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1. Introduction 

Let G =  (V, E)  be a given undirected complete graph,  where V = { 1 , . . . ,  n} is the 

vertex set and E = {11 , . . . ,  In} the edge set, and let c~ ~> 0 be the cost associated with 

edge l c  E. Each  edge I c  E will also be denoted  through the unordered  pair  [i, j ] ,  

where i and j are the extreme vertices o f  I (without  loss of  generali ty we will assume 

cEi.i I = ~ for  each i c V). For  each vertex i c V, let Fi denote  the subset o f  the edges 
incident at i. A Hamiltonian cycle (tour) of  G is a partial g raph  G =  (V,/~) o f  G 

such that: 

(i) 0 is connected,  

(ii) each vertex i ~ V has degree equal to two in 0 (i.e., ]Fi c~/~] = 2 for each i c V). 

The Symmetric Travelling, Salesman Problem (STSP) is to find a tour  G* = ( V, E*)  

of  G whose cost ~ e *  cl is minimum. Such a problem is known to be ? (~-hard .  

For  a comprehensive  survey on the Travelling Salesman Problem, see Lawler, 
Lenstra, R innooy  Kan and Shmoys (1985). 

The exact solution o f  STSP has been successfully app roached  through branch  

and bound  algorithms (Held  and Karp,  1970, 1971; Christofides, 1970; Helbig 

Hansen  and Krarup,  1974; Smith and Thompson ,  1977; Volgenant  and Jonker,  1982; 

Gavish and Srikanth, 1986) and polyhedra l -based  techniques (see the survey of  

Padberg and Gr6tschel,  1985). Al though the exact solution o f  the largest instances 
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of STSP have been obtained by Padberg and Rinaldi (1987) through the polyhedral 
"branch and cut" technique, branch and bound algorithms cannot be dismissed out 
of  hand. In fact, branch and bound is much simpler to implement,  can easily take 
into account additional constraints, and can give good approximate feasible solutions 

if its execution is interrupted before the end. 
It is well known that the effectiveness of  branch and bound algorithms greatly 

depends on the availability of  fast procedures computing tight lower bounds. In 
this paper  new bounding procedures for STSP are presented which produce 
sequences of  increasing lower bounds according to the general f ramework of the 
additive approach proposed by Fischetti and Toth (1989). Such bounding procedures 
can also be useful to improve the lower bound for the Asymmetric Travelling Salesman 
Problem (ATSP), mainly for "almost  symmetric" instances. This can be achieved 
by decomposing the cost c~,j of  each arc (i,j) into tr~,~+c~,j, with o-~,j=~rj, i=  
min{c~,j, cj,~}, and hence by computing a lower bound 6 for ATSP as 6 = 6~ + 6~, 
where 6~ is a lower bound for the instance of  STSP defined by the symmetric costs 
cri, j ,  and 6, is a lower bound for the instance of ATSP defined by the asymmetric 
costs a~,~ (for more details, see Fischetti and Toth, 1990, Section 4.2). 

In Section 2, the additive approach is briefly described, and its properties relevant 
for STSP are pointed out. In Section 3 new lower bounds are proposed,  and combined 

in Section 4 to obtain three bounding procedures. Section 5 gives data structures 
and algorithms for efficient procedure implementation. Computat ional  results on 
randomly generated test problems are reported in Section 6. 

2. The additive approach 

We now briefly outline the additive approach to design bounding procedures; fuller 

details are given in Fischetti and Toth (1989). 
Problem STSP can be formulated as 

(STSP) v(STSP)--min{t~ clx~: (Xl)~ F(STSP) } 

where x~ = 1 if edge l is in the optimal tour, x / = 0  otherwise ( l c  E),  and F(STSP) 

is the set of  the 0-1 incidence vectors of  tours in G. 
Let us suppose that q bounding procedures ~(1), 5((2~,... ,  ~7(0) are available, 

each exploiting a different substructure of  STSP to produce a different lower bound. 
I f  none of the q bounds dominates the others, an overall lower bound could be 
obtained by taking the maximum among them. In this way, however, only one 

substructure is taken into account, while all the others are lost. In order to exploit 
all the substructures, an overall additive bounding procedure can be designed as 
follows. 
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Suppose that, for h = 1 , . . . ,  q and for any cost vector g = (~),  procedure 5g(h)(~), 

when applied to the instance of STSP having costs ~, returns its lower bound ~(h) 
as well as a residual cost vector c (h) = (c~ h)) such that: 

(i) C~ h) ~ 0 for each I c E ; 
(ii) 6 (h )+~E  Clh)Xl < ~ 1 ~  ~Xt for each (xl) c F(STSP).  

According to the additive approach,  procedures ~(1), 5g(2),. . . ,  £g(q) are con- 

sidered in sequence: procedure 5g (h) is applied to the residual cost vector c (h ~) 
returned by procedure 5f (h-~), and computes a lower bound increment 6 (h) (h = 

1 , 2 , . . . ,  q; c (°) being the original cost vector c). It is easy to show that ~ =  
6{1)~_ ~ ( 2 ) _ ~ . .  ° At_ 8(q) is a valid lower bound for STSP. Final residual cost vector c (q) 
can be used for reduction purposes. 

The additive approach,  which is related to the restricted Lagrangian relaxation 

proposed by Balas and Christofides (1981), has been applied to the Asymmetric 
Travelling Salesman Problem (Fischetti and Toth, 1990), to the Multiple Depot  
Vehicle Scheduling Problem (Carpaneto,  Dell 'Amico,  Fischetti and Toth, 1989), 
and to the Prize Collecting Travelling Salesman Problem (Fischetti and Toth, 1988). 

A key step of the algorithm above is computat ion of the residual costs. To this 

end different techniques can be used, corresponding to different ways of computing 
the lower bound. 

2.1. Bounds from linear programming relaxation 

Let A and b be a (k × m) matrix and a k vector, respectively, such that 

F(STSP)_c {x c ~m: x>~O, A x ~ b } .  

A well-known lower bound,  6', for the instance of STSP defined by cost vector 
~, can be computed by solving the linear programming problem 

(LP) 6 ' =  min{z~F 6~xt: x>~O, Ax>~ b}, 

while the corresponding residual cost vector c ' =  (el) can be obtained as 

k 

c ~ = c z - ~  u*Ai.t for each l e E ,  
i ~ l  

where u* is the optimal solution vector of  the dual of  LP (i.e., c' is the linear 
programming reduced cost vector associated with the optimal solution to LP). 

2.2. Bounds from variables decomposition 

Let us suppose that it is possible to define two sets y(1) and y(2) with y( t )  c 

{y E •": y ~ 0} (t = 1, 2), with the property that each vector x ~ F(STSP) can be 
decomposed into two vectors y(1)~ y(1) and y(2)~ y(2) such that x = y(l)+y(2). For 



236 G. Carpaneto et al. / Bounds for the symmetric TSP 

t = 1, 2, let 0 ('7 and "/(,7 be, respectively, a lower bound value and the corresponding 
residual cost vector for the following partial problem: 

(pp(,7) 

Hence 

v(PP('))=min{~E glyl'7: (yl'))• Y(') }. 

~ , =  O(1).4_ ~,q(2) 

is a valid lower bound for the instance of  STSP defined by cost vector e, and 

c't = min{-/l 1), "/I 2)} for each leE, 

are the corresponding residual costs. 

2.3. Bounds from projection 

A particular case of variables decomposition is projection. Let E (1) and E (2~ be a 
partition of edge set E, and FP (') (t = 1, 2) denote the projection of F(STSP) with 
respect to E ('~, i.e. the set of all the IE(')l-dimensional vectors obtainable from 
vectors x • F(STSP) by removing the components associated with edges 1 • E\E ('). 
Suppose that for each partial subproblem 

(PSP (')) v(PSp(t') =min/ t ,~e ('y~ glz,: (z,) c FP (0} 

a bounding procedure is available, producing a lower bound O('7~ v(PSP ('7) and 
a corresponding residual cost vector q~(o. Then inequality 

holds for each z c FP (') (t = 1, 2), and we have 

Hence 

for each (zl) • F(STSP). 

f i '= 0(1)+ 0( 2 ) 

is a valid lower bound for the instance of STSP defined by cost vector ? (since ~I ° 
is non-negative for each l •  E(t)), and the corresponding residual costs are 

c~=~l  1) for each l e e  (1), 

c~=¢I  2) for each l eE  (2). 
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2.4. Bounds from Lagrangian relaxation 

Let A and b be a (k × m) matrix and a k vector, respectively, such that 

F(STSP) c_ {x 6 ~m: Ax >- b}. 

Let t7 c ~k be a vector of  non-negative Lagrangian multipliers, and consider costs 

k 

Cl : ~ --  ~ ~liAi, I f o r  e a c h  1 ~ E .  
i= l  

Then inequality 

k 

Z aib,+ Y~ Ylxl~< Z ~xl 
i=1 IcE I~E 

holds for each x c F(STSP).  
Now apply any bounding procedure to the instance of STSP defined by costs cz, 

obtaining a lower bound value 0 and the corresponding residual costs Yl. So 

inequalities 

i= l  l e e  i=l l~U I~E 

hold for each x c F(STSP). Hence 

k 

6 ' =  ~ ~ b i + O  
i= l  

is a valid lower bound for the instance of STSP defined by costs ~ (since y~ is 
non-negative for each I c E) ,  and 

c~=y~ for each I c E  

are the corresponding residual costs. 
Note that if F(STSP)___ { x c R ~ :  Ax = b}, Lagrangian multipliers a~ are not 

restricted to being non-negative. 

2.5. Bounds from the Asymmetric Travelling Salesman Problem 

Any instance of STSP defined by cost vector (cl) is clearly equivalent to the instance 
of ATSP with symmetric cost matrix (ci, j) defined by ~i,j = ct for each l---[i, j ]  ~ E. 
Hence any bounding procedure for ATSP, producing a lower bound 6' and a residual 

cost matrix ~, also applies to STSP. Since, however, residual cost matrix ~ is generally 
asymmetric even when the input cost matrix ~ is symmetric, such a procedure could 
be inserted in an additive algorithm for STSP only as the final procedure of  the 
sequence. We now describe how to overcome this drawback by transforming ~ into 
an equivalent symmetric residual cost matrix c'. 
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We first show that, if  ~ is a valid residual cost matrix (associated with lower 

bound 6') for the instance of ATSP defined by symmetric cost matrix (ci,j), then so 

is its transposed matrix ~v_= -T (ci3). In fact, let (xi, j) be the 0-1 incidence matrix of  
any feasible solution to ATSP. Since, clearly, its transposed matrix (xi,Vj) also defines 

a feasible solution to ATSP, we have 

i~ V . j c  V i~ V j~  V 

which can be rewritten as 

6'+ E E Z E = E E 
ic V .j~ V ie V ,je V ie V j e  V 

Because of  the arbitrariness of  (xi3), the thesis follows. 
Clearly, any convex combination of residual cost matrices gives a valid residual 

cost matrix, so the symmetric matrix c' defined as 

ci,j=5(ci, j+~,i) for each i, j c  V, 

is a valid residual cost matrix for ATSP. 
Since any instance of  ATSP defined by a symmetric cost matrix can be viewed 

as an instance of STSP, vector (c~) with c~= e~,j for each l-= [i, j ] c  E is a valid 
residual cost vector (with respect to lower bound 6') for the instance of STSP defined 

by cost vector (ct). 
A bounding procedure to compute a lower bound 6' and a residual cost vector 

(el) for STSP, based on transformation to ATSP, can be outlined as follows: 
(i) define a symmetric cost matrix g with ~,j = ~,~ = cl for each 1-= [i, j ]  c E;  

(ii) apply a bounding procedure to the instance of ATSP defined by cost matrix 
~, thus obtaining a lower bound value 6' and a residual cost matrix ~; 

1 ~ (iii) for each l-= [i, j ]  c E, define the residual cost c~ as 5(ci, j+ ~i,i). 

2.6. A simple check for residual costs 

Many bounding procedures for STSP are based on greedy techniques and are, 
therefore, algorithmically easy to analyze. 

Let ~ ( 6 )  be one of these procedures, producing lower bound 6'. Given a non- 

negative vector c', a simple proof  that c' is a valid residual cost vector associated 
with 6' is to show that procedure ~ ( ~ - c ' )  produces a lower bound 6 " ~  > 6'. In this 
case, in fact, inequalities 6'<~ 6"<~ ~l~e (el - c~)xl hold for each x c F(STSP). Hence, 
residual cost vector e'~>0 for procedure 5q(g) can be obtained as the (maximal) 

decrease of  cost vector ~ which does not yield a decrease in the lower bound value. 

3. Lower bounds 

In this section we describe several lower bounding procedures and show how to 

compute the corresponding residual costs. For each bounding procedure,  (ct) denotes 



G. Carpaneto et al. / Bounds for the symmetric TSP 239 

the input cost vector, and 6' and (c~) the lower bound and the corresponding residual 
cost vector, respectively. 

3.1. A bound from A T S P  

According to Section 2.5, any bounding procedure for ATSP also applies to STSP. 
Several bounding procedures for ATSP have been proposed by Fischetti and Toth 
(1990). In particular, an O(n 3) additive bounding Procedure P1 can be outlined as 
follows: 

Procedure P1 
begin 

1. foreach l=--[i , j]~E do ~.j:= ~,i:= ~t; 

2. solve the Assignment Problem (AP) on cost matrix ~, obtaining lower bound 
v(AP) and the reduced cost matrix {; 6 ' := v(AP); 

3. compute on cost matrix ~ the cost /~h of the shortest path from vertex 1 to each 
vertex h c V; 

foreach i, j c V do ~.j := ci, j + f~i - f~j; 
4. solve the Shortest Spanning 1-Antiarborescence Problem (1-SAAP) on cost matrix 

~, obtaining lower bound v(1-SAAP) and the reduced cost matrix ~; 

6' := 6 ' +  v(1-SAAP); 
5. foreach l = - [ i , j ] ~ E  do cl:=½(~.j+~.i) 

end. 

At Step 4, the Shortest Spanning 1-Antiarborescence Problem 1-SAAP is solved 
on the current cost matrix ~. Relaxation 1-SAAP of ATSP is to find a minimum cost 
partial graph of G such that: (i) exactly one arc leaves each vertex, and (ii) a path 

from each vertex to vertex 1 exists. Such a problem can be solved by determining 
the shortest spanning arborescence rooted at vertex 1 with respect to the transposed 
matrix ~v (e.g., through the O(n 2) algorithm of Tarjan, 1977), and by adding the 
minimum-cost  arc leaving vertex 1. Since 1-SAAP is a linear programming problem, 
its reduced costs are valid residual costs (see Fischetti and Toth, 1987, for an O(n 2) 
algorithm for the arborescence reduced costs computation).  

It is easy to show that, after Step 4, each vertex pair can be connected (via vertex 
1) through a pair of  zero-cost directed paths in the digraph associated with the 
asymmetric residual-cost matrix ~. 

3.2. A bound from projection 

Let W={v~,  v 2 , . . . ,  vp} (with p < l n )  be a given vertex subset of  V, and define 
E ~1) = F~, u Fv2 w • • • u F~p as the subset of  the edges incident at W, and E ~2) = E \ E  ~1). 
Consider any tour G = ( V,/~) of  G, and def ine/~t)  =/~ c~ E ~') for t = 1, 2 (see Figure 

1). It is easy to show that the following properties hold: 
(1) /~1) induces an acyclic graph and contains at least m~ = p +  1 edges; 



240 G. Carpaneto et aL / Bounds for the symmetric TSP 

Fig. 1. Tour G; p=2: edges in /~(2) are in bold line. 

(2) /~(2) induces an acyclic graph and contains at least me = n - 2 p  edges. 
According to Section 2.3, a valid lower bound O ('~ for each partial subproblem 

PSP (~) (t = 1, 2) can be obtained by determining the minimum-cost  subset /~('~ of  
E (t~ which satisfies property (t). This can be achieved through the following straight- 
forward adaptat ion of the greedy algorithm of Kruskal (1956) for graphic matroids 
(assuming ~ > 0  for each I c  E):  

initialize /7 (') := & and O ~') : -  0; 

repeat 
let 1 be the next minimum-cost  edge in E('); 
i f / 7 ( ' ) u  {/} induces an acyclic graph 
then set /7('): = F ( t )u  {1} and O~'): = O(')+g; 

u n t i l  I~<')l : -  m , .  

As for the corresponding residual cost q~l ') associated with each edge I c E (~), this 

can be computed as 

q~l ' )=  ~l-max{~k: k c  C1}~>0, 

where Ct is the set of  the edges in/7 (') which make a cycle with edge l (with C~ = {/} 
if I c / ~  ;'), and Ct= /~  (') if E ° ) u { l }  induces an acyclic graph). The correctness of  
these residual costs follows from matroid theory. An easier proof  can however be 
derived, according to Section 2.6, from the fact that reapplying the greedy algorithm 

on costs 6 -  q~l ~ =  max{~k: k c Cl} would produce the same value O ('~ of  the lower 
bound (since the cost of  edges l c / 7  ~') would be unchanged, while the change in 
the relative ranking of the remaining edges could not cause an edge l excluded from 
/~ ' )  to be considered before all the edges in Ct, using an appropriate tie-break rule). 

An overall lower bound for STSP is then 6 ' =  O;1)+ O ;2~, and the corresponding 

residual costs are c'1 = q~l ') for 1~ E (') (t = 1, 2). 
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A particular case of the bound based on projection leads to the well-known 
r-Shortest Spanning Tree Problem (r-SST) (see Held and Karp, 1970, 1971), arising 
when p = 1 and W={r}. 

3.3. A bound from disjoint edge pairs 

Let S be a given vertex subset such that 2 <~ I SI ~< n - 2, and denote with K =- (S, V\S)  
the cut-set containing all the edges [i, j] c E such that ic  S a n d j c  V\S. In addition, 
let f ~  [Vl, v2] be a given edge in K. Consider any tour (~ = (V,/~) of G. One can 
verify that /~ can always be partitioned into / ~ )  and /~2), where /~l) and /~2) 
satisfy the following properties (see Figure 2): 

(1) /~(l) = {1~, 12}, with l~ and /2 disjoint edges in K;  
(2) I/~(z) I = n - 2 ,  l-~/~2), /~(2)u {i- } induces an acyclic graph. 
Note that property (2) is satisfied iff 11 and/2 are not in the same path connecting 

vertices vl and v2 in G (hence, 11 = i- if i-c/~), and that ll and /2 can always be 
chosen disjoint, since 2 ~  < ISI ~< n -2 .  

/ / / ~ /  b 

~1 i i l l  

Fig. 2. Tour t~; S={vi, b}; edges in /~(2) are in bold line. 

According to the above properties and following the variables decomposition 
approach of Section 2.2, STSP can be decomposed into partial problems pp(1) and 
pp(2). Partial problem PP(') (t = 1, 2) is to find the 0-1 incidence vector (yl'): lc  E)  
corresponding to a minimum-cost edge set /7('~ which satisfies property (t). Both 
problems pp(1) and pp(2) can be exactly solved in polynomial time (see the following 
two subsections). Let O (') be the optimal solution value of problem pp(t), and 7(') 
the corresponding residual cost vector (t = 1, 2). A valid lower bound 8' for STSP 
can then be computed as O (1) + 0 (2~, while the corresponding residual costs c~ are 
given by min{yl 1), 712)} for 1~/7. 
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Solving partial problem pp(1) 
Problem pp(1) can be formulated as an integer linear programming problem as 
follows: 

(pp(1)) ~q(1)= min ~ gtyl ~) 
leE 

subject to 

y ? ) = 0  for each l e E \ K ,  

y ? ) =  2, 

Z Yl 1) ~<1 for e a c h i 6 V ,  
IcFic~K 

y?)~>0 and integer for e a c h l ~ K .  

Let P-P(~) be the linear programming relaxation of pp(a). We now prove that pp(1) 
is a tight formulation of PP(1) by showing that it always has an optimal integer 
solution. 

Let us denote: 
- )t --- [a, b] as the minimum-cost edge in K;  
- a as the minimum-cost edge in K\{A} incident at a; 

- fl as the minimum-cost edge in K\{)t} incident at b; 
- e as the minimum-cost edge in K \ ( F o  u Fb), i.e. disjoint from )t. 
Clearly, both ()t, e) and (a,/3) are pairs of disjoint edges in K. Let (l~, 12) = (A, e) 

if gA + g~ <~ c~ + g~, (la, 12) = (a,/3) otherwise, and define A = ~, + gl2 (=min{~A + 
c~, ~ + g~}). We claim that the 0-1 incidence vector corresponding to the edge pair 
(11, 12) is an optimal solution to P-P(~). 

Consider in fact the dual problem of PP(~): 

(D- -P- f i (1 ) )v (~(1 ) )=max(  2 w -  ~mv u,) 

subject to 

gl+z~>0 f o r e a c h l e E \ K ,  

gl+U~+Uj-w>~O f o r e a c h l = - [ i , j ] c K ,  

u~t>0 for e a c h i c V ,  

and define the following dual solution: 

w = A - - g A ;  u~ = max{0, w-- g~};  Ub=W--~A--U, ;  

U~=0 for each i ~ V \ { a , b } ;  z t=cc  for each I ~ E \ K .  

We first show that such a solution is feasible for the dual problem DPP (~). 
Clearly u~/> 0 and ub = W -- g~ -- max{0, w -- g~ } = min{A -- 2 ~ ,  ~, -- ~ }/> 0, while 

~ + zt >~ 0 for each l ~ E \ K .  In addition: 

- for each edge l ~ K \ { ) t }  incident at a, we have g ~ + u o + O - w > ~ g ~ + u ~ - w > ~  

a,~ + ( w -  a,~)- w = o; 
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- for each edge lcKX{A} incident at b, we have g l + O + u b - - W > ~ + U b - - W  = 

~t3--~ --Ua = min{~ -- cA, c~+~--A}~> 0; 
- for each edge l c K \ ( F o U F b ) ,  we have ~ + 0 + 0 - w > ~ - w = ~ + 6 a - A ~ > 0 .  
As for the optimality of both primal and dual solutions, we have it that the value 

of  the dual solution is 2w - (ua + Ub) = 2A -- 2~  -- w + cA = A, which is also the value 
of  the primal solution. 

The residual costs yp) associated with O (~)= A coincide with the reduced costs 
associated with the optimal solution of PP (1), that is: 

-- "fll)=o0 for each l e E \ K ;  

- T(A ~) = 0 ;  

- y ~ l ) = ~ + u o - w  for each edge laKX{A} incident at a; 
_ y~l}= at+Ub_ w for each edge Ic  KX{A} incident at b; 
- y l l ) = a l - w  for each edge l e K \ ( F ~ u F b ) .  
To optimally solve problem PP(~) and compute the corresponding residual cost 

vector requires O(IKI) time to find edges A, a, /3 and e, and to define costs yP) for 
edges 1 ~ K. 

Solving partial problem pp(2) 
Problem pp(2) consists in finding an edge subset ~ ( 2 )  containing n - 2  edges different 
from l, having minimum cost 0 (2) =~2t~;{:) ?~ and such that the addition of edge [ 
produces a spanning tree. Such a problem can be solved by applying any shortest 
spanning tree algorithm on the modified costs obtained by setting 0r = -o0 (so as 
to impose e d g e / i n  the optimal tree), and then by removing e d g e / f r o m  the solution. 
Residual costs yl 2) are obtained from the reduced costs of the Shortest Spanning 
Tree Problem simply by setting y)2) = oo (an easy proof  of correctness can be derived 
from the fact that reapplying the algorithm on costs c t -Yl  2) would produce the 
same value of 0(2)). 

Choosing edge [ 
Given vertex subset S with 2 <~ IS[ ~< n - 2 ,  different lower bounds can be obtained 
by choosing different edges [~ K-~ (S, V \S ) .  However, it is easy to show that 
choosing [-- h (the minimum-cost edge in K)  produces the best lower bound. In 
fact, 0 (1) does not depend on 1. As for 0 (z), its value is computed as the cost of the 
shortest spanning tree containing edge l, minus at. Now let G T= (V, T) be the 
shortest spanning tree of G, which is known to contain edge h. Since for each edge 
[~ K an edge l ' e  K ~ T always exists such that G' = (V, T\{l '}  u { i-}) is a spanning 
tree (with l '=  1 if l ~ T), we have 

O ( 2 ) < ~ ( ~ T ~ - 6 ' + ~ r ) - ~ r < ~ 2 ~  ~ r  ~ - ~  

Therefore, lower bound 0 (2), computed with respect to any edge l-c K, cannot 
exceed that computed with respect to A. 
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In the following, the lower bound based on disjoint edge pairs will always be 
computed with respect to the minimum cost edge in the chosen cut. 

3.4. A combined bound 

Let S be a given vertex subset of  V. A lower bound associated with S as well as 
the corresponding residual costs can be obtained by combining the results of  Sections 

3.2 and 3.3 as follows. 
I f lS  I = 1 (resp. IS[ = n - 1), lower bound and residual costs are computed according 

to Section 3.2 with respect to W = S (resp. W = V\S ) ,  i.e. by solving the r-Shortest 
Spanning Tree Problem with {r} = S (resp. {r} = V\S) .  

Otherwise (2 ~< ]SI ~< n - 2) lower bound and residual costs are computed according 

to Section 3.3 by considering K = (S, V \ S )  and f as the minimum cost edge in K. 

4. Additive procedures 

In this section we propose three bounding procedures, P2, P3 and P4. 

4.1. Procedure P2 

Bounding procedure P2 is based on the projective lower bound of  Section 3.2, which 
is computed for all vertex subsets W having cardinality 1. For each vertex r c V, 
Procedure P2 increases the current lower bound in additive way by computing the 

r-shortest spanning tree on the current residual costs (i.e. by considering W =  {r}). 
Procedure P2 takes O(n 2) time if properly implemented (see Section 5.2). 
At each iteration of the procedure, let Go = (V, E0) be the partial graph of G 

defined through the edges having current residual-cost equal to zero. Vertex r is 

said to be an articulation point of  Go iff its removal produces a disconnected graph. 
After the iteration of P2 in which vertex r is considered, Go contains an r-spanning 
tree: r is then certainly not an articulation point of  Go, and at least two edges of  
E0 are incident at r. Since residual costs are never increased, graph Go contains no 
articulation point at the end of the procedure, while each vertex has at least degree 

two in Go. 

4,2. Procedure P3 

Bounding procedure P3 is based on the combined bound of  Section 3.4. The approach 
is the following. First, the shortest spanning tree G T =  (V, T) of  G is computed 

with respect to the input costs. Let r be the edge in T having the maximum cost, 
and S the vertex set of  one of the two components  of  G T obtained by removing 

edge f. The combined bound of  Section 3.4 is then computed with respect to S. 
Note that in this case n - 2 of  the n edges needed to compute the lower bound are 

those in T\{1}. 
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Procedure P3 takes O(n 2) time, by using the algorithm of Prim (1957) for the 

shortest spanning tree computation. Our choice of  vertex subset S is motivated by 
the fact that cut K = (S, V\S) is that whose minimum edge ( l )  has the maximum cost. 

The value of the lower bound can be further increased through Lagrangian 

relaxation (see Section 2.4). Procedure P3 considers the following set of valid linear 
equalities for STSP: 

x1=2 for each i6V.  
I~f', 

Lagrangian multipliers ui (i ~ V), which are not limited to being non-negative, are 
heuristically determined through subgradient-based techniques so as to produce the 

maximum value of the lower bound. 

4.3. Procedure P4 

Bounding procedure P4 exploits, in an additive way, the lower bound of Section 
3.4 to increase the current bound. Procedure P4 is assumed to be applied to an 
input cost vector ~ such that partial graph Go = (V, E0) of the edges l with gl = 0, 
is connected (e.g., this is the case if P4 is applied after Procedure P3). 

A graph search algorithm is first applied, starting from vertex 1, to find a depth-first 
spanning tree GT=(v,  T) in Go. Then, for each lc  T, the combined bound of 
Section 3.4 is computed with respect to vertex subset S corresponding to one of the 
two components  of G r obtained by removing edge/ .  Note that n - 2  of the n edges 
needed for each bound computat ion are those in T\{1}. 

Procedure P4 takes O(n 2) time if properly implemented (see Section 5.3). 

The procedure computes the combined bound on n -  1 vertex subsets S, whose 
choice is motivated by the following arguments. Clearly, the combined bound cannot 

produce a bound increase if IS] = 1 (or IS] = n - 1) and at least two zero residual-cost 
edges exist in the cut (S, V\S). Hence the only cuts of  this type which can produce 
a bound improvement  are those associated with the leaves of  tree G r, which are 
all considered by Procedure P4. As for the remaining cuts, consider any (S, V\S) 
with 2~<]S]~<n-2,  and let l~[i , j]  be a minimum residual-cost edge in this cut 
(clearly l ~ T). One can easily verify that if both vertices i and j are not articulation 

points of  Go, the bound based on disjoint edge pairs gives no improvement.  On 
the other hand, if vertex i (or j )  is an articulation point, a lower bound improvement  
is guaranteed if S is one of the components  C1, C2, . . . ,  C, obtained by removing 
vertex i f rom Go. Because of the known properties of  depth-first trees (see, e.g., 

Aho, Hopcrof t  and Ullman, 1974), we have it that ](Ch, V\Ch) (3 T] = 1 for each 
component  Ch non containing vertex 1 (the root of  the depth-first search: see Figure 
3). Hence our procedure considers as subsets S all components  Ch (h = 1, . . . ,  t) 
except perhaps that containing vertex 1. For each such S, the corresponding cost 
reduction induces a zero-cost pair of  disjoint edges in cut (S, V\S), thus introducing 

in Go a new edge connecting S with a different component.  It turns out that, at the 
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C~ 

Fig. 3. Graph Go: bold line, the depth-first tree Gr; dotted line, the new zero-cost edges at the end of 
Procedure P4. 

end of Procedure P4, the number of components obtained by removing vertex i 

from Go is, at most, [½(t - 1)J + 1 = [½t] (the worst case arising when the same edge, 

connecting components Ch and Ck, is chosen in the disjoint pair when S = Ch and 
S = Ck; see Figure 3). 

The iterative application of Procedure P4 until no lower bound improvement is 

obtained, ensures that no articulation point exists in Go, while each vertex has at 

least degree two. Since at each application of P4 the number of components 

corresponding to each articulation point is at least halved, no more than flog2 n ] 

executions of Procedure P4 are needed. In this way the exponential number of all 

possible vertex subsets S which can lead to a bound improvement, is implicitly 
considered in O(n 2 log n) time. 

5. Algorithm implementation 

In this section efficient implementations of Procedures P2 and P4 are presented. In 

addition, a fast O(n2) algorithm for computation of the reduced costs of the Shortest 
Spanning Tree Problem is given. 

5.1. SST reduced costs computation 

Let G T = ( v ,  T) be a shortest spanning tree of (3, and for each edge I c E  let C~ 

define the set containing the edges in T which make a cycle with l (with Ct = {/} if 
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1C T). The reduced cost c't of each edge l ~ E is c l -  al, where e~ is the input cost 

of edge l, and at = max{#k: k~ Cr}. 
Suppose tree G T is represented by an oriented tree rooted at vertex v~, and let 

pj be the predecessor of vertex j in the oriented tree. Define a topological ordering 

v~ , . . . ,  vn of vertices 1 , . . . ,  n such that p~,, = Vk implies k < h. Given the tree, ordering 

Vl . . . .  , v, can easily be computed in O(n) time (if the SST algorithm of Prim is 

used, the order in which the vertices are connected to the growing tree gives a 
suitable topological ordering). The following O ( n  2) algorithm considers the vertices 

according to the topological ordering (so as to ensure that each vertex is considered 

after its predecessor) and computes values at for all l ~ E (see also Volgenant and 

Jonker, 1983). 

a [ v~ , v~ ] := - o o ;  

for h : = 2 t o  n do 
begin (comment values a~,,.~,] are computed for t < h) 

j : =  Uh ; i : = p j ;  a[j , j l : :  --o0; 

for t : = l  to h - I  do 
begin (comment C[~,,j] = C[~,,~]u {[i, j ]})  

k := vt; 

atk, j3 := max{a [k,~3, gig, j]} 
end 

end. 

5.2. A n  O(n 2) i m p l e m e n t a t i o n  o f  Procedure  P2 

Procedure P2 computes, in an additive way, the r-SST with respect to all vertices 

r ~ V. We assume that partial graph Go (containing the edges 1 whose current residual 

cost et is zero) is connected at the beginning of the procedure (if this is not the 
case, the shortest spanning tree is computed, the lower bound is increased and costs 
are correspondingly reduced). Hence let G r = (V,  T )  be any spanning tree of Go, 

represented as an oriented tree. Our implementation is based on the property that 

any connected component S of Go containing no articulation point and no vertex 

with degree one, is "shrinkable" into a single sup er ve r t ex  (multiple edges incident 

at the supervertex being replaced by their minimum-cost edge). This operation does 

not affect the lower bound computation. 
Vertices are considered in "postorder" (see, e.g., Tarjan, 1983), so as to ensure 

that each vertex is considered after its successors in the oriented tree G T. Let r be 

the vertex considered at the current iteration, and s1, . . . , S k be the "son-vertices" 
of r in G r (if any). For each h = 1 . . . .  , k, vertex Sh and all its successors have been 

considered in the previous iterations (hence defining a shrinkable component of 

current graph Go) and have been collapsed into a single supervertex Sh (see Figure 

4). The r-SST is now computed on the current shrunk graph. After the corresponding 
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Fig. 4. Tree G T and the shrunk graph when r-SST is computed. 

cost reduction, vertices r and S~, . . . ,  Sk define a new shrinkable component  of Go, 

and are collapsed into a single supervertex Q. 
In our implementation,  vertices r which are "leaves" of  the undirected tree G T 

are not elaborated. In fact, computing the r-SST for such vertices can only increase 
the bound by the value of  the second minimum-cost  edge incident at r, and introduce 
this edge in Go. However,  the same result is achieved as a byproduct  when the 
"father-vertex" of  r (or the unique "son-vertex" of  r, if r is the root of  the oriented 
tree), is elaborated. 

For all non-leaves vertices r, the r-SST is computed as follows. In the current 
shrunk graph the (super)vertex set can be partit ioned into {r}, { $ 1 , . . . ,  Sk} and R 
(see Figure 4). Determination of the two minimum-cost  edges incident at r is clearly 
useless, since vertex r has at least degree two in Go. As for computation of the SST 
of  the graph obtained from the shrunk one by removing vertex r, this can be speeded 
up by temporari ly collapsing the zero-cost component  R into a single super-vertex 

Sk+~. This operation takes O(kn) time to find, for each Sh (h = 1 , . . . ,  k), the 
minimum-cost  edge [Sh, t] with t C R. The spanning tree computation now takes 
O ( ( k +  1) 2) time to compute both the value and the corresponding cost reductions 

e~s,s D for i, j = 1 . . . .  , k +  1 (see Section 5.1). Supervertex Sk+t is then re-expanded, 
while (super)vertices S~, . . . ,  Sk and vertex r are permanently collapsed into super- 

vertex Q. During this operation, costs are also reduced by subtracting value a[s,,,sk+,] 
from the cost of  all edges [Sh, t] with h = 1 , . . . ,  k and t c R (the cost of  the edges 
[r, i] with i c R  and [i,j] with i, j e R  being unchanged). Also this phase takes 
O(kn) time. Hence, the complete computat ion of the r-SST, the corresponding cost 

reduction, and the shrinking of r, S ~ , . . . ,  Sk into supervertex Q, globally takes 
O(kn) time, and removes k (super)vertices from the current graph. The O(n e) global 
time complexity follows. 
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The overall reduced costs for the original graph can be computed during the 
execution of Procedure P2 as sketched below. We define a "reduction credit" /3i 
associated with each vertex i ~ V. At each iteration, for all edges [a, b] having a 

and b in the same supervertex, the final cost reduction a~a,b3 has been computed,  
while for all the remaining edges [i, j ]  the current cost reduction is/3i + flj. Initially, 

fie = 0 for each i¢ V. When vertex r is elaborated, a further cost reduction a~s;.s; ] 
between current (super)vertices S~ and Sj (i, j =  1 , . . . ,  k +  1) is computed.  Before 
collapsing vertex r and (super)vertices $1 . . . .  , Sk, we define the final cost reduction 
of  each edge [a,b] having a e S ;  and b e S j  ( i , j = l , . . . , k ; i ¢ j )  as a[a,b] = 

[3ad-~bd-ol~s;,si], while a~,j I is set to flr+fij for each edge [r,j]  having j G S  h 
(h = 1 , . . . ,  k). Values /3i for each vertex i c  Sh (h = 1 , . . . ,  k) are then updated as 

/3; =/3; + c~,,,,sk.3. 
The overhead time complexity of cost reduction is O(n2), since each value ~{a.b] 

is defined once in constant time, while each fl~ is updated (in constant time), at 
most, n times. 

It is worth noting that a straightforward modification of Procedure P2, consisting 
of removing cost reduction, allows computat ion of all the r-SST's (r = 1 , . . . ,  n) in 
O(n 2) time. 

5.3. An O(n 2) implementation of Procedure P4 

Procedure P4 computes,  in an additive way, the combined bound of Section 3.4. 
For the sake of simplicity, the O(n 2) implementat ion given below is similar to that 

of  the previous section. Slightly more effective implementations are also possible. 
Let G T = ( V, T) be the depth-first spanning tree of  Go, represented as an oriented 

tree rooted at vertex 1, and let pj be the predecessor of  vertex j in the tree. Determining 
G T requires O(n 2) time. Our implementation is based on the property that when 

the cut associated with edge [r, Pr] is considered, all the vertices different from r 
and Pr which belong to the same "side" of  the cut, are shrinkable into a single 
supervertex without affecting the bound computations.  

Vertices are considered in postorder so as to ensure that each vertex is considered 

after its successors in G r. Let r be the vertex considered at the current iteration, 

and (S, V \ S )  be the cut associated with edge It, Pr] (where S contains vertex r and 
all its successors in the tree). I f  ISI = 1 or IS I = n - 1, the lower bound associated 
with this cut, as well as the cost reductions, are easily computed in O(n) time. 
Otherwise, let S l , . . . ,  sk be the "son-vertices" of  r in G T. Since vertex Sh (h = 
1 , . . . ,  k) and all its successors will always belong to the same "side" of  all the cuts 

considered in the following iterations, they define a shrinkable vertex subset and 
have been collapsed into a single supervertex Sh in the previous iterations. Computing 
the minimum-cost  disjoint edge pair and the corresponding dual variables w, Up, 
and Ur takes O ( ( k +  1)n) time since, at most, ( k +  1)n edges of the current shrunk 
graph cross the cut. Vertices r and $1, • . . ,  Sk now define a new shrinkable vertex 
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subset, and hence are collapsed into a single supervertex (during shrinking, costs 
are reduced according to dual variables w, Up, and Ur). Each such iteration globally 
requires O((k + 1)n) time and removes k vertices from the current graph. The overall 
time complexity of Procedure P4 is then O(n2).  

The overall reduced costs for the original graph can be computed in O(n 2) time 
by using a technique similar to that used in the previous section, the main difference 
being that, at each iteration, the final cost reduction aEa.b ] is defined for all edges 
[a, b] having a c Si and b c Sj ( i, j = 1 , . . . ,  k; i # j ) ,  for all edges [r, j ]  h a v i n g j c  Sh 
(h = 1 , . . . ,  k), as well as for the edges [Pr, j]  having j c  Sh (h = 1 , . . . ,  k) or j = r. 

It is worth noting that a straightforward modification of Procedure P4--consisting 
of removing cost reductions and finding, for each cut (S, V \ S )  with 2 ~  < ISI ~< n - 2 ,  
the minimum-cost edge not in T which crosses the cut (instead of the minimum-cost 
disjoint edge pair)--allows an O(nZ)-time sensitivity analysis of  the n - 1  edges 
belonging to a given shortest spanning tree G T = (V, T). 

6. Computational results 

The lower bounds proposed in the previous sections have been computationally 
evaluated and compared with the 1-SST relaxation with subgradient ascent (although 
tighter bounds can be obtained through linear programming relaxations incorporat- 
ing several classes of facet-defining inequalities, as in Padberg and Rinaldi (1987), 
1-SST with subgradient ascent is the bounding procedure commonly used in 
branch and bound algorithms). All the bounding procedures have been coded in 
FORTRAN IV and run on a Digital VAX l l /780.  

The Assignment Problem and the Shortest Spanning Arborescence Problem, 
addressed in Procedure P1, have been solved through the Hungarian algorithm APC 
described in Carpaneto, Martello and Toth (1988) and through the implementation 
of  Fischetti and Toth (1987) of the Edmonds (1967) algorithm, respectively (for 
more details on the overall implementation of P1, see Fischetti and Toth, 1990). 
The shortest paths have been computed through the algorithm of  Dijkstra (1959), 
and the shortest spanning trees through that of Prim (1957). 

As for the subgradient optimization procedure, we have used the one proposed 
by Volgenant and Jonker (1982), with the first step-size computed through a line 
search along the first available subgradient. 

Three classes of  randomly generated problems have been considered: 
Class A: cl uniformly random in range (1-1000). 
Class B: c~i.j] = x/(xi - xj)2+ (Yi _yj)2,  where (xi) - (Yi) are uniformly random in 

range (1-1000); 
Class C: as for Class B, with points (xi, yi) uniformly generated inside five 

"clusters" (each cluster is represented through a square whose area is 20 000 and 
whose center is a uniformly random point in the 1000 x 1000 square). 
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Table  1 

Lower  b o u n d s  growth  during ascent  

251 

Class  n Ascent  on  1-SST Procedure  P3 

1 10 50 100 1 10 50 100 
iterat, iterat, iterat, iterat, iterat, iterat, iterat, iterat. 

C 

50 0.609 0.949 0.993 1.000 0.643 0.954 0.994 1.000 
(0.03) (0.34) (1.69) (3.35) (0.02) (0.33) (1.70) (3.35) 

100 0.593 0.924 0.988 1.000 0.606 0.930 0.991 1.001 
(0.08) (1.38) (6.94) (14.05) (0.08) (1.38) (6.92) (14.01) 

150 0.640 0.949 0.993 1.000 0.648 0.952 0.994 1.000 
(0.20) (3.15) (15.80) (30.80) (0.19) (3.14) (15.78) (30.67) 

200 0.622 0.939 0.987 1.000 0.631 0.943 0.989 1.000 
(0.35) (5.65) (28.31) (57.27) (0.35) (5.66) (28.44) (57.52) 

50 0.877 0.964 0.996 1.000 0.897 0.969 0.997 1.000 
(0.03) (0.35) (1.71) (3.46) (0.02) (0.36) (1.80) (3.63) 

100 0.898 0.969 0.996 1.000 0.910 0.971 0.997 1.001 
(0.08) (1.41) (7.02) (14.19) (0.09) (1.42) (7.20) (14.63) 

150 0.903 0.963 0.991 1.000 0.912 0.968 0.994 1.000 
(0.20) (3.19) (15.99) (32.33) (0.20) (3.21) (16.09) (32.53) 

200 0.902 0.975 0.995 1.000 0.911 0.980 0.997 1.001 
(0.36) (5.75) (28.76) (58.16) (0.36) (5.77) (28.88) (58.38) 

50 0.869 0.947 0.989 1.000 1.018 1.087 1.127 1.138 
(0.02) (0.35) (1.72) (3.47) (0.02) (0.37) (1.87) (3.77) 

100 0.905 0.957 0.988 1.000 1.020 1.076 1.100 1.106 
(0.08) (1.37) (6.88) (13.91) (0.10) (1.55) (7.75) (15.65) 

150 0.898 0.970 0.994 1.000 1.009 1.077 1.104 1.110 
(0.19) (3.16) (15.81) (31.97) (0.22) (3.50) (17.52) (35.39) 

200 0.908 0.972 0.994 1.000 1.003 1.061 1.084 1.092 
(0.35) (5.68) (28.45) (57.53) (0.45) (6.60) (32.85) (66.31) 

All costs have been truncated so as to obtain integer values. 
Problems of  Class C represent real-life situations in which the "customers" to be 

visited are clustered in a few geographical regions. 
For each class, four different values of  n have been considered (n = 50, 100, 150, 

200); for each value of  n and for each class, five instances were solved. 
Table 1 compares the average performance of  the 1-SST relaxation having sub- 

gradient ascent with that of  Procedure P3 (Section 4.2). The maximum number of  
ascent iterations has been fixed at 100. The table shows the lower bound value and 
the computing time after 1, 10, 50 and 100 ascent iterations. Each entry gives the 
average ratio (lower bound)/ ( f inal  bound of  the 1-SST ascent) and, in brackets, the 
corresponding computing time (in VAx 11/780 seconds).  

The results show that for problems of  Classes A and B, the initial bound computed 
by P3 is better than the value of  the first 1-SST relaxation, while the difference 
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between the two bounds  tends to decrease with the n u m b e r  of ascent i terat ions (this 

is not  surprising,  since 1-SST relaxat ion with a large n u m b e r  of subgradient  i terations 

is known  to produce  very tight bounds  for these problems).  As for problems of 

Class C, the b o u n d  ob ta ined  by P3 is ini t ia l ly better  than  the final 1-SST bound ,  

and  significantly grows dur ing  the ascent. The better  behaviour  of P3 is due to the 

fact that, for clustered problems,  Procedure P3 general ly adds a costly edge connect-  

ing different clusters to those of the shortest spann ing  tree, while 1-SST uses an 

edge inside the cluster con ta in ing  vertex 1. The comput ing  times of the two b o u n d i n g  

procedures  are equivalent .  

Al though the ascent consis tent ly  increases the lower b o u n d  value even in the last 

i terations,  the cor responding  times are quite large. Hence at the nodes of  the branch 

decision tree different from the root, one is interested in a faster, a l though less 

Table 2 

Bounding procedures comparison 

Class n P1 P1 PI P1 P3 P3 
+ + + (20 it.) (20 it.) 
P2 P3 P3 + 

(20 it.) (20 it.) P4 
+ 
P2 

A 50 0.929 0.961 0.947 0.966 0.996 0.997 
(0.29) (0.42) (1.11) (1.17) (0.78) (0.91) 

100 0.914 0.938 0.927 0.942 0.987 0.990 
(1.29) (1.80) (4.57) (4.83) (3.22) (3.69) 

150 0.921 0.953 0.933 0.955 0.992 0.993 
(3.05) (4.24) (10.48) (11.09) (7.36) (8.42) 

200 0.897 0.940 0.911 0.943 0.989 0.991 
(5.89) (7.99) (19.23) (20.32) (13.27) (15.18) 

50 0.920 0.962 0.945 0.963 0.992 0.995 
(0.24) (.036) (1.04) (1.11) (0.83) (0.95) 

100 0.937 0.965 0.948 0.969 0.995 0.997 
(0.97) (1.48) (4.40) (4.66) (3.32) (3.77) 

150 0.935 0.958 0.951 0.962 0.994 0.995 
(2.26) (3.46) (9.78) (10.39) (7.52) (8.58) 

200 0.932 0.971 0.948 0.974 0.994 0.995 
(4.02) (6.17) (17.49) (18.58) (13.48) (15.39) 

50 1.119 1.160 1.153 1.165 1.109 1.126 
(0.24) (0.36) (1.06) (1.13) (0.86) (0.99) 

100 1.087 1.108 1.112 1.115 1.097 1.100 
(0.90) (1.41) (4.19) (4.45) (3.63) (4.10) 

150 1.103 1.134 1.126 1.139 1.096 1.106 
(2.10) (3.25) (10.04) (10.63) (8.20) (9.44) 

200 1.067 1.085 1.081 1.089 1.081 1.086 
(3.91) (5.99) (17.57) (18.62) (15.40) (17.34) 
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accurate, bounding procedure. To this end, six different bounding procedures have 

been computationally evaluated: 

- Procedure P1 (Section 3.1) 

- Procedures P1 and P2 (Section 4.1) in sequence, according to the additive 

approach; 

- Procedures P1 and P3 in sequence; 

- Procedures P1, P3 and P2 in sequence; 
- Procedure P3; 

- Procedures P3 and P4 in sequence (with P4 reapplied until no bound increase 

occurs, see Section 4.3). 

The maximum number of ascent iterations of Procedure P3 has been fixed at 20. 

Procedures P2 and P4 proved to be almost equivalent for both computing time 
and bound quality, and could be interchanged. 

Table 2 compares the average performances of the six bounding procedures above. 
Table entries give the same information as those of Table 1. 

Table 2 shows that Procedures P1 and P1 + P2 are very fast, and produce very 
good results for problems of Class C. Procedures P1 + P3 and P1 + P3 + P2 require 

longer computing times, but for Classes A and B yield only small bound improve- 

ments with respect to P1 and P1 + P2, respectively (these results could probably be 

improved by tuning the ascent technique used in P3 so as to take into account the 

fact that reduced costs are considered instead of the original ones). Procedures P3 
and P3 + P4 produce, for problems of Classes A and B, lower bounds comparable 

with those obtained after 50 ascent iterations of the 1-SST relaxation with computing 

times approximately halved (see Table 1); as for problems of Class C, they both 

outperform the final 1-SST lower bound. 

Computational results show that the new lower bounds improve on the perform- 

ance of that based on 1-SST relaxation, mainly for problems of Class C. The practical 

effect of the new bounds on the behaviour of branch and bound algorithms, as 
regards both fathomings and initial reductions, is to be investigated. 
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