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Two extreme techniques when choosing a search direction in a linearly constrained optimization 
calculation are to take account of all the constraints or to use an active set method that satisfies 
selected constraints as equations, the remaining constraints being ignored. We prefer an intermedi- 
ate method that treats all inequality constraints with "small" residuals as inequalities with zero 
right hand sides and that disregards the other inequality conditions. Thus the step along the search 
direction is not restricted by any constraints with small residuals, which can help efficiency greatly, 
particularly when some constraints are nearly degenerate. We study the implementation, conver- 
gence properties and performance of an algorithm that employs this idea. The implementation 
considerations include the choice and automatic adjustment of the tolerance that defines the 
"small" residuals, the calculation of the search directions, and the updating of second derivative 
approximations. The main convergence theorem imposes no conditions on the constraints except 
for boundedness of the feasible region. The numerical results indicate that a Fortran implemen- 
tation of our algorithm is much more reliable than the software that was tested by Hock and 
Schittkowski (1981). Therefore the algorithm seems to be very suitable for general use, and it is 
particularly appropriate for semi-infinite programming calculations that have many linear con- 
straints that come from discretizations of continua. 

Key words: Convergence theory, degeneracies, linear constraints, matrix factorizations, nonlinear 
optimization, semi-infinite programming. 

I. An outline of the algorithm 

T h i s  p a p e r  c o n s i d e r s  a n  a l g o r i t h m  fo r  m i n i m i z i n g  a g e n e r a l  d i f f e r e n t i a b l e  o b j e c t i v e  

f u n c t i o n  { F ( x ) l x  ~ ~Q c R ' }  s u b j e c t  to  t h e  l i n e a r  c o n s t r a i n t s  

a x = b j ,  j = l , 2 , . . . , m ,  

a~x<~bj, j = m ' + l , . . . , m ,  (1 .1)  

li<~[x]i<~ui, i = l , 2 , . . . , n ,  

w h e r e  S2 is t h e  set  o f  p o i n t s  t h a t  s a t i s fy  t h e  c o n s t r a i n t s ,  a n d  w h e r e  t h e  c o n s t r a i n t  

g r a d i e n t s  {aj}, t h e  r i g h t  h a n d  s ides  {bi} a n d  t h e  b o u n d s  {li} a n d  {ui} a re  g i v e n ,  [x]~ 

b e i n g  t h e  i t h  c o m p o n e n t  o f  x. I t  is a s s u m e d  t h a t  F(x)  a n d  i ts  first  d e r i v a t i v e  v e c t o r  

V F ( x )  c a n  b e  c a l c u l a t e d  fo r  a n y  x c ~2. S o m e  F o r t r a n  s o f t w a r e  t h a t  i m p l e m e n t s  a n d  

t h a t  h e l p e d  to  c r e a t e  t h e  g i v e n  p r o c e d u r e  w a s  w r i t t e n  b y  t h e  a u t h o r  f o r  I M S L ,  so  

p a r t i c u l a r  a t t e n t i o n  was  g i v e n  to  r e l i a b i l i t y  a n d  r o b u s t n e s s .  
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The following preferences of  the author are included in the algorithm: (1) the 
preservation of  feasibility, apart  from the effects of  computer  rounding errors, after 

a vector of  variables has been found that satisfies all the constraints, (2) the use of  
line searches to force convergence, (3) the avoidance of  very small changes to the 
variables due to near or actual constraint degeneracies when the variables are far 

from their optimal values, (4) the employment  of the matrix factorizations of 
Goldfarb and Idnani (1983), and (5) the approximation of the second derivatives 
of  F(  • ) by positive definite matrices that are updated by the BFGS formula. This 
section presents a brief discussion of these features that provides an outline of  the 

method. 
Several optimization algorithms preserve feasibility when all the constraints are 

linear (see, for instance, Fletcher, 1988; Gill, Murray and Wright, 1981), but the 
user may provide an initial vector of  variables, Xl ~R" say, that violates some 
constraints. In this case our algorithm applies a standard technique, described in 
Section 2, that either replaces xl by a feasible vector or recognises that the constraints 
are inconsistent. Feasibility is important in software for general use, partly because 
the purpose of some constraints may be to keep x away from regions of  ~ where 
F(x )  is not defined. 

Line search procedures are iterative, and each change to the variables made by - 
an iteration has the form 

Xk+l = Xk + ~kdk, (1.2) 

where k is the iteration number, % is a positive step-length and dk is a search 
direction in 0~". Our algorithm sets dk to the value of d that minimizes the quadratic 

approximation 

Ok(d) = F(Xk) + dTVF(xk) +½dTBkd, d 6 R", (1.3) 

to F(Xk + d) subject to some linear constraints on d that are derived from expression 
(1.1), Bk being a positive definite matrix that should be viewed as an approximation 
to the second derivative matrix V2F(Xk) when F ( - )  is twice differentiable. Thus, in 
the usual case when dk ~ O, the vector of  variables x = xk + adk is feasible for all 
sufficiently small positive c~, and we have the downhill condition 

dTVF(xk)  < O. (1.4) 

Having generated dk ~ 0, our algorithm picks a step-length c~k that makes x~+l 
feasible and that gives a reduction F(xk÷l) < F(xk) in the objective function. Careful 
use of  the flexibility in the choice of  ~k is important to achieving convergence in 
many line search algorithms for unconstrained optimization (see, for instance, Wolfe, 
1969), but now the feasibility of  Xk+~ imposes an upper  bound on ak. In particular, 

if the step from Xk to Xk + dk includes a move from the interior to the boundary of 
an inequality constraint, then we have the condition ak ~< 1. Because this restriction 
can cause severe inefficiencies, an important feature of  our technique is that it never 

deliberately puts Xk + dk on the boundary of  a constraint that is satisfied as a strict 
inequality at xk. 
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In order to illustrate one purpose of this remark, we consider the minimization 
of  the second component  of  x in ~2 when the boundary of the feasible region is a 
regular polygon with 106 vertices on the unit circle {xl]lxll2 = 1}. I f  this calculation 

were solved by the simplex method for linear programming,  then each iteration 
would move the current vector of  variables from a vertex of this polygon to the 

adjacent vertex that gives a smaller value of the objective function, so very small 
steps would occur even when x k is far from the solution. This inefficiency is exactly 
the one that is mentioned in the previous paragraph if dk is a step from one vertex 
to the next along an edge of the polygon. 

Therefore in our algorithm the linear constraints on the search direction include 
the condition that the step from xk to x~ + dk must not be a move towards the 
boundary  of any inequality constraint that has a small residual at xk. The meaning 

o f " s m a l l "  in practice is made precise in Section 2: it depends on a relative tolerance 
parameter  that is reduced automatically from a moderate value to one that is near 
the precision of the computer  arithmetic. We let Jk be the set of  indices of  inequality 

constraints with small residuals at Xk, and, in order to allow bounds in this set, we 
write the last line of expression (1.1) in the form 

a~x<~-!~ . . . .  j = m + l , . . . , m + n ,  
(1.5) 

a~x<~u~ . . . . . .  j = m + n + l , . . . , m + 2 n ,  

where a i = - e i _ , ,  and aj=ej_~_ ,  for m +  l <~j<~rn+n and m + n +  l <~j<~rn+2n 
respectively, ei being the ith coordinate vector of  R". Then the constraints on the 
search direction of the kth iteration are the conditions 

a~d=O,  j = l , 2 , . . . ,  m', 
(1.6) 

a~d<~O, j ~ J k ,  

all the right hand sides being zero. The idea of employing such constraints is 
suggested by Polak (1971), but he does not report any numerical experiments on 
the usefulness of  the idea in practice. Our calculation includes a shift of  the variables 
onto the active constraint boundaries when the tolerance parameter  reaches its least 
value, but there is no other refinement of the active constraint residuals. 

The most important consequence of the conditions (1.6) is that, if any of the 
constraints (1.1) restricts the step-length ak, then its index is not in Jk. Therefore 

the requirement that Xk+~ be feasible allows relatively large changes to the variables, 
even if ]l dk 11 is very small due to an unsuitable matrix Bk in the quadratic approxima-  
tion (1.3). It can happen that the number  of  indices in Jk exceeds the number  of  
variables n, which distinguishes our algorithm from many other procedures for 
linearly constrained optimization. 

We see that the calculation of the search direction is a strictly convex quadratic 

programming problem, namely the minimization of  expression (1.3) subject to the 
conditions (1.6). The zero right hand sides of  the constraints often cause this problem 
to be degenerate. We employ the quadratic programming algorithm of Goldfarb 
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and Idnani (1983) because it not only copes with the degeneracies very well but 

also can take advantage of  the zero right hand sides. Details are given in Section 2 
and some particular points are noted now. In difficult cases most of  the work of  
this calculation is spent on identifying an active set of constraint indices Ik 
({1, 2 , . . . ,  m'} w Jk) such that the search direction minimizes expression (1.3) subject 

to the equations 

aTd=o, i~lk,  (1.7) 

where the active constraint gradients {ail i c Ik} are linearly independent. An estimate 

of  I~ is adjusted automatically if necessary. We let Ak denote the matrix whose 
columns are the gradients of the constraints of the current estimate of Ik, and mk 
denotes the number  of  columns of Ak. The Goldfarb- ldnani  procedure stores and 
updates two matrices, namely an n x n full matrix Zk and an n x mk upper  triangular 
matrix R~ that satisfy the equations 

Z~A~ = Rk, ZkZ~ = B ; ' .  (1.8) 

When Ak is altered, the upper  triangularity of  Z{Ak is recovered by premultiplying 
Z~ by a suitable n x n orthogonal matrix, because this operation preserves the 
identity ZkZ T = B~, t . One small change from the Goldfarb- Idnani  procedure in our 

algorithm is that we store and update Uk instead of Rk, where /~k = / ~ [ '  and /~k is 
the mk x mk upper triangular matrix that is formed by deleting the zero rows of Rk. 

The second derivative matrix Bk of expression (1.3) is not stored because Zk 

defines Bk in a convenient way. Therefore the statement that Bk is revised by the 
BFGS formula means that Zk+l is calculated to satisfy the condition that 

T - 1  (Zk+lZk+l) is the matrix that would be obtained if the BFGS formula were applied 
to (ZkZ'[) -~. Fortunately there is a stable way of generating Zk+j that also gives the 
equation Z~.+zAk = Rk, so no further work is needed to regain the first of  the equations 

(1.8) after revising the second derivative approximation.  No other updating formula 
in the Broyden linear family possesses this property (Powell, 1988). 

Our algorithm is suitable for calculations with a moderate number of variables 
and very many constraints. The restriction on n is due to the full matrix Zk, but 
large values of  m can be treated efficiently because the search direction takes account 
of  all constraints with small residuals. Therefore the given procedure is recommended 
for approximations to semi-infinite programming problems with an infinite number  
of  constraints. Such problems occur, for example, in control calculations when, for 

each vector of  variables, a t ime-dependent  function is generated that must satisfy 
certain bounds. Here it is not unusual for an iteration to change all the elements 
of  an active set, and then much second derivative information can be lost by those 
algorithms that employ reduced second derivative matrices. Therefore the ease of  

updating the Goldfarb- Idnani  factorization of  an approximation to V2F(.) is an 
important feature of our work. 

The details that are given in Section 2 include the initialization of  the algorithm, 
the application and adjustment of  the tolerance that is used to identify small 
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constraint residuals, the termination condition, some remarks on the line search 
procedure, and further attention to the quadratic programming calculation of the 
search direction. More information can be found in a report that presents a Fortran 
implementat ion of the procedure (Powell, 1989). Some convergence questions are 

studied in Section 3. Unfortunately, unless some convexity assumptions are made, 
it is not yet known whether the BFGS method for unconstrained optimization gives 
IIVF(xk)]] ~ 0 when the objective function is twice continuously differentiable with 
bounded level sets, so our theory has to be incomplete. We suppose that the second 
derivative approximations {Bk[k= 1, 2, 3 , . . .  } and their inverses are uniformly 
bounded,  and we prove convergence to one or more Kuhn-Tucker  points in this 

case, even if the constraints are highly degenerate, without assuming specifically 
that the BFGS formula is employed to define each Bk+l. Finally, Section 4 gives 
some numerical results that show the efficacy of the algorithm when m is large and 
that provide comparisons with some other procedures for constrained optimization 
calculations. 

2. Several details of the algorithm 

It is usual for descriptions of  optimization algorithms to ignore computer  rounding 
errors, and mostly we follow this practice, although careful attention to such details 
is essential to the development of robust computer  software. Therefore some impor-  

tant features of the implementation of Powell (1989) are not considered in this 
section. There are even some differences between the given algorithm and the Fortran 
software that are pointed out explicitly. These inconsistencies allow clearer explana- 
tions of some salient points, and they yield some interesting convergence questions. 

In the implementation,  however, convergence questions are trivial, because the 
iterative procedure is s topped automatically when it is no longer possible to decrease 
the objective function. Thus the termination of  the execution of the Fortran program 
is an immediate consequence of the fact that the number  of different values of  the 
objective function in any computer calculation is finite. 

The algorithm begins by setting a constant called ZTEST to about 100 times the 
relative precision of the computer  arithmetic. It is used frequently in the implementa-  

tion to assess whether quantities that are small due to cancellation might be zero. 
For example, if there are equality constraints, the Fortran program employs ZTEST 
to decide whether to treat the vectors {aj IJ = 1, 2 , . . . ,  m'} as linearly dependent ,  
and if so whether the right hand sides {b3 IJ = 1, 2 , . . . ,  m'} are consistent. Of  course 
the algorithm terminates if the equalities are inconsistent, and otherwise any redun- 
dant constraints are dropped in order that the m'  equations of  expression (1.6) are 
independent.  Then the starting point x~ is revised if necessary by an orthogonal 
projection so that {a T x~ = bJ ]J = 1, 2 , . . . ,  m'}.  

This projection gives some importance to the Euclidean metric initially, and also 
we let the initial second derivative approximat ion be the unit matrix. Therefore we 
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choose Z1 to be orthogonal, and, if there are any equality constraints, then as in 
equation (1.8) we require ZV~AI = R~, where initially the columns of A1 are {ai IJ = 
1, 2 , . . . ,  m'} and where R~ is upper  triangular. Further, we let r be the tolerance 
parameter  that distinguishes small from large constraint residuals. Its initial value 

is ~-= 0.01, and it is reduced automatically on certain iterations until ~-= ZTEST. 
After taking account of  any equalities, the algorithm revises x~ if necessary to 

meet the bounds {li ~< [xl]i ~< uili = 1, 2 , . . . ,  n}. We view this problem as minimizing 
the sum of  violations of  the bounds subject to preserving all the equality constraints 
and bounds that hold already. These constraints are treated in the way that is 

mentioned in Section 1, so we employ ~- to pick out the ones with small residuals 
at the current x~ for inclusion in expression (1.6). Then a search direction is generated 
as before, after changing VF(xk) in expression (1.3) to the gradient of the sum of 
bound violations, B~ being the unit matrix. I f  the resultant d is zero and r > ZTEST, 

then ~- is reduced and d is recalculated, but otherwise a zero d causes an error 
return because the equality constraints and bounds seem to be inconsistent. When 
d is nonzero, xj is replaced by x~ + ted, where the step-length a minimizes the new 
sum of bound violations, which is a piecewise linear function, subject to the satisfied 

equality and bound constraints. This procedure is repeated until either there is an 
error return or x~ is within all the bounds. In the latter case we turn to the remaining 

constraints {a~x~ <~ bj IJ = m ' +  1 , . . . ,  m}, adjusting x~ if necessary in the way that 
is analogous to the given procedure for the bounds. Therefore from now on we 
assume that every Xk is feasible. 

The test for small residuals depends not only on ~- but also on nonnegative 
numbers {X~ I i = 1, 2 , . . . ,  n} that usually reflect the magnitudes of the components 

of  x. Initially the algorithm sets the values 

X,:l[x,],l, i = 1 , 2  . . . .  ,n ,  (2.1) 

where x~ is the starting vector that is provided by the user. Then, after each acceptable 
change to the variables, including changes to xl to achieve feasibility, X~ is replaced 
by max[X~, I[x]il]. It is deliberate that Xi might be zero initially, because we dislike 
the alternative of  choosing an arbitrary positive number  that would introduce an 

unnecessary dependence on scaling into the algorithm. The constraint a~x <~ bj is 
deemed to have a small residual at x if and only if the inequality 

,a~x-bj,<~ T{ ~= l X~,[aj]i,+,bj, } (2.2) 

is satisfied, and a similar test is applied to bounds. For example, the bound l~ ~< [x]~ 
is defined to have a small residual when [[x]~- li[ ~< ¢{Xi +[ld}. 

After calculating each search direction dk, the algorithm decides either to perform 
a line search or to reduce r. This decision depends on some Lagrange multipliers 
and on the change Qk(0) -Qk(dk)  in the quadratic objective function (1.3). Each 

adjustment to 7 is by a factor of  at least 10 subject to the lower bound ~-i> ZTEST, 
so the number  of  reductions is finite. They can occur in the main iterations and 
during the procedure that has been mentioned already for achieving feasibility. 
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The required Lagrange multipliers are the ones at the solution of the quadratic 
programming problem that defines dk. Here the current Zk and Rk satisfy equation 
(1.8), the columns of Ag being {a~lj~ Ik}, where as before the active set Ik is a 
subset of  the constraint indices that occur in the conditions (1.6). The nontrivial 

multipliers are the components  of  the vector hg c ~"~ that is defined by the equations 

~, r v r . .  ",u_ /~ A . . . .  r ~ A k !  ' *-'k~g = A k A k ,  A~d~ = 0 .  (2.3) 

Writing dk = Zk~zg, which is used in the calculation of dk, it follows from the first 
part  of expression (1.8) and A~(Zktzk)= 0 that the first mk components  of  /~k are 
zero. Further, multiplying the first part of equation (2.3) by Z T and using zTBkzk = i 
we find the identity 

ZVkVF(xk) +/xk = Rkhk. (2.4) 

Hence the last (n - rnk) components of/Xk are those of -Z~VF(xk)  and hk satisfies 
the mk× rnk triangular system 

R k A k  * T -~ Zk V F(xk ), (2.5) 

where /~k and ,~k are formed by deleting the last n - m k  rows from Rk and the last 

n - m k  columns from Zk respectively. Therefore, remembering that we store the 
upper  triangular matrix Uk =/~{1 instead of Rk, the algorithm employs the multi- 
pliers 

A T 
hk = UkZkV F(xk). (2.6) 

It is important  to the next paragraph that, due to the Kuhn-Tucker  conditions at 

the solution of the quadratic programming problem, the components of this vector 
that correspond to inequality constraints are nonpositive. The change in Qk( ' )  is 
also easy to calculate, because, substituting dk = Zklxk in equation (1.3), we find that 
the form of/xk implies the value 

Qk (0) - Qk ( dk ) = ~ II/zk II 2. (2.7) 

The main criterion for reducing r depends on the remark that usually the least 

value of Qk(d) subject to the condition that xk + d shall be feasible is less than 
Qk(dk), because the constraints on this new d are less restrictive than the constraints 
on dk. Specifically, if j e Jk is the index of a constraint whose residual aTxk-- bj is 
negative, then the right hand side of  the constraint a Td ~ 0 in expression (1.6) can 
be increased to the modulus of this residual. Further, letting rk be the vector of  
residuals at xk of the constraints whose indices are in lk, a straightforward calculation 
shows that, if the inequality constraints ATd<~O are altered to ATd<~-rk, then, 
instead of expression (2.7), we can achieve the difference 

Qk(O ) _ Q k ( d k )  1 2 T = 2 II ]Zk 112 -[- h k rk q- O(  II rg IJ 2). (2.8)  

Because it seems unsuitable to continue with the nonzero residuals due to r when 
the t e r m  ATkrk is much larger than ~ 2 511/zkl12, the conditions for revising r are as follows. 
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The algorithm reduces ~- if the current value was used on the previous iteration, if 

~- is not already at its lower bound, and if the inequality 

T 1 2 Akrk ~> 10 max[511/zk 112, F(xk-1) - -  F(xk)] (2.9) 

is satisfied. The factor 10 is a consequence of numerical experiments, and the term 

F(xk_~)  - F ( x k )  is present to prevent too early a decrease in r when the iterations 

are choosing long step-lengths. 
There is another situation that can cause a reduction in r which depends on an 

accuracy parameter, namely ACC, that is set by the user. The main purpose of this 

parameter is that the entire calculation finishes if the condition 

IIV F ( x k )  -- Ak,~k 1{2 <~ A C C  (2.10) 

is satisfied and r = ZTEST. This termination criterion is appropriate because we 

have VF(xk)=  AkAk at every Kubn-Tucker  point. The only suitable action by the 

algorithm when condition (2.10) holds but ~- is not minimal is to reduce the value 

of 7.. This action covers the possibility dk = 0 because then equation (2.3) implies 

that the left hand side of  the test (2.10) is zero. We assume in the algorithm that 

inequality (2.10) can be satisfied, but in practice the user may set ACC to such a 

tiny number that rounding errors prevent the attainment of  the termination condition. 

Therefore the implementation includes a test that gives an error return when the 

requested accuracy cannot be achieved. 
The new value of 7. is calculated as follows. In order to allow a large reduction 

when there are no near-degeneracies in the constraints, the algorithm determines 

the least value of ~-, $ say, such that condition (2.2) remains satisfied by all the 

constraints in the current active set Ik. Thus the reason for reducing • would still 

be valid if 7. were replaced by ~. Then r is decreased to the number 

/O.l~, ~>  20 ZTEST, 
¢ =  (2.11) 

I ZTEST, "~ <~ 20 ZTEST, 

so the reduction is by at least the factor 10 that has been mentioned already, except 

that, when achieving the lower bound 7-=ZTEST, the factor can be close to 2. 

Further, when r is revised for the last time, we reinitialize the numbers {X~[i = 

1, 2 , . . . ,  n} of  inequality (2.2) to the moduli of the components of  the current xk. 
The reason for this precaution is that during the iterations the magnitudes of some 

of  the variables may have decreased greatly. 

Usually the new ~- and the current xk do not allow Ik to remain as the active set, 

because some of the active constraint residuals are no longer "small". Therefore 

the inequality constraints whose residuals become large are removed from lk, except 

when 7- reaches its lower bound, namely ZTEST. In this case it follows from equation 

(2.11) that, for the old values of {X, I i -- 1, 2, . . . ,  n), the relative residuals of these 
constraints are at most 20 ZTEST, and we apply the refinement procedure that is 

mentioned soon after equation (1.6) instead of reducing the active set. Specifically, 
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Xk is moved onto the active constraint boundaries by the formula 
A T 

xk ~- Xk - ZkUkrk, (2.12) 

where rk is the vector of  active constraint residuals as before. When ~'new > ZTEST, 
however, then xk is not altered unless an accumulation of rounding errors has caused 

one or more active constraints to be violated by more than the relative accuracy 
ZTEST. An earlier version of the algorithm used formula (2.12) whenever z was 
reduced, subject to some safeguards to preserve feasibility, but this technique was 
abandoned because in difficult calculations the larger changes to Xk sometimes 
caused substantial increases in the objective function, due to contributions from 
second and higher order terms of the Taylor series expansion of F ( x )  about Xk. 

On each iteration of the algorithm, the choice of  step-length is based on the Wolfe 
(1969) conditions 

F(xk + akdk) <~ F(Xk) + 0.1 akd~V F(xg) (2.13) 

and 

T + dkVF(xk akdk)>~O.7d~VF(xk), (2.14) 

the factors 0.1 and 0.7 being successful values of free parameters.  These inequalities 
are consistent for a range of positive values of ag, whenever F ( .  ) is a continuously 
differentiable function that is bounded below and dk satisfies the descent condition 
(1.4). When there are no constraints, they ensure that ak is both small enough and 
large enough to provide good global convergence properties for suitable search 
directions, but, in the linearly constrained case, the feasibility of  Xk + akdg may rule 
out the attainment of  inequality (2.14). Therefore the algorithm requires ak to give 

the reduction (2.13) in the objective function and to satisfy either ak----~k, or 
condition (2.14), where &k is the longest step-length that is allowed by feasibility. 
Another important feature, which helps the final rate of convergence, is that the 
initial trial step of each line search has the value rain[l ,  &k]. In the Fortran 
implementation,  however, there are some safeguards in case rounding errors prevent 
the attainment of the line search conditions of  the algorithm. 

A disadvantage of the ak = dk case is that it may not be possible or sensible to 
update the second derivative approximation by the BFGS formula, because we 
cannot satisfy the equation T -~ Z k + l Z k + l  = Bk+~ unless Bk+ 1 is positive definite, which 
demands the condition 

d'~{V F(xk + akdk) -- VF(Xk)} > 0. (2.15) 

Further, a very small value of this scalar product  can cause severe iU-conditioning. 
Therefore each iteration includes BFGS updating if and only if the left hand side 

of inequality (2.15) is at least O.11dXkVF(Xk)l. Otherwise the second derivative 
approximation is not revised. Moreover,  the updating procedure includes the column 
scaling technique of Powell (1987), because it can give a substantial reduction in 
the number  of  iterations when ilB, II = II(z, zT)- ' I [  is much larger than the norm of  
a typical second derivative matrix. 
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We end this section by considering the calculation of the search direction, which 
is the vector that minimizes expression (1.3) subject to the homogeneous linear 

constraints (1.6). If  the current guess of  the active set lk is correct, then dk is defined 
by the linear system (2.3). Further, it follows from the Kuhn-Tucker  conditions of  
this quadratic programming problem that, if for any guess of  Ik we define d and A 

by the equations 

~TF(Xk) + Bkd -= Aka, A~d = 0, (2.16) 

then we have the correct active set if and only if d satisfies the constraints (1.6) 
and the components of  A that correspond to inequality constraints are all nonpositive. 
For each estimate of Ik the matrices Zk and Uk = / ~  of the factorization (1.8) are 

available, and they are updated by an orthogonal transformation whenever the 
estimate is revised. Therefore, as in the paragraph that includes expressions (2.3)- 
(2.7), the system (2.16) has the solution 

d = - 2 k 2 ~ V f ( x . )  (2.17) 

and 
A ~ T  

a = U k Z , , V F ( X k ) ,  (2.18) 

where Zk is the n x (n - rnk) matrix whose columns are the last n - m k  columns of Zk. 
We determine Ik by the dual algorithm of Goldfarb and Idnani (1983), which 

gives higher priority to the conditions on A than to the conditions on d. The initial 

estimate of lk is the active set of  the previous iteration in order that we can make 
use of  the current Zk and Ok. We begin by calculating the vector (2.18), and, if we 
find any positive multipliers of  inequality constraints, then a recursive procedure 

makes deletions from the current active set until all the components of  A have 
acceptable signs. The stage when )~ is acceptable may be reached several times 
during the sequence of estimates of lk, but there is no cycling because the correspond- 

ing values of Qk(d) increase strictly monotonically. 
At this stage we calculate the vector (2.17), defining it to be zero if mk= n. I f  the 

conditions (1.6) are satisfied then d = dk as required. Otherwise we pick the most 

violated constraint, a~d <~ 0 say, and we add l to the active set. In theory al is not 
in the column space of Ak, because if it were then A~d = 0 would imply a~d = O. 
Therefore this addition preserves the independence of the active constraint normals. 
The Fortran implementation (Powell, 1989) is less simple, however, because exten- 

sive use is made of ZTEST to decide, for example,  whether constraint violations 
are negligible. 

Having added I to the active set, and having updated ink, Ak, Zk and Ok, which 
requires no change to the first mk - 1 columns of these matrices, we calculate the 
new multiplier vector (2.18). We see that it has the value 

A = ,~+ O/)k( ' ,  ink), (2.19) 

where £ is the old multiplier vector augmented by a zero component  and where ¢ 
a T is the last component  of  ZkVF(xk).  I f  the new multipliers have acceptable signs, 
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there is a branch to the part of the algorithm that is described in the previous 
paragraph,  but otherwise we proceed as follows. 

We know that the vector (2.19) has acceptable signs if ~b = 0 but not if & has the 
required value. We take the view that q5 is adjusted continuously from zero, and 

we let ~ be the first value at which a component  of  A, [ h ] q say, becomes unacceptable.  
A 

The qth element of the active set is dropped,  and rnk, Ak, Zk and Uk are updated 
so that l remains the last element of the active set. Again we express h in the form 
(2.19), ,( being the contribution to expression (2.18) from the first m k -  1 columns 
of the new Uk, and ~b being the new value of the last component  of  Z~VF(xk). 
This new & has the same sign as before and its modulus exceeds 1~1- I f  h is now 
acceptable the algorithm branches to the testing of  the conditions (1.6) that has 
been described already. Otherwise we apply the procedure of  this paragraph recur- 

sively, dropping one constraint at a time, until h becomes acceptable, except that 
we must qualify the statement that the vector (2.19) has acceptable signs if q5 = 0. 
The situation now is that some unacceptable signs may occur when ~b = 0, but, as 
q5 is adjusted continuously to the required value through the old 4~, all signs become 
acceptable no later than the old ~ and no multipliers of inequality constraints switch 

from negative to positive until ~b reaches the old 4~- Therefore the qualification does 
not disturb the obvious method for finding q. 

The implementation of this procedure for calculating the search direction is 
straightforward. When the qth constraint is dropped from the active set, the factori- 
zation (1.8) is updated by applying Givens rotations that exchange adjacent columns 
of the old Ak until the gradient of the constraint to be dropped is the last column 
of Ak. Then the actual deletion of the constraint from the estimate of  Ik only requires 

mk to be replaced by mk-  1. We prefer to work with the upper  triangular matrix 
A 

Uk instead of Rk, because it is helpful to our use of  the form (2.19) to have the last 
A 

column of Uk available explicitly. 

3. Convergence questions 

In this section we study some convergence properties of the algorithm when V F ( .  ) 

exists and satisfies the Lipschitz condition 

lIVE(x) - V F(Y)II2 <~ gl)x-  YI[2 (3.1) 

for all feasible x and y, where L is a constant. Further, as mentioned in the 
introduction, we assume that the positive definite matrices {Bk [ k -- I, 2, 3 . . . .  } and 
their inverses are uniformly bounded. We write these conditions in the form 

wlld[[2~dTBkd<~WIIdll 2, deN",  k = 1 , 2 , 3  . . . .  , (3.2) 

where w and W are positive constants. Because no attention is given to the BFGS 
formula, our theory is valid for all matrices {Bklk= 1, 2 , 3 , . . . }  that satisfy the 
bounds (3.2). Therefore no superlinear convergence questions are considered. The 
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final assumption of this section is that computer  rounding errors are negligible, 
except that they provide the positive lower bound ZTEST on r. 

The most important convergence question is answered in the following theorem. 

Theorem. The given conditions on F( .  ) imply that the algorithm terminates if  the 
value o f  ACC in inequality (2.10) is set to any positive constant. 

Proof. Because the number  of  different values of  ~- is finite, and because the 
attainment of condition (2.10) causes either a reduction in ~- or termination, it is 

sufficient to prove that this condition holds eventually if enough iterations are 
performed with any fixed positive value of  ~-. When the step-length of  the line search 
satisfies inequality (2.14), then we can deduce a useful lower bound on ak from 

expressions (2.3), (2.14), (3.1) and (3.2). Specifically, because equation (2.3) implies 
the identity 

d~V F(xk)  = -d~Bkdk ,  (3.3) 

expressions (2.14) and (3.1) give the relation 

0.3 d~Bkdg = -0.3 d~V F(xk)  

<~ d~[V F(xk + akdk) -- V F(xk)] 

< ~kZlld~ I1~, (3.4) 

so it follows from condition (3.2) that we have the bound c~k/> 0.3w/L.  
Alternatively, it has been noted that the step-length may satisfy ak = ffk instead 

of  inequality (2.14). In this case, letting l~ dk be the index of  the constraint that 

restricts the step-length, the algorithm gives the conditions 

a~,(xk + ~ d k )  = b, (3.5) 

and 

la T xk - btl > "r { i~l Xil[ al]il + lbt[ } , (3.6) 

where the right hand side bl is taken from expression (1.5) if m + 1 ~< l ~  < m +2n. We 

note that, for each l, the term in braces on the right hand side of inequality (3.6) 
is a nondecreasing function of  the iteration number,  so its least positive value over 
all iterations, vt say, is well defined. We let v be the least of  the numbers v~/llatll2 
as l ranges over all constraint indices that restrict the step-length of  any iteration, 
which is a positive constant because the number  of  constraints is finite. Hence, in 
view of the fact that positivity of  the left hand side of  condition (3.6) implies 
positivity of  the right hand side, this condition implies the relation 

la~xk - b, I > rv]la, II 2. (3.7) 

Moreover, the identity 

laTxk - b,[ = t~daTdkl (3.8) 
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is an elementary consequence of equation (3.5), so the Cauchy-Schwarz inequality 
gives ak [I dk [[2 > ~-v. Therefore the step-length of every iteration of the algorithm has 
the lower bound 

ol k ~ min[0.3 w~ L, Tv/II dk II 2]. (3.9) 

We combine this result with the remark that expressions (2.13), (3.3) and (3.2) 
provide the relation 

F(xk+l) <~ F(xk) -- T O.lolkdkBkdk <~ P(Xk)-O.lwolklldkll 2. (3.10) 

o f  course we also make use of the observation that the differences { F ( x k ) -  
F(xk+l)lk = 1, 2, 3 , . . .  } tend to zero because {F(xk) I k = 1, 2, 3 , . . .  } is a monotoni- 
cally decreasing sequence that is bounded below, due to the continuity of F ( .  ) and 
to the boundedness of the feasible region. Thus, substituting inequality (3.9) in 
expression (3.10), we deduce the limit 

IldkL-~ 0. (3.11) 

We have not yet used the second part of condition (3.2), and we note now that, 
due to the symmetry of Bk, it implies the relation [[ Bkdk 112 <~ W II dk [[z. Therefore the 
first part of  equation (2.3) gives the bound 

IlV F ( x k ) -  AkAkll= <~ Wlldkllz. (3.12) 

It follows from the limit (3.11) that the left hand side of the test (2.10) tends to 
zero as k ~ oo. Therefore the algorithm terminates as required. [] 

This proof  of convergence does not depend on inequality (2.9), so in theory this 
condition could be dropped from the algorithm, but we will explain that it is useful. 
Specifically, it allows reductions in ~- before the test (2.10) is satisfied, which helps 
to avoid unnecessary calculation when ACC is tiny and the tolerances on constraint 
residuals are relatively large. Inequality (2.9) would be unsuitable, however, if it 
could hold when ~" is small at a point xk that fails to come close to satisfying the 
Kuhn-Tucker  conditions. The following argument addresses this question. 

Let inequality (2.9) be satisfied with ~- = ZTEST. Then condition (2.2) shows that 
the residuals of the active constraints are near to the least value that is usually 
attainable from the computer arithmetic. Further, the left hand side of inequality 
(2.9) is at most a constant multiple of ZTEST, this bound being inherited from rk 
due to the uniform boundedness of the Lagrange multipliers {)tkl k = 1, 2, 3 , . . .  }, 
which is a consequence of the independence of active constraint normals, the 
finiteness of the number of  different active sets, equation (2.3) and the uniform 
boundedness of  {~TF(Xk) + Bkdkl k = 1, 2, 3 , . . .  }. Therefore condition (2.9) implies 
that ]]/~kl] 2 is bounded above by a multiple of ZTEST. It follows from the identity 
dk = Zkl~k, the boundedness of the matrices {Zkl k = 1, 2, 3 , . . .  } and inequality (3.12) 
that the length of the Kuhn-Tucker  residual vector VF(xk)--AkAk is at most a 
constant multiple of the square root of  ZTEST. This is the best kind of  accuracy 
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that one can reasonably expect from an algorithm that does not allow the computed  
value of the objective function to increase in acceptance tests for changes to the 
variables, because of the flatness of  the objective function along directions from the 
opt imum that preserve the zero residuals o f  the active constraints. 

The final consideration of this section is the performance of the algorithm when 
the user sets ACC = 0 and the computer  arithmetic is so precise that it is worthwhile 
to study the case when there is no positive lower bound on z. I f  r ~ 0 occurs, then 
inequality (2.9) holds an infinite number  of  times, and one can deduce from the 
argument of  the previous paragraph that a subsequence of { x k l k  = 1, 2, 3 , . . .  } 
converges to a Kuhn-Tucker  point, by restricting attention to the iterations that 

satisfy condition (2.9). It would be more usual, however, for T to remain fixed after 
a finite number  of iterations, because II rk I}2 is zero for all sufficiently large k. Therefore 

we address the convergence of the algorithm when ACC = 0 and r does not change. 
We have shown already that conditions (3.11) and (3.12) are satisfied, and now we 
extend our work to prove that every limit point of the sequence {x~ I k = 1, 2, 3 , . . .  } 

is a Kuhn-Tucker  point. This analysis does not presume the limit Ilrk[[z~ O. 
Let x ,  be any limit point of  { x k l k  = 1, 2, 3 , . . .  }, so we have the relation 

lira xk(i)= x . ,  (3.13) 
j ~ o o  

where {k( j ) l j  = 1, 2, 3 . . . .  } is a strictly increasing sequence of positive integers. 
Because the number  of  different active sets is finite and because we can choose a 
subsequence of  {k(j)} if  necessary, we assume without loss of  generality that the 
sets {lk(j)IJ = 1, 2, 3 . . . .  } are all the same active set, 1, say. We have noted already 
that the gradients of  active constraints are linearly independent,  so it follows from 
expressions (2.3), (3.11 ) and (3.13) and from the boundedness of  Bk that the Lagrange 
multiplier vectors {Ak(j)lj = 1, 2, 3 , . . .  } converge to the limit A, that is defined by 

the equation 

V F ( x , )  = A , A , ,  (3.14) 

where A ,  is the matrix whose columns are {ail i c 1,}. Further, the algorithm ensures 
that the Lagrange multipliers of  inequality constraints are all nonpositive. Therefore 

x ,  is a Kuhn-Tucker  point as required if the constraints whose indices are in I ,  
all have zero residuals at x , ,  but it is possible that some nonzero residuals occur. 

Let r ,  be the vector whose components are the residuals at x ,  of the constraints 

whose indices are in 1, .  By feasibility, the conponents that correspond to any 
equality constraints are zero and the remaining components are all nonpositive. 

T Therefore the scalar product  A, r ,  is a sum of nonnegative terms. Moreover, because 
~- remains constant, inequality (2.9) fails for all sufficiently large k, and the right 
hand side tends to zero due to the convergence of the sequence { F ( x k ) l k  = 
1, 2, 3 , . . .  }, the limit (3.11) and the bound Iltxk]l~ < Wlldkll~, which is derived from 
condition (3.2) and the identities II#k]]~ = I}Z{~dkll 2 = dVkBkdk • Thus we deduce from 

T inequality (2.9) that A , r ,  = 0. These remarks imply that, if any component  of  r ,  is 
negative, then the corresponding component  of  A, is zero. Hence equation (3.14) 
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remains true if we delete from A .  and A. any columns and components  that 

correspond to active constraints with nonzero residuals at x , .  Therefore we have 
proved the assertion that the Kuhn-Tucker  conditions are satisfied at x , .  

We see that the analysis of  this section does not impose any conditions on the 

constraints, such as strict complementari ty and nondegeneracy. Therefore it suggests 
that our algorithm has some very useful advantages over those active set procedures 
that ignore inequality constraints with small nonzero residuals when calculating 
search directions. This suggestion is confirmed by some numerical results in the 
next section. 

4. Numerical results and discussion 

We draw our conclusions in this section from three of  the test problems for 
optimization subject to linear constraints that are given by Hock and Schittkowski 
(1981), H&S say, and from three cases of a one-sided rational approximation 
calculation. We consider two versions of the BFGS updating formula. We test the 
advantages of  setting ~- = 0.01 initially instead of a much smaller value. We investigate 

the safeguards of a Fortran implementation of the algorithm (Powell, 1989) that 
allows A C C = 0  in condition (2.10). We try the option of using single precision 
arithmetic. Finally some brief remarks are made on comparisons with other 
algorithms. 

The H&S problems are the ones that are numbered 105, 112 and 118 in their 

book. Problem 105 has 8 variables and 1 inequality constraint in addition to bounds,  
but none of the constraints is active at the solution. Its main feature is a highly 
nonquadrat ic  objective function, due to logarithmic, exponential and rational terms. 
There is a misprint in the specification of F ( .  ) in H&S, which was discovered by 
consulting the source of the problem (Bracken and McCormick,  1968), namely that 
the coefficients Y234 and Y235 should be set to 260 instead of 250. Problem 112 has 
10 variables and 3 equality constraints. Our algorithm solved it easily, but H&S 
report that poor  numerical results were obtained by each of the six optimization 

procedures that they applied to this calculation. Problem 118 is a quadratic program- 
ming exercise in 15 variables and the solution is at a vertex of the feasible region. 
It seems straightforward, but, according to H&S, four out of six algorithms failed 
due to overflow or excessive computation time, and only one of the two remaining 
procedures gave an accurate result. It should be noted, however, that some of the 
implementations of  algorithms that were used by H&S are less successful than 
implementations that have been tried by the author. 

The one-sided rational approximation calculations are discretizations of  the 
minimization of the integral 

foS[e - - p ( t ) / q ( t ) ]  2 dt  (4.1) e-2t 
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subject to the constraints 

p(t) /q(t)>~e ', 0~<t~<5, (4.2) 

the variables x c l~ 5 being the coefficients {[x]il i = 1, 2 . . . .  ,5} of the 2-2 rational 
function 

p(t)  [X]l+[X]zt+[x]3 t2 
q( t) - 1 +[x]4( t -  5) +[x]5( t -  5) 2. (4.3) 

This form of  q(.  ) reduces cancellation errors because, due to the growth of{e'  ] 0 ~< t ~< 
5}, q(t) has to be relatively small at the right hand end of the interval [0, 5]. The 
discretization is the approximation of this interval by the point set {tl, t 2 , . . . ,  tr} 
where tj = 5 ( j - 1 ) / ( r - 1 ) .  Our three test problems, namely Fit 11, Fit 51 and Fit 

251, are given by the values r -  11, r =  51 and r =  251 respectively. Specifically, the 
objective function is the sum 

F ( x ) =  ~ [ l - e%p( t j ) / q ( t j ) ]  2, x ~  5, (4.4) 
j--i 

there are 2r linear inequality constraints 

p(tj) ~ e',q(tj), q(tj) >~ 10 -5, j = 1, 2 . . . .  , r, (4.5) 

on the components of  x, and for completeness we add the superfluous bounds 

-102°<~[x]i<~102°, i = 1 , 2 , . . . , 5 .  (4.6) 

In all cases of  this fitting problem we let the starting point of  the iterative procedure 
be the feasible p o i n t x l = ( 1  1 6 0 0) 7 . 

The calculations were done by a Sun 3/50 workstation. First a double precision 
version of the Fortran implementation of  our algorithm (Powell, 1989) was applied 

to the six test problems that have been mentioned, the accuracy parameter  being 
set to ACC = 10 -6. The second column of  Table 1 shows the numbers of function 
evaluations and iterations that were required. The subroutine that calculates F(x)  

Table 1 

Numbers of function values/iterations 

Problem Version of software 

Standard Full Small ACC = 0 ACC = 0 
version BFGS ~- Real*8 Real*4 

Fit 1l 35/25 36/29 30/23 36/26 33/23 
Fit 51 36/30 36/29 49/46 37/31 42/31 
Fit 251 30/22 36/27 159/142 39/25 23/15 
H&S 105 67/49 72/51 69/53 77/51 76/52 
H&S 112 38/30 36/26 35/29 69/34 44/25 
H&S 118 39/23 39/23 33/18 39/23 34/18 
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also provides the gradient VF(x) whenever it is called. In all these trials the 

termination condition (2.10) was achieved. The constraints were satisfied too to the 

accuracy of  the computer arithmetic, not only in these calculations but also in all 

the experiments that are reported later in this section. We are going to compare 

columns 3-6 of  Table I to the second column. 

We experimented with two different versions of the BFGS formula, because a 

Fortran implementation of  our algorithm was given to IMSL in April, 1988 that 
applies only a part of the BFGS correction to the second derivative approximation. 

In this partial correction the first m k columns of Zk+l are the same as the first m k 

columns of Zk,  and the last n - mk columns of Zk+l are in the linear space that is 

spanned by the last n - m k  columns of Zk ,  in order that the equation zT+IAk  = g k 

is inherited from ZTkAk = Rk ,  where mk is still the number of active constraints. 

(Zk+~Zk+~) is the matrix that is However, if the update has the property that v -~ 

defined by the BFGS formula when 6k = Xk+~ -- Xk and Yk = VF(xk+l) - VF(Xk), then 

we have already chosen the last n - m k  columns of Zk+~ correctly, but the first mk 
columns of Zk+~ should have the values 

Zk+l( ' ,  i) = Z k ( ' ,  i) - - { y ~ Z k ( ' ,  i)/ 'y~Sk}6k, i =  1, 2 , . . . ,  m k (4.7) 

(Powell, 1987). We see that the new Zk+~ also inherits the equation ZTk+~Ak = Rk 
from v Z k A k  = Rk,  because 6k is orthogonal to the active constraint gradients, but 
the author overlooked this fact until after he had provided the IMSL software. 
Therefore the question arises whether to replace the updating formula of  the original 

s tandard  version of the Fortran implementation by a f u l l  B F G S  update that includes 

equation (4.7). Columns 2 and 3 of  Table I compare these alternatives. Since there 

does not seem to be a strong case for departing from the standard version, it is 

going to be retained by the author unless future experiments prove to be clearly in 

favour of the full update. The differences between the standard version and full 

BFGS are much less severe than the differences between reduced second derivative 
approximations and the full update, because the standard version does not delete 

any second derivative information when a constraint is added to the active set. 

We recall that, in contrast to our method, it is usual for the search directions of 

active set algorithms to be independent of constraints with nonzero residuals, so 

many small step-lengths can occur due to early encounters with constraint boun- 

daries. Therefore, as stated in Section I, our search directions are calculated to 

move no closer to the boundaries of all constraints with small residuals, where 
"small" is measured by the test (2.2). Thus our procedure becomes a traditional 

active set algorithm if ~" is chosen so that inequality (2.2) holds if and only if a ~ x  - bj 

would be zero in exact arithmetic. We simulated this situation by running the Fortran 

program with ~-= 10 -6 initially instead of the standard initial choice r = 10 -2. Thus 

we obtained the results that are displayed in the "small ~-" column of Table I. 

Of course the one-sided approximation test problems were chosen to demonstrate 

the ability of  our algorithm to handle small constraint residuals efficiently. When 
one of the constraints (4.5) holds as an equation and when the spacing t~+~ - {j of  
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the discretization is small, then there are always constraints with small nonzero 
residuals too. Further, a move along the boundary of  any one of the constraints 
(4.5) can soon lose feasibility because the constraints form two envelopes of  smooth 

surfaces. Thus feasibility forced many line searches to give small step-lengths in 
problems Fit 51 and Fit 251 when the Fortran program was run with ~- = 1 0  - 6  initially. 

In the Fit 51 calculation, for example, c~k was restricted by feasibility on 43 out of  
46 iterations, but this restriction occurred on only 9 of  the 30 iterations of  the 
standard program. Further, the analysis of  Section 3 suggests that the standard 
version would remain efficient for very large values of r in expressions (4.4) and 
(4.5), but many of the traditional active set algorithms would suffer severe difficulties 

from the near-degeneracies of  the constraints. 
An alternative view of the advantages of  the standard version on problems Fit 

51 and Fit 251 comes from considering the changes that need to be made to the 
active set. For example, suppose that the constraint of  the first part of  expression 
(4.5) with j =Jl  is in the current active set, but that, in order to reach the solution, 

the constraint index has to be increased to j =j2. When J2-J~ is large, which is not 
uncommon for a fine discretization, it would be highly inefficient if  the index were 

increased in steps of  one, because then at least j 2 - j l  iterations would be performed. 
Unfortunately, this tends to happen in the traditional active set procedures, partly 

because each part of expression (4.5) gives a sequence of tangent planes to a smooth 
function. For example, the active sets of iterations 4-14 of the "small r "  minimization 
of  Fit 51 are {2, 51}, {3, 51}, {3, 50}, {3, 49}, {3, 48}, {4, 48}, {4, 47}, {5, 47}, {5, 46}, 
{5, 45} and {6, 45}, while the "standard version" gives the same vectors of variables 

{xl, x2, x3, x4), but the active sets of iterations 4-6 are {3, 51), {5, 48} and {7, 42}. 
It is very helpful to the standard version that, if a constraint is present in Ik+l 
because it restricts the step-length ak, then the residual of  this constraint at xk is 

not "small".  
Sometimes the user wishes to achieve good accuracy without any fine tuning of  

the parameter  ACC of the termination condition (2.10). It is therefore convenient 
if the software includes enough safeguards to provide termination when A C C - - 0  
without much unproductive calculation. Column 5 of  Table 1 shows the performance 
of  the standard version in this case, the value ACC = 1 0  - 6  being set in all the earlier 

experiments. Because these calculations were done in double precision arithmetic, 
a single precision implementat ion of the standard version with ACC = 0 was tried 
too. Its results are displayed in the last column of Table 1. It seems that the cost 
of  setting ACC = 0 is not exorbitant, but line searches tend to require more function 
values than usual near the limit of attainable accuracy, because of disparities between 
the actual changes in computed values of F ( .  ) and the changes that are predicted 
by the use of  first derivatives. 

Since the feasibility conditions are satisfied well, we measure the accuracy of our 
calculations by the final values of  F ( - ) .  Each of  the four computer programs that 
produced columns 2-5 of  Table 1 yields all the digits in the Real*8 column of 
Table 2, which is good. Of  course we expect errors in eight decimal numbers from 
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T a b l e  2 

F ina l  va lues  o f  F ( .  ) 

565 

P r o b l e m  Rea l*8  Rea l*4  H&S 

Fit 11 0 .000568306 0 .000568303 - -  

Fi t  51 0 .002509683 0 .002509985 - -  

Fit  251 0 .011651287 0 .011651262 - -  

H&S 105 1138.4107 1138.4105 1138.416240 

H & S  112 - 4 7 . 7 6 1 0 9 1  - 4 7 . 7 6 1 1 0 1  - 4 7 . 7 6 1 0 9 0 2 6  

H&S 118 664.82045 664 .82050  664 .8204500 

single precision arithmetic, and the Real*4 column of Table 2 was calculated by 
the software of  the last column of Table 1. In view of the cancellation in the three 

fitting problems, the single precision software gives good accuracy too. Four of  the 
entries in the Real*4 column of  Table 2 demonstrate  that rounding errors can cause 
a computed value of F ( .  ) to be less than the least value of F ( .  ) in exact arithmetic, 

due partly to the small constraint violations that are a usual consequence of rounding. 
The last column of Table 2 displays the final function values that are stated on 
pages 114, 120 and 126 of  Hock and Schittkowski (1981). The liberty has been taken 

of replacing the H&S 112 number  by the value that they give for their problem 111, 
because these two problems have equivalent objective functions, but the H&S entry 
for the H&S 112 calculation is too high. Further, it seems that H&S did not apply 

any software that finds a close approximation to the solution of H&S 105. 
The numerical results on pages 154-156 of  Hock and Schittkowski (1981) allow 

our software to be compared to six computer  programs for minimization subject to 
nonlinear constraints. These results for problems H&S 105, H&S 112 and H&S 118 

indicate that our algorithm is much more accurate and relaible than the other 
procedures. Indeed, it has just been mentioned that all the Real*8 versions of  our 
software provide a definite improvement  in the final value of the objective function 
of H&S 105, and earlier we noted that only one of the six older procedures finds a 
good solution to the quadratic programming calculation H&S 118. When applied 
to the H&S 112 problem, none of the older procedures reduces the norm of  the 
Kuhn-Tucker  residual vector below 10 -3, so, excluding a case where there is a large 

constraint violation, their values of  the objective function remain above -47.72550 
although Table 2 shows that F(x) = -47.76109 is attainable. Because these calcula- 
tions seem to be among the more difficult test problems of H&S, they are likely to 
expose any weaknesses in implementations of optimization procedures. Therefore 

these comparisons do not necessarily show major defects in the algorithms that are 
behind the implementations. 

Tables 1 and 2 provide some examples of the efficiency of our method,  if one 

measures efficiency by the numbers of  function and gradient evaluations and by the 
accuracies of  the computed solutions. In particular, the three fitting problems show 
clearly the advantages of allowing the search directions to depend on constraints 
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with small residuals. These demonst ra t ions  and the theory o f  Section 3 suggest that  

the given procedure  is highly suitable for the solution o f  opt imizat ion calculations 

with many  linear constraints that  may be nearly degenerate.  Further, we have found 

that  the matrix factorizations that are employed  by Goldfarb  and Idnani  (1983) for 

quadrat ic  p rogramming  extend convenient ly to general differentiable objective 

functions.  
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