasible region is a
regular polygon with 106 vertices on the unit circle {xl]lxll2 = 1}. I f this calculation

were solved by the simplex method for linear programming, then each iteration
would move the current vector of variables from a vertex of this polygon to the

adjacent vertex that gives a smaller value of the objective function, so very small
steps would occur even when x k is far from the solution. This inefficiency is exactly
the one that is mentioned in the previous paragraph if dk is a step from one vertex
to the next along an edge of the polygon.

Therefore in our algorithm the linear constraints on the search direction include
the condition that the step from xk to x~ + dk must not be a move towards the
boundary of any inequality constraint that has a small residual at xk. The meaning

o f " s m a l l " in practice is made precise in Section 2: it depends on a relative tolerance
parameter that is reduced automatically from a moderate value to one that is near
the precision of the computer arithmetic. We let Jk be the set of indices of inequality

constraints with small residuals at Xk, and, in order to allow bounds in this set, we
write the last line of expression (1.1) in the form

a~x<~-!~ j = m + l , . . . , m + n ,
(1.5)

a~x<~u~ j = m + n + l , . . . , m + 2 n ,

where a i = - e i _ , , and aj=ej_~_ , for m + l <~j<~rn+n and m + n + l <~j<~rn+2n
respectively, ei being the ith coordinate vector of R". Then the constraints on the
search direction of the kth iteration are the conditions

a~d=O, j = l , 2 , . . . , m',
(1.6)

a~d<~O, j ~ J k ,

all the right hand sides being zero. The idea of employing such constraints is
suggested by Polak (1971), but he does not report any numerical experiments on
the usefulness of the idea in practice. Our calculation includes a shift of the variables
onto the active constraint boundaries when the tolerance parameter reaches its least
value, but there is no other refinement of the active constraint residuals.

The most important consequence of the conditions (1.6) is that, if any of the
constraints (1.1) restricts the step-length ak, then its index is not in Jk. Therefore

the requirement that Xk+~ be feasible allows relatively large changes to the variables,
even if]l dk 11 is very small due to an unsuitable matrix Bk in the quadratic approxima-
tion (1.3). It can happen that the number of indices in Jk exceeds the number of
variables n, which distinguishes our algorithm from many other procedures for
linearly constrained optimization.

We see that the calculation of the search direction is a strictly convex quadratic

programming problem, namely the minimization of expression (1.3) subject to the
conditions (1.6). The zero right hand sides of the constraints often cause this problem
to be degenerate. We employ the quadratic programming algorithm of Goldfarb

5 5 0 M.J.D. Powell / Linearly constrained optimization calculations

and Idnani (1983) because it not only copes with the degeneracies very well but

also can take advantage of the zero right hand sides. Details are given in Section 2
and some particular points are noted now. In difficult cases most of the work of
this calculation is spent on identifying an active set of constraint indices Ik
({1, 2 , . . . , m'} w Jk) such that the search direction minimizes expression (1.3) subject

to the equations

aTd=o, i~lk, (1.7)

where the active constraint gradients {ail i c Ik} are linearly independent. An estimate

of I~ is adjusted automatically if necessary. We let Ak denote the matrix whose
columns are the gradients of the constraints of the current estimate of Ik, and mk
denotes the number of columns of Ak. The Goldfarb- ldnani procedure stores and
updates two matrices, namely an n x n full matrix Zk and an n x mk upper triangular
matrix R~ that satisfy the equations

Z~A~ = Rk, ZkZ~ = B ; ' . (1.8)

When Ak is altered, the upper triangularity of Z{Ak is recovered by premultiplying
Z~ by a suitable n x n orthogonal matrix, because this operation preserves the
identity ZkZ T = B~, t . One small change from the Goldfarb- Idnani procedure in our

algorithm is that we store and update Uk instead of Rk, where /~k = / ~ [' and /~k is
the mk x mk upper triangular matrix that is formed by deleting the zero rows of Rk.

The second derivative matrix Bk of expression (1.3) is not stored because Zk

defines Bk in a convenient way. Therefore the statement that Bk is revised by the
BFGS formula means that Zk+l is calculated to satisfy the condition that

T - 1 (Zk+lZk+l) is the matrix that would be obtained if the BFGS formula were applied
to (ZkZ'[) -~. Fortunately there is a stable way of generating Zk+j that also gives the
equation Z~.+zAk = Rk, so no further work is needed to regain the first of the equations

(1.8) after revising the second derivative approximation. No other updating formula
in the Broyden linear family possesses this property (Powell, 1988).

Our algorithm is suitable for calculations with a moderate number of variables
and very many constraints. The restriction on n is due to the full matrix Zk, but
large values of m can be treated efficiently because the search direction takes account
of all constraints with small residuals. Therefore the given procedure is recommended
for approximations to semi-infinite programming problems with an infinite number
of constraints. Such problems occur, for example, in control calculations when, for

each vector of variables, a t ime-dependent function is generated that must satisfy
certain bounds. Here it is not unusual for an iteration to change all the elements
of an active set, and then much second derivative information can be lost by those
algorithms that employ reduced second derivative matrices. Therefore the ease of

updating the Goldfarb- Idnani factorization of an approximation to V2F(.) is an
important feature of our work.

The details that are given in Section 2 include the initialization of the algorithm,
the application and adjustment of the tolerance that is used to identify small

M.J.D, Powell / Linearly constrained optimization calculations 551

constraint residuals, the termination condition, some remarks on the line search
procedure, and further attention to the quadratic programming calculation of the
search direction. More information can be found in a report that presents a Fortran
implementat ion of the procedure (Powell, 1989). Some convergence questions are

studied in Section 3. Unfortunately, unless some convexity assumptions are made,
it is not yet known whether the BFGS method for unconstrained optimization gives
IIVF(xk)]] ~ 0 when the objective function is twice continuously differentiable with
bounded level sets, so our theory has to be incomplete. We suppose that the second
derivative approximations {Bk[k= 1, 2, 3 , . . . } and their inverses are uniformly
bounded, and we prove convergence to one or more Kuhn-Tucker points in this

case, even if the constraints are highly degenerate, without assuming specifically
that the BFGS formula is employed to define each Bk+l. Finally, Section 4 gives
some numerical results that show the efficacy of the algorithm when m is large and
that provide comparisons with some other procedures for constrained optimization
calculations.

2. Several details of the algorithm

It is usual for descriptions of optimization algorithms to ignore computer rounding
errors, and mostly we follow this practice, although careful attention to such details
is essential to the development of robust computer software. Therefore some impor-

tant features of the implementation of Powell (1989) are not considered in this
section. There are even some differences between the given algorithm and the Fortran
software that are pointed out explicitly. These inconsistencies allow clearer explana-
tions of some salient points, and they yield some interesting convergence questions.

In the implementation, however, convergence questions are trivial, because the
iterative procedure is s topped automatically when it is no longer possible to decrease
the objective function. Thus the termination of the execution of the Fortran program
is an immediate consequence of the fact that the number of different values of the
objective function in any computer calculation is finite.

The algorithm begins by setting a constant called ZTEST to about 100 times the
relative precision of the computer arithmetic. It is used frequently in the implementa-

tion to assess whether quantities that are small due to cancellation might be zero.
For example, if there are equality constraints, the Fortran program employs ZTEST
to decide whether to treat the vectors {aj IJ = 1, 2 , . . . , m'} as linearly dependent ,
and if so whether the right hand sides {b3 IJ = 1, 2 , . . . , m'} are consistent. Of course
the algorithm terminates if the equalities are inconsistent, and otherwise any redun-
dant constraints are dropped in order that the m' equations of expression (1.6) are
independent. Then the starting point x~ is revised if necessary by an orthogonal
projection so that {a T x~ = bJ]J = 1, 2 , . . . , m'}.

This projection gives some importance to the Euclidean metric initially, and also
we let the initial second derivative approximat ion be the unit matrix. Therefore we

552 M.J.D. Powell / Linearly constrained optimization calculations

choose Z1 to be orthogonal, and, if there are any equality constraints, then as in
equation (1.8) we require ZV~AI = R~, where initially the columns of A1 are {ai IJ =
1, 2 , . . . , m'} and where R~ is upper triangular. Further, we let r be the tolerance
parameter that distinguishes small from large constraint residuals. Its initial value

is ~-= 0.01, and it is reduced automatically on certain iterations until ~-= ZTEST.
After taking account of any equalities, the algorithm revises x~ if necessary to

meet the bounds {li ~< [xl]i ~< uili = 1, 2 , . . . , n}. We view this problem as minimizing
the sum of violations of the bounds subject to preserving all the equality constraints
and bounds that hold already. These constraints are treated in the way that is

mentioned in Section 1, so we employ ~- to pick out the ones with small residuals
at the current x~ for inclusion in expression (1.6). Then a search direction is generated
as before, after changing VF(xk) in expression (1.3) to the gradient of the sum of
bound violations, B~ being the unit matrix. I f the resultant d is zero and r > ZTEST,

then ~- is reduced and d is recalculated, but otherwise a zero d causes an error
return because the equality constraints and bounds seem to be inconsistent. When
d is nonzero, xj is replaced by x~ + ted, where the step-length a minimizes the new
sum of bound violations, which is a piecewise linear function, subject to the satisfied

equality and bound constraints. This procedure is repeated until either there is an
error return or x~ is within all the bounds. In the latter case we turn to the remaining

constraints {a~x~ <~ bj IJ = m ' + 1 , . . . , m}, adjusting x~ if necessary in the way that
is analogous to the given procedure for the bounds. Therefore from now on we
assume that every Xk is feasible.

The test for small residuals depends not only on ~- but also on nonnegative
numbers {X~ I i = 1, 2 , . . . , n} that usually reflect the magnitudes of the components

of x. Initially the algorithm sets the values

X,:l[x,],l, i = 1 , 2 ,n , (2.1)

where x~ is the starting vector that is provided by the user. Then, after each acceptable
change to the variables, including changes to xl to achieve feasibility, X~ is replaced
by max[X~, I[x]il]. It is deliberate that Xi might be zero initially, because we dislike
the alternative of choosing an arbitrary positive number that would introduce an

unnecessary dependence on scaling into the algorithm. The constraint a~x <~ bj is
deemed to have a small residual at x if and only if the inequality

,a~x-bj,<~ T{ ~= l X~,[aj]i,+,bj, } (2.2)

is satisfied, and a similar test is applied to bounds. For example, the bound l~ ~< [x]~
is defined to have a small residual when [[x]~- li[~< ¢{Xi +[ld}.

After calculating each search direction dk, the algorithm decides either to perform
a line search or to reduce r. This decision depends on some Lagrange multipliers
and on the change Qk(0) -Qk(dk) in the quadratic objective function (1.3). Each

adjustment to 7 is by a factor of at least 10 subject to the lower bound ~-i> ZTEST,
so the number of reductions is finite. They can occur in the main iterations and
during the procedure that has been mentioned already for achieving feasibility.

M.J.D. Powell / Linearly constrained optimization calculations 553

The required Lagrange multipliers are the ones at the solution of the quadratic
programming problem that defines dk. Here the current Zk and Rk satisfy equation
(1.8), the columns of Ag being {a~lj~ Ik}, where as before the active set Ik is a
subset of the constraint indices that occur in the conditions (1.6). The nontrivial

multipliers are the components of the vector hg c ~"~ that is defined by the equations

~, r v r . . ",u_ /~ A r ~ A k ! ' *-'k~g = A k A k , A~d~ = 0 . (2.3)

Writing dk = Zk~zg, which is used in the calculation of dk, it follows from the first
part of expression (1.8) and A~(Zktzk)= 0 that the first mk components of /~k are
zero. Further, multiplying the first part of equation (2.3) by Z T and using zTBkzk = i
we find the identity

ZVkVF(xk) +/xk = Rkhk. (2.4)

Hence the last (n - rnk) components of/Xk are those of -Z~VF(xk) and hk satisfies
the mk× rnk triangular system

R k A k * T -~ Zk V F(xk), (2.5)

where /~k and ,~k are formed by deleting the last n - m k rows from Rk and the last

n - m k columns from Zk respectively. Therefore, remembering that we store the
upper triangular matrix Uk =/~{1 instead of Rk, the algorithm employs the multi-
pliers

A T
hk = UkZkV F(xk). (2.6)

It is important to the next paragraph that, due to the Kuhn-Tucker conditions at

the solution of the quadratic programming problem, the components of this vector
that correspond to inequality constraints are nonpositive. The change in Qk(') is
also easy to calculate, because, substituting dk = Zklxk in equation (1.3), we find that
the form of/xk implies the value

Qk (0) - Qk (dk) = ~ II/zk II 2. (2.7)

The main criterion for reducing r depends on the remark that usually the least

value of Qk(d) subject to the condition that xk + d shall be feasible is less than
Qk(dk), because the constraints on this new d are less restrictive than the constraints
on dk. Specifically, if j e Jk is the index of a constraint whose residual aTxk-- bj is
negative, then the right hand side of the constraint a Td ~ 0 in expression (1.6) can
be increased to the modulus of this residual. Further, letting rk be the vector of
residuals at xk of the constraints whose indices are in lk, a straightforward calculation
shows that, if the inequality constraints ATd<~O are altered to ATd<~-rk, then,
instead of expression (2.7), we can achieve the difference

Qk(O) _ Q k (d k) 1 2 T = 2 II]Zk 112 -[- h k rk q- O(II rg IJ 2). (2.8)

Because it seems unsuitable to continue with the nonzero residuals due to r when
the t e r m ATkrk is much larger than ~ 2 511/zkl12, the conditions for revising r are as follows.

5 5 4 M.J.D. Powell / Linearly constrained optimization calculations

The algorithm reduces ~- if the current value was used on the previous iteration, if

~- is not already at its lower bound, and if the inequality

T 1 2 Akrk ~> 10 max[511/zk 112, F(xk-1) - - F(xk)] (2.9)

is satisfied. The factor 10 is a consequence of numerical experiments, and the term

F(xk_~) - F (x k) is present to prevent too early a decrease in r when the iterations

are choosing long step-lengths.
There is another situation that can cause a reduction in r which depends on an

accuracy parameter, namely ACC, that is set by the user. The main purpose of this

parameter is that the entire calculation finishes if the condition

IIV F (x k) -- Ak,~k 1{2 <~ A C C (2.10)

is satisfied and r = ZTEST. This termination criterion is appropriate because we

have VF(xk)= AkAk at every Kubn-Tucker point. The only suitable action by the

algorithm when condition (2.10) holds but ~- is not minimal is to reduce the value

of 7.. This action covers the possibility dk = 0 because then equation (2.3) implies

that the left hand side of the test (2.10) is zero. We assume in the algorithm that

inequality (2.10) can be satisfied, but in practice the user may set ACC to such a

tiny number that rounding errors prevent the attainment of the termination condition.

Therefore the implementation includes a test that gives an error return when the

requested accuracy cannot be achieved.
The new value of 7. is calculated as follows. In order to allow a large reduction

when there are no near-degeneracies in the constraints, the algorithm determines

the least value of ~-, $ say, such that condition (2.2) remains satisfied by all the

constraints in the current active set Ik. Thus the reason for reducing • would still

be valid if 7. were replaced by ~. Then r is decreased to the number

/O.l~, ~> 20 ZTEST,
¢ = (2.11)

I ZTEST, "~ <~ 20 ZTEST,

so the reduction is by at least the factor 10 that has been mentioned already, except

that, when achieving the lower bound 7-=ZTEST, the factor can be close to 2.

Further, when r is revised for the last time, we reinitialize the numbers {X~[i =

1, 2 , . . . , n} of inequality (2.2) to the moduli of the components of the current xk.
The reason for this precaution is that during the iterations the magnitudes of some

of the variables may have decreased greatly.

Usually the new ~- and the current xk do not allow Ik to remain as the active set,

because some of the active constraint residuals are no longer "small". Therefore

the inequality constraints whose residuals become large are removed from lk, except

when 7- reaches its lower bound, namely ZTEST. In this case it follows from equation

(2.11) that, for the old values of {X, I i -- 1, 2, . . . , n), the relative residuals of these
constraints are at most 20 ZTEST, and we apply the refinement procedure that is

mentioned soon after equation (1.6) instead of reducing the active set. Specifically,

M.J.D. Powell / Linearly constrained optimization calculations 555

Xk is moved onto the active constraint boundaries by the formula
A T

xk ~- Xk - ZkUkrk, (2.12)

where rk is the vector of active constraint residuals as before. When ~'new > ZTEST,
however, then xk is not altered unless an accumulation of rounding errors has caused

one or more active constraints to be violated by more than the relative accuracy
ZTEST. An earlier version of the algorithm used formula (2.12) whenever z was
reduced, subject to some safeguards to preserve feasibility, but this technique was
abandoned because in difficult calculations the larger changes to Xk sometimes
caused substantial increases in the objective function, due to contributions from
second and higher order terms of the Taylor series expansion of F (x) about Xk.

On each iteration of the algorithm, the choice of step-length is based on the Wolfe
(1969) conditions

F(xk + akdk) <~ F(Xk) + 0.1 akd~V F(xg) (2.13)

and

T + dkVF(xk akdk)>~O.7d~VF(xk), (2.14)

the factors 0.1 and 0.7 being successful values of free parameters. These inequalities
are consistent for a range of positive values of ag, whenever F (.) is a continuously
differentiable function that is bounded below and dk satisfies the descent condition
(1.4). When there are no constraints, they ensure that ak is both small enough and
large enough to provide good global convergence properties for suitable search
directions, but, in the linearly constrained case, the feasibility of Xk + akdg may rule
out the attainment of inequality (2.14). Therefore the algorithm requires ak to give

the reduction (2.13) in the objective function and to satisfy either ak----~k, or
condition (2.14), where &k is the longest step-length that is allowed by feasibility.
Another important feature, which helps the final rate of convergence, is that the
initial trial step of each line search has the value rain[l , &k]. In the Fortran
implementation, however, there are some safeguards in case rounding errors prevent
the attainment of the line search conditions of the algorithm.

A disadvantage of the ak = dk case is that it may not be possible or sensible to
update the second derivative approximation by the BFGS formula, because we
cannot satisfy the equation T -~ Z k + l Z k + l = Bk+~ unless Bk+ 1 is positive definite, which
demands the condition

d'~{V F(xk + akdk) -- VF(Xk)} > 0. (2.15)

Further, a very small value of this scalar product can cause severe iU-conditioning.
Therefore each iteration includes BFGS updating if and only if the left hand side

of inequality (2.15) is at least O.11dXkVF(Xk)l. Otherwise the second derivative
approximation is not revised. Moreover, the updating procedure includes the column
scaling technique of Powell (1987), because it can give a substantial reduction in
the number of iterations when ilB, II = II(z, zT)- ' I [is much larger than the norm of
a typical second derivative matrix.

556 M.J.D. Powell / Linearly constrained optimization calculations

We end this section by considering the calculation of the search direction, which
is the vector that minimizes expression (1.3) subject to the homogeneous linear

constraints (1.6). If the current guess of the active set lk is correct, then dk is defined
by the linear system (2.3). Further, it follows from the Kuhn-Tucker conditions of
this quadratic programming problem that, if for any guess of Ik we define d and A

by the equations

~TF(Xk) + Bkd -= Aka, A~d = 0, (2.16)

then we have the correct active set if and only if d satisfies the constraints (1.6)
and the components of A that correspond to inequality constraints are all nonpositive.
For each estimate of Ik the matrices Zk and Uk = / ~ of the factorization (1.8) are

available, and they are updated by an orthogonal transformation whenever the
estimate is revised. Therefore, as in the paragraph that includes expressions (2.3)-
(2.7), the system (2.16) has the solution

d = - 2 k 2 ~ V f (x .) (2.17)

and
A ~ T

a = U k Z , , V F (X k) , (2.18)

where Zk is the n x (n - rnk) matrix whose columns are the last n - m k columns of Zk.
We determine Ik by the dual algorithm of Goldfarb and Idnani (1983), which

gives higher priority to the conditions on A than to the conditions on d. The initial

estimate of lk is the active set of the previous iteration in order that we can make
use of the current Zk and Ok. We begin by calculating the vector (2.18), and, if we
find any positive multipliers of inequality constraints, then a recursive procedure

makes deletions from the current active set until all the components of A have
acceptable signs. The stage when)~ is acceptable may be reached several times
during the sequence of estimates of lk, but there is no cycling because the correspond-

ing values of Qk(d) increase strictly monotonically.
At this stage we calculate the vector (2.17), defining it to be zero if mk= n. I f the

conditions (1.6) are satisfied then d = dk as required. Otherwise we pick the most

violated constraint, a~d <~ 0 say, and we add l to the active set. In theory al is not
in the column space of Ak, because if it were then A~d = 0 would imply a~d = O.
Therefore this addition preserves the independence of the active constraint normals.
The Fortran implementation (Powell, 1989) is less simple, however, because exten-

sive use is made of ZTEST to decide, for example, whether constraint violations
are negligible.

Having added I to the active set, and having updated ink, Ak, Zk and Ok, which
requires no change to the first mk - 1 columns of these matrices, we calculate the
new multiplier vector (2.18). We see that it has the value

A = ,~+ O/)k(' , ink), (2.19)

where £ is the old multiplier vector augmented by a zero component and where ¢
a T is the last component of ZkVF(xk). I f the new multipliers have acceptable signs,

M.J.D. Powell / Linearly constrained optimization calculations 557

there is a branch to the part of the algorithm that is described in the previous
paragraph, but otherwise we proceed as follows.

We know that the vector (2.19) has acceptable signs if ~b = 0 but not if & has the
required value. We take the view that q5 is adjusted continuously from zero, and

we let ~ be the first value at which a component of A, [h] q say, becomes unacceptable.
A

The qth element of the active set is dropped, and rnk, Ak, Zk and Uk are updated
so that l remains the last element of the active set. Again we express h in the form
(2.19), ,(being the contribution to expression (2.18) from the first m k - 1 columns
of the new Uk, and ~b being the new value of the last component of Z~VF(xk).
This new & has the same sign as before and its modulus exceeds 1~1- I f h is now
acceptable the algorithm branches to the testing of the conditions (1.6) that has
been described already. Otherwise we apply the procedure of this paragraph recur-

sively, dropping one constraint at a time, until h becomes acceptable, except that
we must qualify the statement that the vector (2.19) has acceptable signs if q5 = 0.
The situation now is that some unacceptable signs may occur when ~b = 0, but, as
q5 is adjusted continuously to the required value through the old 4~, all signs become
acceptable no later than the old ~ and no multipliers of inequality constraints switch

from negative to positive until ~b reaches the old 4~- Therefore the qualification does
not disturb the obvious method for finding q.

The implementation of this procedure for calculating the search direction is
straightforward. When the qth constraint is dropped from the active set, the factori-
zation (1.8) is updated by applying Givens rotations that exchange adjacent columns
of the old Ak until the gradient of the constraint to be dropped is the last column
of Ak. Then the actual deletion of the constraint from the estimate of Ik only requires

mk to be replaced by mk- 1. We prefer to work with the upper triangular matrix
A

Uk instead of Rk, because it is helpful to our use of the form (2.19) to have the last
A

column of Uk available explicitly.

3. Convergence questions

In this section we study some convergence properties of the algorithm when V F (.)

exists and satisfies the Lipschitz condition

lIVE(x) - V F(Y)II2 <~ gl)x- YI[2 (3.1)

for all feasible x and y, where L is a constant. Further, as mentioned in the
introduction, we assume that the positive definite matrices {Bk [k -- I, 2, 3 } and
their inverses are uniformly bounded. We write these conditions in the form

wlld[[2~dTBkd<~WIIdll 2, deN", k = 1 , 2 , 3 , (3.2)

where w and W are positive constants. Because no attention is given to the BFGS
formula, our theory is valid for all matrices {Bklk= 1, 2 , 3 , . . . } that satisfy the
bounds (3.2). Therefore no superlinear convergence questions are considered. The

558 M.J.D. Powell / Linearly constrained optimization calculations

final assumption of this section is that computer rounding errors are negligible,
except that they provide the positive lower bound ZTEST on r.

The most important convergence question is answered in the following theorem.

Theorem. The given conditions on F(.) imply that the algorithm terminates if the
value o f ACC in inequality (2.10) is set to any positive constant.

Proof. Because the number of different values of ~- is finite, and because the
attainment of condition (2.10) causes either a reduction in ~- or termination, it is

sufficient to prove that this condition holds eventually if enough iterations are
performed with any fixed positive value of ~-. When the step-length of the line search
satisfies inequality (2.14), then we can deduce a useful lower bound on ak from

expressions (2.3), (2.14), (3.1) and (3.2). Specifically, because equation (2.3) implies
the identity

d~V F(xk) = -d~Bkdk , (3.3)

expressions (2.14) and (3.1) give the relation

0.3 d~Bkdg = -0.3 d~V F(xk)

<~ d~[V F(xk + akdk) -- V F(xk)]

< ~kZlld~ I1~, (3.4)

so it follows from condition (3.2) that we have the bound c~k/> 0.3w/L.
Alternatively, it has been noted that the step-length may satisfy ak = ffk instead

of inequality (2.14). In this case, letting l~ dk be the index of the constraint that

restricts the step-length, the algorithm gives the conditions

a~,(xk + ~ d k) = b, (3.5)

and

la T xk - btl > "r { i~l Xil[al]il + lbt[} , (3.6)

where the right hand side bl is taken from expression (1.5) if m + 1 ~< l ~ < m +2n. We

note that, for each l, the term in braces on the right hand side of inequality (3.6)
is a nondecreasing function of the iteration number, so its least positive value over
all iterations, vt say, is well defined. We let v be the least of the numbers v~/llatll2
as l ranges over all constraint indices that restrict the step-length of any iteration,
which is a positive constant because the number of constraints is finite. Hence, in
view of the fact that positivity of the left hand side of condition (3.6) implies
positivity of the right hand side, this condition implies the relation

la~xk - b, I > rv]la, II 2. (3.7)

Moreover, the identity

laTxk - b,[= t~daTdkl (3.8)

M.J.D. Powell / Linearly constrained optimization calculations 559

is an elementary consequence of equation (3.5), so the Cauchy-Schwarz inequality
gives ak [I dk [[2 > ~-v. Therefore the step-length of every iteration of the algorithm has
the lower bound

ol k ~ min[0.3 w~ L, Tv/II dk II 2]. (3.9)

We combine this result with the remark that expressions (2.13), (3.3) and (3.2)
provide the relation

F(xk+l) <~ F(xk) -- T O.lolkdkBkdk <~ P(Xk)-O.lwolklldkll 2. (3.10)

o f course we also make use of the observation that the differences { F (x k) -
F(xk+l)lk = 1, 2, 3 , . . . } tend to zero because {F(xk) I k = 1, 2, 3 , . . . } is a monotoni-
cally decreasing sequence that is bounded below, due to the continuity of F (.) and
to the boundedness of the feasible region. Thus, substituting inequality (3.9) in
expression (3.10), we deduce the limit

IldkL-~ 0. (3.11)

We have not yet used the second part of condition (3.2), and we note now that,
due to the symmetry of Bk, it implies the relation [[Bkdk 112 <~ W II dk [[z. Therefore the
first part of equation (2.3) gives the bound

IlV F (x k) - AkAkll= <~ Wlldkllz. (3.12)

It follows from the limit (3.11) that the left hand side of the test (2.10) tends to
zero as k ~ oo. Therefore the algorithm terminates as required. []

This proof of convergence does not depend on inequality (2.9), so in theory this
condition could be dropped from the algorithm, but we will explain that it is useful.
Specifically, it allows reductions in ~- before the test (2.10) is satisfied, which helps
to avoid unnecessary calculation when ACC is tiny and the tolerances on constraint
residuals are relatively large. Inequality (2.9) would be unsuitable, however, if it
could hold when ~" is small at a point xk that fails to come close to satisfying the
Kuhn-Tucker conditions. The following argument addresses this question.

Let inequality (2.9) be satisfied with ~- = ZTEST. Then condition (2.2) shows that
the residuals of the active constraints are near to the least value that is usually
attainable from the computer arithmetic. Further, the left hand side of inequality
(2.9) is at most a constant multiple of ZTEST, this bound being inherited from rk
due to the uniform boundedness of the Lagrange multipliers {)tkl k = 1, 2, 3 , . . . },
which is a consequence of the independence of active constraint normals, the
finiteness of the number of different active sets, equation (2.3) and the uniform
boundedness of {~TF(Xk) + Bkdkl k = 1, 2, 3 , . . . }. Therefore condition (2.9) implies
that]]/~kl] 2 is bounded above by a multiple of ZTEST. It follows from the identity
dk = Zkl~k, the boundedness of the matrices {Zkl k = 1, 2, 3 , . . . } and inequality (3.12)
that the length of the Kuhn-Tucker residual vector VF(xk)--AkAk is at most a
constant multiple of the square root of ZTEST. This is the best kind of accuracy

5 6 0 M.J.D. Powell / Linearly constrained optimization calculations

that one can reasonably expect from an algorithm that does not allow the computed
value of the objective function to increase in acceptance tests for changes to the
variables, because of the flatness of the objective function along directions from the
opt imum that preserve the zero residuals o f the active constraints.

The final consideration of this section is the performance of the algorithm when
the user sets ACC = 0 and the computer arithmetic is so precise that it is worthwhile
to study the case when there is no positive lower bound on z. I f r ~ 0 occurs, then
inequality (2.9) holds an infinite number of times, and one can deduce from the
argument of the previous paragraph that a subsequence of { x k l k = 1, 2, 3 , . . . }
converges to a Kuhn-Tucker point, by restricting attention to the iterations that

satisfy condition (2.9). It would be more usual, however, for T to remain fixed after
a finite number of iterations, because II rk I}2 is zero for all sufficiently large k. Therefore

we address the convergence of the algorithm when ACC = 0 and r does not change.
We have shown already that conditions (3.11) and (3.12) are satisfied, and now we
extend our work to prove that every limit point of the sequence {x~ I k = 1, 2, 3 , . . . }

is a Kuhn-Tucker point. This analysis does not presume the limit Ilrk[[z~ O.
Let x , be any limit point of { x k l k = 1, 2, 3 , . . . }, so we have the relation

lira xk(i)= x . , (3.13)
j ~ o o

where {k(j) l j = 1, 2, 3 } is a strictly increasing sequence of positive integers.
Because the number of different active sets is finite and because we can choose a
subsequence of {k(j)} if necessary, we assume without loss of generality that the
sets {lk(j)IJ = 1, 2, 3 } are all the same active set, 1, say. We have noted already
that the gradients of active constraints are linearly independent, so it follows from
expressions (2.3), (3.11) and (3.13) and from the boundedness of Bk that the Lagrange
multiplier vectors {Ak(j)lj = 1, 2, 3 , . . . } converge to the limit A, that is defined by

the equation

V F (x ,) = A , A , , (3.14)

where A , is the matrix whose columns are {ail i c 1,}. Further, the algorithm ensures
that the Lagrange multipliers of inequality constraints are all nonpositive. Therefore

x , is a Kuhn-Tucker point as required if the constraints whose indices are in I ,
all have zero residuals at x , , but it is possible that some nonzero residuals occur.

Let r , be the vector whose components are the residuals at x , of the constraints

whose indices are in 1, . By feasibility, the conponents that correspond to any
equality constraints are zero and the remaining components are all nonpositive.

T Therefore the scalar product A, r , is a sum of nonnegative terms. Moreover, because
~- remains constant, inequality (2.9) fails for all sufficiently large k, and the right
hand side tends to zero due to the convergence of the sequence { F (x k) l k =
1, 2, 3 , . . . }, the limit (3.11) and the bound Iltxk]l~ < Wlldkll~, which is derived from
condition (3.2) and the identities II#k]]~ = I}Z{~dkll 2 = dVkBkdk • Thus we deduce from

T inequality (2.9) that A , r , = 0. These remarks imply that, if any component of r , is
negative, then the corresponding component of A, is zero. Hence equation (3.14)

M.J.D. Powell / Linearly constrained optimization calculations 561

remains true if we delete from A . and A. any columns and components that

correspond to active constraints with nonzero residuals at x , . Therefore we have
proved the assertion that the Kuhn-Tucker conditions are satisfied at x , .

We see that the analysis of this section does not impose any conditions on the

constraints, such as strict complementari ty and nondegeneracy. Therefore it suggests
that our algorithm has some very useful advantages over those active set procedures
that ignore inequality constraints with small nonzero residuals when calculating
search directions. This suggestion is confirmed by some numerical results in the
next section.

4. Numerical results and discussion

We draw our conclusions in this section from three of the test problems for
optimization subject to linear constraints that are given by Hock and Schittkowski
(1981), H&S say, and from three cases of a one-sided rational approximation
calculation. We consider two versions of the BFGS updating formula. We test the
advantages of setting ~- = 0.01 initially instead of a much smaller value. We investigate

the safeguards of a Fortran implementation of the algorithm (Powell, 1989) that
allows A C C = 0 in condition (2.10). We try the option of using single precision
arithmetic. Finally some brief remarks are made on comparisons with other
algorithms.

The H&S problems are the ones that are numbered 105, 112 and 118 in their

book. Problem 105 has 8 variables and 1 inequality constraint in addition to bounds,
but none of the constraints is active at the solution. Its main feature is a highly
nonquadrat ic objective function, due to logarithmic, exponential and rational terms.
There is a misprint in the specification of F (.) in H&S, which was discovered by
consulting the source of the problem (Bracken and McCormick, 1968), namely that
the coefficients Y234 and Y235 should be set to 260 instead of 250. Problem 112 has
10 variables and 3 equality constraints. Our algorithm solved it easily, but H&S
report that poor numerical results were obtained by each of the six optimization

procedures that they applied to this calculation. Problem 118 is a quadratic program-
ming exercise in 15 variables and the solution is at a vertex of the feasible region.
It seems straightforward, but, according to H&S, four out of six algorithms failed
due to overflow or excessive computation time, and only one of the two remaining
procedures gave an accurate result. It should be noted, however, that some of the
implementations of algorithms that were used by H&S are less successful than
implementations that have been tried by the author.

The one-sided rational approximation calculations are discretizations of the
minimization of the integral

foS[e - - p (t) / q (t)] 2 dt (4.1) e-2t

562 M.J.D. Powell / Linearly constrained optimization calculations

subject to the constraints

p(t) /q(t)>~e ', 0~<t~<5, (4.2)

the variables x c l~ 5 being the coefficients {[x]il i = 1, 2 ,5} of the 2-2 rational
function

p(t) [X]l+[X]zt+[x]3 t2
q(t) - 1 +[x]4(t - 5) +[x]5(t - 5) 2. (4.3)

This form of q(.) reduces cancellation errors because, due to the growth of{e'] 0 ~< t ~<
5}, q(t) has to be relatively small at the right hand end of the interval [0, 5]. The
discretization is the approximation of this interval by the point set {tl, t 2 , . . . , tr}
where tj = 5 (j - 1) / (r - 1) . Our three test problems, namely Fit 11, Fit 51 and Fit

251, are given by the values r - 11, r = 51 and r = 251 respectively. Specifically, the
objective function is the sum

F (x) = ~ [l - e%p(t j) / q (t j)] 2, x ~ 5, (4.4)
j--i

there are 2r linear inequality constraints

p(tj) ~ e',q(tj), q(tj) >~ 10 -5, j = 1, 2 , r, (4.5)

on the components of x, and for completeness we add the superfluous bounds

-102°<~[x]i<~102°, i = 1 , 2 , . . . , 5 . (4.6)

In all cases of this fitting problem we let the starting point of the iterative procedure
be the feasible p o i n t x l = (1 1 6 0 0) 7 .

The calculations were done by a Sun 3/50 workstation. First a double precision
version of the Fortran implementation of our algorithm (Powell, 1989) was applied

to the six test problems that have been mentioned, the accuracy parameter being
set to ACC = 10 -6. The second column of Table 1 shows the numbers of function
evaluations and iterations that were required. The subroutine that calculates F(x)

Table 1

Numbers of function values/iterations

Problem Version of software

Standard Full Small ACC = 0 ACC = 0
version BFGS ~- Real*8 Real*4

Fit 1l 35/25 36/29 30/23 36/26 33/23
Fit 51 36/30 36/29 49/46 37/31 42/31
Fit 251 30/22 36/27 159/142 39/25 23/15
H&S 105 67/49 72/51 69/53 77/51 76/52
H&S 112 38/30 36/26 35/29 69/34 44/25
H&S 118 39/23 39/23 33/18 39/23 34/18

M.J.D. Powell / Linearly constrained optimization calculations 563

also provides the gradient VF(x) whenever it is called. In all these trials the

termination condition (2.10) was achieved. The constraints were satisfied too to the

accuracy of the computer arithmetic, not only in these calculations but also in all

the experiments that are reported later in this section. We are going to compare

columns 3-6 of Table I to the second column.

We experimented with two different versions of the BFGS formula, because a

Fortran implementation of our algorithm was given to IMSL in April, 1988 that
applies only a part of the BFGS correction to the second derivative approximation.

In this partial correction the first m k columns of Zk+l are the same as the first m k

columns of Zk, and the last n - mk columns of Zk+l are in the linear space that is

spanned by the last n - m k columns of Zk , in order that the equation zT+IAk = g k

is inherited from ZTkAk = Rk , where mk is still the number of active constraints.

(Zk+~Zk+~) is the matrix that is However, if the update has the property that v -~

defined by the BFGS formula when 6k = Xk+~ -- Xk and Yk = VF(xk+l) - VF(Xk), then

we have already chosen the last n - m k columns of Zk+~ correctly, but the first mk
columns of Zk+~ should have the values

Zk+l(' , i) = Z k (' , i) - - { y ~ Z k (' , i)/ 'y~Sk}6k, i = 1, 2 , . . . , m k (4.7)

(Powell, 1987). We see that the new Zk+~ also inherits the equation ZTk+~Ak = Rk
from v Z k A k = Rk, because 6k is orthogonal to the active constraint gradients, but
the author overlooked this fact until after he had provided the IMSL software.
Therefore the question arises whether to replace the updating formula of the original

s tandard version of the Fortran implementation by a f u l l B F G S update that includes

equation (4.7). Columns 2 and 3 of Table I compare these alternatives. Since there

does not seem to be a strong case for departing from the standard version, it is

going to be retained by the author unless future experiments prove to be clearly in

favour of the full update. The differences between the standard version and full

BFGS are much less severe than the differences between reduced second derivative
approximations and the full update, because the standard version does not delete

any second derivative information when a constraint is added to the active set.

We recall that, in contrast to our method, it is usual for the search directions of

active set algorithms to be independent of constraints with nonzero residuals, so

many small step-lengths can occur due to early encounters with constraint boun-

daries. Therefore, as stated in Section I, our search directions are calculated to

move no closer to the boundaries of all constraints with small residuals, where
"small" is measured by the test (2.2). Thus our procedure becomes a traditional

active set algorithm if ~" is chosen so that inequality (2.2) holds if and only if a ~ x - bj

would be zero in exact arithmetic. We simulated this situation by running the Fortran

program with ~-= 10 -6 initially instead of the standard initial choice r = 10 -2. Thus

we obtained the results that are displayed in the "small ~-" column of Table I.

Of course the one-sided approximation test problems were chosen to demonstrate

the ability of our algorithm to handle small constraint residuals efficiently. When
one of the constraints (4.5) holds as an equation and when the spacing t~+~ - {j of

5 6 4 M.J.D. Powell / Linearly constrained optimization calculations

the discretization is small, then there are always constraints with small nonzero
residuals too. Further, a move along the boundary of any one of the constraints
(4.5) can soon lose feasibility because the constraints form two envelopes of smooth

surfaces. Thus feasibility forced many line searches to give small step-lengths in
problems Fit 51 and Fit 251 when the Fortran program was run with ~- = 1 0 - 6 initially.

In the Fit 51 calculation, for example, c~k was restricted by feasibility on 43 out of
46 iterations, but this restriction occurred on only 9 of the 30 iterations of the
standard program. Further, the analysis of Section 3 suggests that the standard
version would remain efficient for very large values of r in expressions (4.4) and
(4.5), but many of the traditional active set algorithms would suffer severe difficulties

from the near-degeneracies of the constraints.
An alternative view of the advantages of the standard version on problems Fit

51 and Fit 251 comes from considering the changes that need to be made to the
active set. For example, suppose that the constraint of the first part of expression
(4.5) with j =Jl is in the current active set, but that, in order to reach the solution,

the constraint index has to be increased to j =j2. When J2-J~ is large, which is not
uncommon for a fine discretization, it would be highly inefficient if the index were

increased in steps of one, because then at least j 2 - j l iterations would be performed.
Unfortunately, this tends to happen in the traditional active set procedures, partly

because each part of expression (4.5) gives a sequence of tangent planes to a smooth
function. For example, the active sets of iterations 4-14 of the "small r " minimization
of Fit 51 are {2, 51}, {3, 51}, {3, 50}, {3, 49}, {3, 48}, {4, 48}, {4, 47}, {5, 47}, {5, 46},
{5, 45} and {6, 45}, while the "standard version" gives the same vectors of variables

{xl, x2, x3, x4), but the active sets of iterations 4-6 are {3, 51), {5, 48} and {7, 42}.
It is very helpful to the standard version that, if a constraint is present in Ik+l
because it restricts the step-length ak, then the residual of this constraint at xk is

not "small".
Sometimes the user wishes to achieve good accuracy without any fine tuning of

the parameter ACC of the termination condition (2.10). It is therefore convenient
if the software includes enough safeguards to provide termination when A C C - - 0
without much unproductive calculation. Column 5 of Table 1 shows the performance
of the standard version in this case, the value ACC = 1 0 - 6 being set in all the earlier

experiments. Because these calculations were done in double precision arithmetic,
a single precision implementat ion of the standard version with ACC = 0 was tried
too. Its results are displayed in the last column of Table 1. It seems that the cost
of setting ACC = 0 is not exorbitant, but line searches tend to require more function
values than usual near the limit of attainable accuracy, because of disparities between
the actual changes in computed values of F (.) and the changes that are predicted
by the use of first derivatives.

Since the feasibility conditions are satisfied well, we measure the accuracy of our
calculations by the final values of F (-) . Each of the four computer programs that
produced columns 2-5 of Table 1 yields all the digits in the Real*8 column of
Table 2, which is good. Of course we expect errors in eight decimal numbers from

M.J,D. PoweU / Linearly constrained optimization calculations

T a b l e 2

F ina l va lues o f F (.)

565

P r o b l e m Rea l*8 Rea l*4 H&S

Fit 11 0 .000568306 0 .000568303 - -

Fi t 51 0 .002509683 0 .002509985 - -

Fit 251 0 .011651287 0 .011651262 - -

H&S 105 1138.4107 1138.4105 1138.416240

H & S 112 - 4 7 . 7 6 1 0 9 1 - 4 7 . 7 6 1 1 0 1 - 4 7 . 7 6 1 0 9 0 2 6

H&S 118 664.82045 664 .82050 664 .8204500

single precision arithmetic, and the Real*4 column of Table 2 was calculated by
the software of the last column of Table 1. In view of the cancellation in the three

fitting problems, the single precision software gives good accuracy too. Four of the
entries in the Real*4 column of Table 2 demonstrate that rounding errors can cause
a computed value of F (.) to be less than the least value of F (.) in exact arithmetic,

due partly to the small constraint violations that are a usual consequence of rounding.
The last column of Table 2 displays the final function values that are stated on
pages 114, 120 and 126 of Hock and Schittkowski (1981). The liberty has been taken

of replacing the H&S 112 number by the value that they give for their problem 111,
because these two problems have equivalent objective functions, but the H&S entry
for the H&S 112 calculation is too high. Further, it seems that H&S did not apply

any software that finds a close approximation to the solution of H&S 105.
The numerical results on pages 154-156 of Hock and Schittkowski (1981) allow

our software to be compared to six computer programs for minimization subject to
nonlinear constraints. These results for problems H&S 105, H&S 112 and H&S 118

indicate that our algorithm is much more accurate and relaible than the other
procedures. Indeed, it has just been mentioned that all the Real*8 versions of our
software provide a definite improvement in the final value of the objective function
of H&S 105, and earlier we noted that only one of the six older procedures finds a
good solution to the quadratic programming calculation H&S 118. When applied
to the H&S 112 problem, none of the older procedures reduces the norm of the
Kuhn-Tucker residual vector below 10 -3, so, excluding a case where there is a large

constraint violation, their values of the objective function remain above -47.72550
although Table 2 shows that F(x) = -47.76109 is attainable. Because these calcula-
tions seem to be among the more difficult test problems of H&S, they are likely to
expose any weaknesses in implementations of optimization procedures. Therefore

these comparisons do not necessarily show major defects in the algorithms that are
behind the implementations.

Tables 1 and 2 provide some examples of the efficiency of our method, if one

measures efficiency by the numbers of function and gradient evaluations and by the
accuracies of the computed solutions. In particular, the three fitting problems show
clearly the advantages of allowing the search directions to depend on constraints

566 M.J.D. Powell / Linearly constrained optirnization calculations

with small residuals. These demonst ra t ions and the theory o f Section 3 suggest that

the given procedure is highly suitable for the solution o f opt imizat ion calculations

with many linear constraints that may be nearly degenerate. Further, we have found

that the matrix factorizations that are employed by Goldfarb and Idnani (1983) for

quadrat ic p rogramming extend convenient ly to general differentiable objective

functions.

Acknowledgements

I M S L (Internat ional Mathematical and Statistical Libraries, Houston, Texas) pro-

vided the motivat ion for the development o f the algori thm that is described. The

author is very grateful to IMSL, not only for its interest and support , but also for

its willingness to agree to unlimited publ icat ion o f the results, including the pro-

mulgat ion o f the report (Powell, 1989) that includes a Fortran listing o f an
implementa t ion of the algorithm. Further, he thanks M.D. Buhmann for several

valuable suggestions on a prel iminary version o f this paper and two referees for

their comments on a later version.

References

J. Bracken and G.P. McCormick, Selected Applications of Nonlinear Programming (Wiley, New York,
1968).

R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, 1988).
P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).
D. Goldfarb and A. ldnani, "A numerically stable dual method for solving strictly convex quadratic

programs," Mathematical Programming 27 (1983) 1-33.
W. Hock and K. Schittkowski, Test Examples for Nonlinear Programmff~g Codes, Lecture Notes in

Economics and Mathematical Systems, I/oL 187 (Springer, Berlin, 1981).
E. Polak, ComputationalMethods in Optimization: A Unified Approach (Academic Press, New York, 1971).
M.J.D. Powell, "Updating conjugate directions by the BFGS formula," Mathematical Programming 38

(1987) 29-46.
M.J.D. Powell, "On a matrix factorization for linearly constrained optimization problems," Report

DAMTP/1988/NA9, University of Cambridge (Cambridge, UK, 1988).
M.J.D. Powell, "TOLMIN: a Fortran package for linearly constrained optimization calculations," Report

DAMTP/1989/NA2, University of Cambridge (Cambridge, UK, 1989).
P. Wolfe, "Convergence conditions for accent methods," S l A M Review 11 (1969) 226-235.

