
Mathematical Programming 45 (1989) 233-254 233
North-Holland

NEW LOWER B O U N D S FOR THE SYMMETRIC
T R A V E L L I N G S A L E S M A N P R O B L E M

G. C A R P A N E T O

Dipartimento di Economia Politica, University of Modena, Italy

M. F I S C H E T T I and P. TOTH

DEIS, University of Bologna, Italy

Received 17 September 1987
Revised manuscript received 1 June 1988

In this paper new lower bounds for the Symmetric Travelling Salesman Problem are proposed
and combined in additive bounding procedures. Efficient implementations of the algorithms are
given; in particular, fast procedures for computing the linear programming reduced costs of the
Shortest Spanning Tree (SST) Problem and for finding all the r-SST of a given graph, are presented.
Computational results on randomly generated test problems are reported.

Key words: Symmetric Travelling Salesman Problem, additive bounding procedures, reduced
costs computation, algorithms implementation.

1. Introduction

Let G = (V, E) be a given undirected complete graph, where V = { 1 , . . . , n} is the

vertex set and E = {11 , . . . , In} the edge set, and let c~ ~> 0 be the cost associated with

edge l c E. Each edge I c E will also be denoted through the unordered pair [i, j] ,

where i and j are the extreme vertices o f I (without loss of generali ty we will assume

cEi.i I = ~ for each i c V). For each vertex i c V, let Fi denote the subset o f the edges
incident at i. A Hamiltonian cycle (tour) of G is a partial g raph G = (V,/~) o f G

such that:

(i) 0 is connected,

(ii) each vertex i ~ V has degree equal to two in 0 (i.e.,]Fi c~/~] = 2 for each i c V).

The Symmetric Travelling, Salesman Problem (STSP) is to find a tour G* = (V, E*)

of G whose cost ~ e * cl is minimum. Such a problem is known to be ? (~-hard .

For a comprehensive survey on the Travelling Salesman Problem, see Lawler,
Lenstra, R innooy Kan and Shmoys (1985).

The exact solution o f STSP has been successfully app roached through branch

and bound algorithms (Held and Karp, 1970, 1971; Christofides, 1970; Helbig

Hansen and Krarup, 1974; Smith and Thompson , 1977; Volgenant and Jonker, 1982;

Gavish and Srikanth, 1986) and polyhedra l -based techniques (see the survey of

Padberg and Gr6tschel, 1985). Al though the exact solution o f the largest instances

234 G. Carpaneto et al. / Bounds for the symmetric TSP

of STSP have been obtained by Padberg and Rinaldi (1987) through the polyhedral
"branch and cut" technique, branch and bound algorithms cannot be dismissed out
of hand. In fact, branch and bound is much simpler to implement, can easily take
into account additional constraints, and can give good approximate feasible solutions

if its execution is interrupted before the end.
It is well known that the effectiveness of branch and bound algorithms greatly

depends on the availability of fast procedures computing tight lower bounds. In
this paper new bounding procedures for STSP are presented which produce
sequences of increasing lower bounds according to the general f ramework of the
additive approach proposed by Fischetti and Toth (1989). Such bounding procedures
can also be useful to improve the lower bound for the Asymmetric Travelling Salesman
Problem (ATSP), mainly for "almost symmetric" instances. This can be achieved
by decomposing the cost c~,j of each arc (i,j) into tr~,~+c~,j, with o-~,j=~rj, i=
min{c~,j, cj,~}, and hence by computing a lower bound 6 for ATSP as 6 = 6~ + 6~,
where 6~ is a lower bound for the instance of STSP defined by the symmetric costs
cri, j , and 6, is a lower bound for the instance of ATSP defined by the asymmetric
costs a~,~ (for more details, see Fischetti and Toth, 1990, Section 4.2).

In Section 2, the additive approach is briefly described, and its properties relevant
for STSP are pointed out. In Section 3 new lower bounds are proposed, and combined

in Section 4 to obtain three bounding procedures. Section 5 gives data structures
and algorithms for efficient procedure implementation. Computat ional results on
randomly generated test problems are reported in Section 6.

2. The additive approach

We now briefly outline the additive approach to design bounding procedures; fuller

details are given in Fischetti and Toth (1989).
Problem STSP can be formulated as

(STSP) v(STSP)--min{t~ clx~: (Xl)~ F(STSP) }

where x~ = 1 if edge l is in the optimal tour, x / = 0 otherwise (l c E), and F(STSP)

is the set of the 0-1 incidence vectors of tours in G.
Let us suppose that q bounding procedures ~(1), 5((2~,... , ~7(0) are available,

each exploiting a different substructure of STSP to produce a different lower bound.
I f none of the q bounds dominates the others, an overall lower bound could be
obtained by taking the maximum among them. In this way, however, only one

substructure is taken into account, while all the others are lost. In order to exploit
all the substructures, an overall additive bounding procedure can be designed as
follows.

(3. Carpaneto et al. / Bounds for the symmetric TSP 235

Suppose that, for h = 1 , . . . , q and for any cost vector g = (~), procedure 5g(h)(~),

when applied to the instance of STSP having costs ~, returns its lower bound ~(h)
as well as a residual cost vector c (h) = (c~ h)) such that:

(i) C~ h) ~ 0 for each I c E ;
(ii) 6 (h)+~E Clh)Xl < ~ 1 ~ ~Xt for each (xl) c F(STSP).

According to the additive approach, procedures ~(1), 5g(2),. . . , £g(q) are con-

sidered in sequence: procedure 5g (h) is applied to the residual cost vector c (h ~)
returned by procedure 5f (h-~), and computes a lower bound increment 6 (h) (h =

1 , 2 , . . . , q; c (°) being the original cost vector c). It is easy to show that ~ =
6{1)~_ ~ (2) _ ~ . . ° At_ 8(q) is a valid lower bound for STSP. Final residual cost vector c (q)
can be used for reduction purposes.

The additive approach, which is related to the restricted Lagrangian relaxation

proposed by Balas and Christofides (1981), has been applied to the Asymmetric
Travelling Salesman Problem (Fischetti and Toth, 1990), to the Multiple Depot
Vehicle Scheduling Problem (Carpaneto, Dell 'Amico, Fischetti and Toth, 1989),
and to the Prize Collecting Travelling Salesman Problem (Fischetti and Toth, 1988).

A key step of the algorithm above is computat ion of the residual costs. To this

end different techniques can be used, corresponding to different ways of computing
the lower bound.

2.1. Bounds from linear programming relaxation

Let A and b be a (k × m) matrix and a k vector, respectively, such that

F(STSP)_c {x c ~m: x>~O, A x ~ b } .

A well-known lower bound, 6', for the instance of STSP defined by cost vector
~, can be computed by solving the linear programming problem

(LP) 6 ' = min{z~F 6~xt: x>~O, Ax>~ b},

while the corresponding residual cost vector c ' = (el) can be obtained as

k

c ~ = c z - ~ u*Ai.t for each l e E ,
i ~ l

where u* is the optimal solution vector of the dual of LP (i.e., c' is the linear
programming reduced cost vector associated with the optimal solution to LP).

2.2. Bounds from variables decomposition

Let us suppose that it is possible to define two sets y(1) and y(2) with y(t) c

{y E •": y ~ 0} (t = 1, 2), with the property that each vector x ~ F(STSP) can be
decomposed into two vectors y(1)~ y(1) and y(2)~ y(2) such that x = y(l)+y(2). For

236 G. Carpaneto et al. / Bounds for the symmetric TSP

t = 1, 2, let 0 ('7 and "/(,7 be, respectively, a lower bound value and the corresponding
residual cost vector for the following partial problem:

(pp(,7)

Hence

v(PP('))=min{~E glyl'7: (yl'))• Y(') }.

~ , = O(1).4_ ~,q(2)

is a valid lower bound for the instance of STSP defined by cost vector e, and

c't = min{-/l 1), "/I 2)} for each leE,

are the corresponding residual costs.

2.3. Bounds from projection

A particular case of variables decomposition is projection. Let E (1) and E (2~ be a
partition of edge set E, and FP (') (t = 1, 2) denote the projection of F(STSP) with
respect to E ('~, i.e. the set of all the IE(')l-dimensional vectors obtainable from
vectors x • F(STSP) by removing the components associated with edges 1 • E\E (').
Suppose that for each partial subproblem

(PSP (')) v(PSp(t') =min/ t ,~e ('y~ glz,: (z,) c FP (0}

a bounding procedure is available, producing a lower bound O('7~ v(PSP ('7) and
a corresponding residual cost vector q~(o. Then inequality

holds for each z c FP (') (t = 1, 2), and we have

Hence

for each (zl) • F(STSP).

f i '= 0(1)+ 0(2)

is a valid lower bound for the instance of STSP defined by cost vector ? (since ~I °
is non-negative for each l • E(t)), and the corresponding residual costs are

c~=~l 1) for each l e e (1),

c~=¢I 2) for each l eE (2).

G. Carpaneto et al. / Bounds f o r the symmetric TSP 237

2.4. Bounds from Lagrangian relaxation

Let A and b be a (k × m) matrix and a k vector, respectively, such that

F(STSP) c_ {x 6 ~m: Ax >- b}.

Let t7 c ~k be a vector of non-negative Lagrangian multipliers, and consider costs

k

Cl : ~ -- ~ ~liAi, I f o r e a c h 1 ~ E .
i= l

Then inequality

k

Z aib,+ Y~ Ylxl~< Z ~xl
i=1 IcE I~E

holds for each x c F(STSP).
Now apply any bounding procedure to the instance of STSP defined by costs cz,

obtaining a lower bound value 0 and the corresponding residual costs Yl. So

inequalities

i= l l e e i=l l~U I~E

hold for each x c F(STSP). Hence

k

6 ' = ~ ~ b i + O
i= l

is a valid lower bound for the instance of STSP defined by costs ~ (since y~ is
non-negative for each I c E) , and

c~=y~ for each I c E

are the corresponding residual costs.
Note that if F(STSP)___ { x c R ~ : Ax = b}, Lagrangian multipliers a~ are not

restricted to being non-negative.

2.5. Bounds from the Asymmetric Travelling Salesman Problem

Any instance of STSP defined by cost vector (cl) is clearly equivalent to the instance
of ATSP with symmetric cost matrix (ci, j) defined by ~i,j = ct for each l---[i, j] ~ E.
Hence any bounding procedure for ATSP, producing a lower bound 6' and a residual

cost matrix ~, also applies to STSP. Since, however, residual cost matrix ~ is generally
asymmetric even when the input cost matrix ~ is symmetric, such a procedure could
be inserted in an additive algorithm for STSP only as the final procedure of the
sequence. We now describe how to overcome this drawback by transforming ~ into
an equivalent symmetric residual cost matrix c'.

2 3 8 G. C a r p a n e t o et al. / B o u n d s f o r the s y m m e t r i c T S P

We first show that, if ~ is a valid residual cost matrix (associated with lower

bound 6') for the instance of ATSP defined by symmetric cost matrix (ci,j), then so

is its transposed matrix ~v_= -T (ci3). In fact, let (xi, j) be the 0-1 incidence matrix of
any feasible solution to ATSP. Since, clearly, its transposed matrix (xi,Vj) also defines

a feasible solution to ATSP, we have

i~ V . j c V i~ V j~ V

which can be rewritten as

6'+ E E Z E = E E
ic V .j~ V ie V ,je V ie V j e V

Because of the arbitrariness of (xi3), the thesis follows.
Clearly, any convex combination of residual cost matrices gives a valid residual

cost matrix, so the symmetric matrix c' defined as

ci,j=5(ci, j+~,i) for each i, j c V,

is a valid residual cost matrix for ATSP.
Since any instance of ATSP defined by a symmetric cost matrix can be viewed

as an instance of STSP, vector (c~) with c~= e~,j for each l-= [i, j] c E is a valid
residual cost vector (with respect to lower bound 6') for the instance of STSP defined

by cost vector (ct).
A bounding procedure to compute a lower bound 6' and a residual cost vector

(el) for STSP, based on transformation to ATSP, can be outlined as follows:
(i) define a symmetric cost matrix g with ~,j = ~,~ = cl for each 1-= [i, j] c E;

(ii) apply a bounding procedure to the instance of ATSP defined by cost matrix
~, thus obtaining a lower bound value 6' and a residual cost matrix ~;

1 ~ (iii) for each l-= [i, j] c E, define the residual cost c~ as 5(ci, j+ ~i,i).

2.6. A simple check for residual costs

Many bounding procedures for STSP are based on greedy techniques and are,
therefore, algorithmically easy to analyze.

Let ~ (6) be one of these procedures, producing lower bound 6'. Given a non-

negative vector c', a simple proof that c' is a valid residual cost vector associated
with 6' is to show that procedure ~ (~ - c ') produces a lower bound 6 " ~ > 6'. In this
case, in fact, inequalities 6'<~ 6"<~ ~l~e (el - c~)xl hold for each x c F(STSP). Hence,
residual cost vector e'~>0 for procedure 5q(g) can be obtained as the (maximal)

decrease of cost vector ~ which does not yield a decrease in the lower bound value.

3. Lower bounds

In this section we describe several lower bounding procedures and show how to

compute the corresponding residual costs. For each bounding procedure, (ct) denotes

G. Carpaneto et al. / Bounds for the symmetric TSP 239

the input cost vector, and 6' and (c~) the lower bound and the corresponding residual
cost vector, respectively.

3.1. A bound from A T S P

According to Section 2.5, any bounding procedure for ATSP also applies to STSP.
Several bounding procedures for ATSP have been proposed by Fischetti and Toth
(1990). In particular, an O(n 3) additive bounding Procedure P1 can be outlined as
follows:

Procedure P1
begin

1. foreach l=--[i , j]~E do ~.j:= ~,i:= ~t;

2. solve the Assignment Problem (AP) on cost matrix ~, obtaining lower bound
v(AP) and the reduced cost matrix {; 6 ' := v(AP);

3. compute on cost matrix ~ the cost /~h of the shortest path from vertex 1 to each
vertex h c V;

foreach i, j c V do ~.j := ci, j + f~i - f~j;
4. solve the Shortest Spanning 1-Antiarborescence Problem (1-SAAP) on cost matrix

~, obtaining lower bound v(1-SAAP) and the reduced cost matrix ~;

6' := 6 ' + v(1-SAAP);
5. foreach l = - [i , j] ~ E do cl:=½(~.j+~.i)

end.

At Step 4, the Shortest Spanning 1-Antiarborescence Problem 1-SAAP is solved
on the current cost matrix ~. Relaxation 1-SAAP of ATSP is to find a minimum cost
partial graph of G such that: (i) exactly one arc leaves each vertex, and (ii) a path

from each vertex to vertex 1 exists. Such a problem can be solved by determining
the shortest spanning arborescence rooted at vertex 1 with respect to the transposed
matrix ~v (e.g., through the O(n 2) algorithm of Tarjan, 1977), and by adding the
minimum-cost arc leaving vertex 1. Since 1-SAAP is a linear programming problem,
its reduced costs are valid residual costs (see Fischetti and Toth, 1987, for an O(n 2)
algorithm for the arborescence reduced costs computation).

It is easy to show that, after Step 4, each vertex pair can be connected (via vertex
1) through a pair of zero-cost directed paths in the digraph associated with the
asymmetric residual-cost matrix ~.

3.2. A bound from projection

Let W={v~, v 2 , . . . , vp} (with p < l n) be a given vertex subset of V, and define
E ~1) = F~, u Fv2 w • • • u F~p as the subset of the edges incident at W, and E ~2) = E \ E ~1).
Consider any tour G = (V,/~) of G, and def ine/~t) =/~ c~ E ~') for t = 1, 2 (see Figure

1). It is easy to show that the following properties hold:
(1) /~1) induces an acyclic graph and contains at least m~ = p + 1 edges;

240 G. Carpaneto et aL / Bounds for the symmetric TSP

Fig. 1. Tour G; p=2: edges in /~(2) are in bold line.

(2) /~(2) induces an acyclic graph and contains at least me = n - 2 p edges.
According to Section 2.3, a valid lower bound O ('~ for each partial subproblem

PSP (~) (t = 1, 2) can be obtained by determining the minimum-cost subset /~('~ of
E (t~ which satisfies property (t). This can be achieved through the following straight-
forward adaptat ion of the greedy algorithm of Kruskal (1956) for graphic matroids
(assuming ~ > 0 for each I c E):

initialize /7 (') := & and O ~') : - 0;

repeat
let 1 be the next minimum-cost edge in E(');
i f / 7 (') u {/} induces an acyclic graph
then set /7('): = F (t)u {1} and O~'): = O(')+g;

u n t i l I~<')l : - m , .

As for the corresponding residual cost q~l ') associated with each edge I c E (~), this

can be computed as

q~l ')= ~l-max{~k: k c C1}~>0,

where Ct is the set of the edges in/7 (') which make a cycle with edge l (with C~ = {/}
if I c / ~ ;'), and Ct= /~ (') if E °) u { l } induces an acyclic graph). The correctness of
these residual costs follows from matroid theory. An easier proof can however be
derived, according to Section 2.6, from the fact that reapplying the greedy algorithm

on costs 6 - q~l ~ = max{~k: k c Cl} would produce the same value O ('~ of the lower
bound (since the cost of edges l c / 7 ~') would be unchanged, while the change in
the relative ranking of the remaining edges could not cause an edge l excluded from
/~ ') to be considered before all the edges in Ct, using an appropriate tie-break rule).

An overall lower bound for STSP is then 6 ' = O;1)+ O ;2~, and the corresponding

residual costs are c'1 = q~l ') for 1~ E (') (t = 1, 2).

(7. Carpaneto et al. / Bounds for the symmetric TSP 241

A particular case of the bound based on projection leads to the well-known
r-Shortest Spanning Tree Problem (r-SST) (see Held and Karp, 1970, 1971), arising
when p = 1 and W={r}.

3.3. A bound from disjoint edge pairs

Let S be a given vertex subset such that 2 <~ I SI ~< n - 2, and denote with K =- (S, V\S)
the cut-set containing all the edges [i, j] c E such that ic S a n d j c V\S. In addition,
let f ~ [Vl, v2] be a given edge in K. Consider any tour (~ = (V,/~) of G. One can
verify that /~ can always be partitioned into / ~) and /~2), where /~l) and /~2)
satisfy the following properties (see Figure 2):

(1) /~(l) = {1~, 12}, with l~ and /2 disjoint edges in K;
(2) I/~(z) I = n - 2 , l-~/~2), /~(2)u {i- } induces an acyclic graph.
Note that property (2) is satisfied iff 11 and/2 are not in the same path connecting

vertices vl and v2 in G (hence, 11 = i- if i-c/~), and that ll and /2 can always be
chosen disjoint, since 2 ~ < ISI ~< n -2 .

/ / / ~ / b

~1 i i l l

Fig. 2. Tour t~; S={vi, b}; edges in /~(2) are in bold line.

According to the above properties and following the variables decomposition
approach of Section 2.2, STSP can be decomposed into partial problems pp(1) and
pp(2). Partial problem PP(') (t = 1, 2) is to find the 0-1 incidence vector (yl'): lc E)
corresponding to a minimum-cost edge set /7('~ which satisfies property (t). Both
problems pp(1) and pp(2) can be exactly solved in polynomial time (see the following
two subsections). Let O (') be the optimal solution value of problem pp(t), and 7(')
the corresponding residual cost vector (t = 1, 2). A valid lower bound 8' for STSP
can then be computed as O (1) + 0 (2~, while the corresponding residual costs c~ are
given by min{yl 1), 712)} for 1~/7.

242 G. Carpaneto et al. / Bounds for the symmetric TSP

Solving partial problem pp(1)
Problem pp(1) can be formulated as an integer linear programming problem as
follows:

(pp(1)) ~q(1)= min ~ gtyl ~)
leE

subject to

y ?) = 0 for each l e E \ K ,

y ?) = 2,

Z Yl 1) ~<1 for e a c h i 6 V ,
IcFic~K

y?)~>0 and integer for e a c h l ~ K .

Let P-P(~) be the linear programming relaxation of pp(a). We now prove that pp(1)
is a tight formulation of PP(1) by showing that it always has an optimal integer
solution.

Let us denote:
-)t --- [a, b] as the minimum-cost edge in K;
- a as the minimum-cost edge in K\{A} incident at a;

- fl as the minimum-cost edge in K\{)t} incident at b;
- e as the minimum-cost edge in K \ (F o u Fb), i.e. disjoint from)t.
Clearly, both ()t, e) and (a,/3) are pairs of disjoint edges in K. Let (l~, 12) = (A, e)

if gA + g~ <~ c~ + g~, (la, 12) = (a,/3) otherwise, and define A = ~, + gl2 (=min{~A +
c~, ~ + g~}). We claim that the 0-1 incidence vector corresponding to the edge pair
(11, 12) is an optimal solution to P-P(~).

Consider in fact the dual problem of PP(~):

(D- -P- f i (1))v (~(1))=max(2 w - ~mv u,)

subject to

gl+z~>0 f o r e a c h l e E \ K ,

gl+U~+Uj-w>~O f o r e a c h l = - [i , j] c K ,

u~t>0 for e a c h i c V ,

and define the following dual solution:

w = A - - g A ; u~ = max{0, w-- g~}; Ub=W--~A--U, ;

U~=0 for each i ~ V \ { a , b } ; z t=cc for each I ~ E \ K .

We first show that such a solution is feasible for the dual problem DPP (~).
Clearly u~/> 0 and ub = W -- g~ -- max{0, w -- g~ } = min{A -- 2 ~ , ~, -- ~ }/> 0, while

~ + zt >~ 0 for each l ~ E \ K . In addition:

- for each edge l ~ K \ {) t } incident at a, we have g ~ + u o + O - w > ~ g ~ + u ~ - w > ~

a,~ + (w - a,~)- w = o;

G. Carpaneto et aL / Bounds for the symmetric TSP 243

- for each edge lcKX{A} incident at b, we have g l + O + u b - - W > ~ + U b - - W =

~t3--~ --Ua = min{~ -- cA, c~+~--A}~> 0;
- for each edge l c K \ (F o U F b) , we have ~ + 0 + 0 - w > ~ - w = ~ + 6 a - A ~ > 0 .
As for the optimality of both primal and dual solutions, we have it that the value

of the dual solution is 2w - (ua + Ub) = 2A -- 2~ -- w + cA = A, which is also the value
of the primal solution.

The residual costs yp) associated with O (~)= A coincide with the reduced costs
associated with the optimal solution of PP (1), that is:

-- "fll)=o0 for each l e E \ K ;

- T(A ~) = 0 ;

- y ~ l) = ~ + u o - w for each edge laKX{A} incident at a;
_ y~l}= at+Ub_ w for each edge Ic KX{A} incident at b;
- y l l) = a l - w for each edge l e K \ (F ~ u F b) .
To optimally solve problem PP(~) and compute the corresponding residual cost

vector requires O(IKI) time to find edges A, a, /3 and e, and to define costs yP) for
edges 1 ~ K.

Solving partial problem pp(2)
Problem pp(2) consists in finding an edge subset ~ (2) containing n - 2 edges different
from l, having minimum cost 0 (2) =~2t~;{:) ?~ and such that the addition of edge [
produces a spanning tree. Such a problem can be solved by applying any shortest
spanning tree algorithm on the modified costs obtained by setting 0r = -o0 (so as
to impose e d g e / i n the optimal tree), and then by removing e d g e / f r o m the solution.
Residual costs yl 2) are obtained from the reduced costs of the Shortest Spanning
Tree Problem simply by setting y)2) = oo (an easy proof of correctness can be derived
from the fact that reapplying the algorithm on costs c t -Yl 2) would produce the
same value of 0(2)).

Choosing edge [
Given vertex subset S with 2 <~ IS[~< n - 2 , different lower bounds can be obtained
by choosing different edges [~ K-~ (S, V \S) . However, it is easy to show that
choosing [-- h (the minimum-cost edge in K) produces the best lower bound. In
fact, 0 (1) does not depend on 1. As for 0 (z), its value is computed as the cost of the
shortest spanning tree containing edge l, minus at. Now let G T= (V, T) be the
shortest spanning tree of G, which is known to contain edge h. Since for each edge
[~ K an edge l ' e K ~ T always exists such that G' = (V, T\{l '} u { i-}) is a spanning
tree (with l '= 1 if l ~ T), we have

O (2) < ~ (~ T ~ - 6 ' + ~ r) - ~ r < ~ 2 ~ ~ r ~ - ~

Therefore, lower bound 0 (2), computed with respect to any edge l-c K, cannot
exceed that computed with respect to A.

244 G. Carpaneto et al. / Bounds for the symmetric TSP

In the following, the lower bound based on disjoint edge pairs will always be
computed with respect to the minimum cost edge in the chosen cut.

3.4. A combined bound

Let S be a given vertex subset of V. A lower bound associated with S as well as
the corresponding residual costs can be obtained by combining the results of Sections

3.2 and 3.3 as follows.
I f lS I = 1 (resp. IS[= n - 1), lower bound and residual costs are computed according

to Section 3.2 with respect to W = S (resp. W = V\S) , i.e. by solving the r-Shortest
Spanning Tree Problem with {r} = S (resp. {r} = V\S) .

Otherwise (2 ~<]SI ~< n - 2) lower bound and residual costs are computed according

to Section 3.3 by considering K = (S, V \ S) and f as the minimum cost edge in K.

4. Additive procedures

In this section we propose three bounding procedures, P2, P3 and P4.

4.1. Procedure P2

Bounding procedure P2 is based on the projective lower bound of Section 3.2, which
is computed for all vertex subsets W having cardinality 1. For each vertex r c V,
Procedure P2 increases the current lower bound in additive way by computing the

r-shortest spanning tree on the current residual costs (i.e. by considering W = {r}).
Procedure P2 takes O(n 2) time if properly implemented (see Section 5.2).
At each iteration of the procedure, let Go = (V, E0) be the partial graph of G

defined through the edges having current residual-cost equal to zero. Vertex r is

said to be an articulation point of Go iff its removal produces a disconnected graph.
After the iteration of P2 in which vertex r is considered, Go contains an r-spanning
tree: r is then certainly not an articulation point of Go, and at least two edges of
E0 are incident at r. Since residual costs are never increased, graph Go contains no
articulation point at the end of the procedure, while each vertex has at least degree

two in Go.

4,2. Procedure P3

Bounding procedure P3 is based on the combined bound of Section 3.4. The approach
is the following. First, the shortest spanning tree G T = (V, T) of G is computed

with respect to the input costs. Let r be the edge in T having the maximum cost,
and S the vertex set of one of the two components of G T obtained by removing

edge f. The combined bound of Section 3.4 is then computed with respect to S.
Note that in this case n - 2 of the n edges needed to compute the lower bound are

those in T\{1}.

G. Carpaneto et aL / Bounds for the symmetric TSP 245

Procedure P3 takes O(n 2) time, by using the algorithm of Prim (1957) for the

shortest spanning tree computation. Our choice of vertex subset S is motivated by
the fact that cut K = (S, V\S) is that whose minimum edge (l) has the maximum cost.

The value of the lower bound can be further increased through Lagrangian

relaxation (see Section 2.4). Procedure P3 considers the following set of valid linear
equalities for STSP:

x1=2 for each i6V.
I~f',

Lagrangian multipliers ui (i ~ V), which are not limited to being non-negative, are
heuristically determined through subgradient-based techniques so as to produce the

maximum value of the lower bound.

4.3. Procedure P4

Bounding procedure P4 exploits, in an additive way, the lower bound of Section
3.4 to increase the current bound. Procedure P4 is assumed to be applied to an
input cost vector ~ such that partial graph Go = (V, E0) of the edges l with gl = 0,
is connected (e.g., this is the case if P4 is applied after Procedure P3).

A graph search algorithm is first applied, starting from vertex 1, to find a depth-first
spanning tree GT=(v, T) in Go. Then, for each lc T, the combined bound of
Section 3.4 is computed with respect to vertex subset S corresponding to one of the
two components of G r obtained by removing edge/ . Note that n - 2 of the n edges
needed for each bound computat ion are those in T\{1}.

Procedure P4 takes O(n 2) time if properly implemented (see Section 5.3).

The procedure computes the combined bound on n - 1 vertex subsets S, whose
choice is motivated by the following arguments. Clearly, the combined bound cannot

produce a bound increase if IS] = 1 (or IS] = n - 1) and at least two zero residual-cost
edges exist in the cut (S, V\S). Hence the only cuts of this type which can produce
a bound improvement are those associated with the leaves of tree G r, which are
all considered by Procedure P4. As for the remaining cuts, consider any (S, V\S)
with 2~<]S]~<n-2, and let l~[i , j] be a minimum residual-cost edge in this cut
(clearly l ~ T). One can easily verify that if both vertices i and j are not articulation

points of Go, the bound based on disjoint edge pairs gives no improvement. On
the other hand, if vertex i (or j) is an articulation point, a lower bound improvement
is guaranteed if S is one of the components C1, C2, . . . , C, obtained by removing
vertex i f rom Go. Because of the known properties of depth-first trees (see, e.g.,

Aho, Hopcrof t and Ullman, 1974), we have it that](Ch, V\Ch) (3 T] = 1 for each
component Ch non containing vertex 1 (the root of the depth-first search: see Figure
3). Hence our procedure considers as subsets S all components Ch (h = 1, . . . , t)
except perhaps that containing vertex 1. For each such S, the corresponding cost
reduction induces a zero-cost pair of disjoint edges in cut (S, V\S), thus introducing

in Go a new edge connecting S with a different component. It turns out that, at the

246 G. Carpaneto et al. / Bounds for the symmetric TSP

C~

Fig. 3. Graph Go: bold line, the depth-first tree Gr; dotted line, the new zero-cost edges at the end of
Procedure P4.

end of Procedure P4, the number of components obtained by removing vertex i

from Go is, at most, [½(t - 1)J + 1 = [½t] (the worst case arising when the same edge,

connecting components Ch and Ck, is chosen in the disjoint pair when S = Ch and
S = Ck; see Figure 3).

The iterative application of Procedure P4 until no lower bound improvement is

obtained, ensures that no articulation point exists in Go, while each vertex has at

least degree two. Since at each application of P4 the number of components

corresponding to each articulation point is at least halved, no more than flog2 n]

executions of Procedure P4 are needed. In this way the exponential number of all

possible vertex subsets S which can lead to a bound improvement, is implicitly
considered in O(n 2 log n) time.

5. Algorithm implementation

In this section efficient implementations of Procedures P2 and P4 are presented. In

addition, a fast O(n2) algorithm for computation of the reduced costs of the Shortest
Spanning Tree Problem is given.

5.1. SST reduced costs computation

Let G T = (v , T) be a shortest spanning tree of (3, and for each edge I c E let C~

define the set containing the edges in T which make a cycle with l (with Ct = {/} if

G. Carpaneto et aL / Bounds for the symmetric TSP 247

1C T). The reduced cost c't of each edge l ~ E is c l - al, where e~ is the input cost

of edge l, and at = max{#k: k~ Cr}.
Suppose tree G T is represented by an oriented tree rooted at vertex v~, and let

pj be the predecessor of vertex j in the oriented tree. Define a topological ordering

v~ , . . . , vn of vertices 1 , . . . , n such that p~,, = Vk implies k < h. Given the tree, ordering

Vl , v, can easily be computed in O(n) time (if the SST algorithm of Prim is

used, the order in which the vertices are connected to the growing tree gives a
suitable topological ordering). The following O (n 2) algorithm considers the vertices

according to the topological ordering (so as to ensure that each vertex is considered

after its predecessor) and computes values at for all l ~ E (see also Volgenant and

Jonker, 1983).

a [v~ , v~] := - o o ;

for h : = 2 t o n do
begin (comment values a~,,.~,] are computed for t < h)

j : = Uh ; i : = p j ; a[j , j l : : --o0;

for t : = l to h - I do
begin (comment C[~,,j] = C[~,,~]u {[i, j]})

k := vt;

atk, j3 := max{a [k,~3, gig, j]}
end

end.

5.2. A n O(n 2) i m p l e m e n t a t i o n o f Procedure P2

Procedure P2 computes, in an additive way, the r-SST with respect to all vertices

r ~ V. We assume that partial graph Go (containing the edges 1 whose current residual

cost et is zero) is connected at the beginning of the procedure (if this is not the
case, the shortest spanning tree is computed, the lower bound is increased and costs
are correspondingly reduced). Hence let G r = (V, T) be any spanning tree of Go,

represented as an oriented tree. Our implementation is based on the property that

any connected component S of Go containing no articulation point and no vertex

with degree one, is "shrinkable" into a single sup er ve r t ex (multiple edges incident

at the supervertex being replaced by their minimum-cost edge). This operation does

not affect the lower bound computation.
Vertices are considered in "postorder" (see, e.g., Tarjan, 1983), so as to ensure

that each vertex is considered after its successors in the oriented tree G T. Let r be

the vertex considered at the current iteration, and s1, . . . , S k be the "son-vertices"
of r in G r (if any). For each h = 1 , k, vertex Sh and all its successors have been

considered in the previous iterations (hence defining a shrinkable component of

current graph Go) and have been collapsed into a single supervertex Sh (see Figure

4). The r-SST is now computed on the current shrunk graph. After the corresponding

248 G. Carpaneto et aL / Bounds for the symmetric TSP

///" ~ / 7 / I ~"x. \ \\'\\

j "-..._ ,,R

'-2::- "

Fig. 4. Tree G T and the shrunk graph when r-SST is computed.

cost reduction, vertices r and S~, . . . , Sk define a new shrinkable component of Go,

and are collapsed into a single supervertex Q.
In our implementation, vertices r which are "leaves" of the undirected tree G T

are not elaborated. In fact, computing the r-SST for such vertices can only increase
the bound by the value of the second minimum-cost edge incident at r, and introduce
this edge in Go. However, the same result is achieved as a byproduct when the
"father-vertex" of r (or the unique "son-vertex" of r, if r is the root of the oriented
tree), is elaborated.

For all non-leaves vertices r, the r-SST is computed as follows. In the current
shrunk graph the (super)vertex set can be partit ioned into {r}, { $ 1 , . . . , Sk} and R
(see Figure 4). Determination of the two minimum-cost edges incident at r is clearly
useless, since vertex r has at least degree two in Go. As for computation of the SST
of the graph obtained from the shrunk one by removing vertex r, this can be speeded
up by temporari ly collapsing the zero-cost component R into a single super-vertex

Sk+~. This operation takes O(kn) time to find, for each Sh (h = 1 , . . . , k), the
minimum-cost edge [Sh, t] with t C R. The spanning tree computation now takes
O ((k + 1) 2) time to compute both the value and the corresponding cost reductions

e~s,s D for i, j = 1 , k + 1 (see Section 5.1). Supervertex Sk+t is then re-expanded,
while (super)vertices S~, . . . , Sk and vertex r are permanently collapsed into super-

vertex Q. During this operation, costs are also reduced by subtracting value a[s,,,sk+,]
from the cost of all edges [Sh, t] with h = 1 , . . . , k and t c R (the cost of the edges
[r, i] with i c R and [i,j] with i, j e R being unchanged). Also this phase takes
O(kn) time. Hence, the complete computat ion of the r-SST, the corresponding cost

reduction, and the shrinking of r, S ~ , . . . , Sk into supervertex Q, globally takes
O(kn) time, and removes k (super)vertices from the current graph. The O(n e) global
time complexity follows.

G. Carpaneto et aL / Bounds.['or the symmetric TSP 249

The overall reduced costs for the original graph can be computed during the
execution of Procedure P2 as sketched below. We define a "reduction credit" /3i
associated with each vertex i ~ V. At each iteration, for all edges [a, b] having a

and b in the same supervertex, the final cost reduction a~a,b3 has been computed,
while for all the remaining edges [i, j] the current cost reduction is/3i + flj. Initially,

fie = 0 for each i¢ V. When vertex r is elaborated, a further cost reduction a~s;.s;]
between current (super)vertices S~ and Sj (i, j = 1 , . . . , k + 1) is computed. Before
collapsing vertex r and (super)vertices $1 , Sk, we define the final cost reduction
of each edge [a,b] having a e S ; and b e S j (i , j = l , . . . , k ; i ¢ j) as a[a,b] =

[3ad-~bd-ol~s;,si], while a~,j I is set to flr+fij for each edge [r,j] having j G S h
(h = 1 , . . . , k). Values /3i for each vertex i c Sh (h = 1 , . . . , k) are then updated as

/3; =/3; + c~,,,,sk.3.
The overhead time complexity of cost reduction is O(n2), since each value ~{a.b]

is defined once in constant time, while each fl~ is updated (in constant time), at
most, n times.

It is worth noting that a straightforward modification of Procedure P2, consisting
of removing cost reduction, allows computat ion of all the r-SST's (r = 1 , . . . , n) in
O(n 2) time.

5.3. An O(n 2) implementation of Procedure P4

Procedure P4 computes, in an additive way, the combined bound of Section 3.4.
For the sake of simplicity, the O(n 2) implementat ion given below is similar to that

of the previous section. Slightly more effective implementations are also possible.
Let G T = (V, T) be the depth-first spanning tree of Go, represented as an oriented

tree rooted at vertex 1, and let pj be the predecessor of vertex j in the tree. Determining
G T requires O(n 2) time. Our implementation is based on the property that when

the cut associated with edge [r, Pr] is considered, all the vertices different from r
and Pr which belong to the same "side" of the cut, are shrinkable into a single
supervertex without affecting the bound computations.

Vertices are considered in postorder so as to ensure that each vertex is considered

after its successors in G r. Let r be the vertex considered at the current iteration,

and (S, V \ S) be the cut associated with edge It, Pr] (where S contains vertex r and
all its successors in the tree). I f ISI = 1 or IS I = n - 1, the lower bound associated
with this cut, as well as the cost reductions, are easily computed in O(n) time.
Otherwise, let S l , . . . , sk be the "son-vertices" of r in G T. Since vertex Sh (h =
1 , . . . , k) and all its successors will always belong to the same "side" of all the cuts

considered in the following iterations, they define a shrinkable vertex subset and
have been collapsed into a single supervertex Sh in the previous iterations. Computing
the minimum-cost disjoint edge pair and the corresponding dual variables w, Up,
and Ur takes O ((k + 1)n) time since, at most, (k + 1)n edges of the current shrunk
graph cross the cut. Vertices r and $1, • . . , Sk now define a new shrinkable vertex

250 G. Carpaneto et al. / Bounds for the symmetric TSP

subset, and hence are collapsed into a single supervertex (during shrinking, costs
are reduced according to dual variables w, Up, and Ur). Each such iteration globally
requires O((k + 1)n) time and removes k vertices from the current graph. The overall
time complexity of Procedure P4 is then O(n2).

The overall reduced costs for the original graph can be computed in O(n 2) time
by using a technique similar to that used in the previous section, the main difference
being that, at each iteration, the final cost reduction aEa.b] is defined for all edges
[a, b] having a c Si and b c Sj (i, j = 1 , . . . , k; i # j) , for all edges [r, j] h a v i n g j c Sh
(h = 1 , . . . , k), as well as for the edges [Pr, j] having j c Sh (h = 1 , . . . , k) or j = r.

It is worth noting that a straightforward modification of Procedure P4--consisting
of removing cost reductions and finding, for each cut (S, V \ S) with 2 ~ < ISI ~< n - 2 ,
the minimum-cost edge not in T which crosses the cut (instead of the minimum-cost
disjoint edge pair)--allows an O(nZ)-time sensitivity analysis of the n - 1 edges
belonging to a given shortest spanning tree G T = (V, T).

6. Computational results

The lower bounds proposed in the previous sections have been computationally
evaluated and compared with the 1-SST relaxation with subgradient ascent (although
tighter bounds can be obtained through linear programming relaxations incorporat-
ing several classes of facet-defining inequalities, as in Padberg and Rinaldi (1987),
1-SST with subgradient ascent is the bounding procedure commonly used in
branch and bound algorithms). All the bounding procedures have been coded in
FORTRAN IV and run on a Digital VAX l l /780.

The Assignment Problem and the Shortest Spanning Arborescence Problem,
addressed in Procedure P1, have been solved through the Hungarian algorithm APC
described in Carpaneto, Martello and Toth (1988) and through the implementation
of Fischetti and Toth (1987) of the Edmonds (1967) algorithm, respectively (for
more details on the overall implementation of P1, see Fischetti and Toth, 1990).
The shortest paths have been computed through the algorithm of Dijkstra (1959),
and the shortest spanning trees through that of Prim (1957).

As for the subgradient optimization procedure, we have used the one proposed
by Volgenant and Jonker (1982), with the first step-size computed through a line
search along the first available subgradient.

Three classes of randomly generated problems have been considered:
Class A: cl uniformly random in range (1-1000).
Class B: c~i.j] = x/(xi - xj)2+ (Yi _yj)2, where (xi) - (Yi) are uniformly random in

range (1-1000);
Class C: as for Class B, with points (xi, yi) uniformly generated inside five

"clusters" (each cluster is represented through a square whose area is 20 000 and
whose center is a uniformly random point in the 1000 x 1000 square).

G. Carpaneto et aL / Bounds for the symmetric TSP

Table 1

Lower b o u n d s growth during ascent

251

Class n Ascent on 1-SST Procedure P3

1 10 50 100 1 10 50 100
iterat, iterat, iterat, iterat, iterat, iterat, iterat, iterat.

C

50 0.609 0.949 0.993 1.000 0.643 0.954 0.994 1.000
(0.03) (0.34) (1.69) (3.35) (0.02) (0.33) (1.70) (3.35)

100 0.593 0.924 0.988 1.000 0.606 0.930 0.991 1.001
(0.08) (1.38) (6.94) (14.05) (0.08) (1.38) (6.92) (14.01)

150 0.640 0.949 0.993 1.000 0.648 0.952 0.994 1.000
(0.20) (3.15) (15.80) (30.80) (0.19) (3.14) (15.78) (30.67)

200 0.622 0.939 0.987 1.000 0.631 0.943 0.989 1.000
(0.35) (5.65) (28.31) (57.27) (0.35) (5.66) (28.44) (57.52)

50 0.877 0.964 0.996 1.000 0.897 0.969 0.997 1.000
(0.03) (0.35) (1.71) (3.46) (0.02) (0.36) (1.80) (3.63)

100 0.898 0.969 0.996 1.000 0.910 0.971 0.997 1.001
(0.08) (1.41) (7.02) (14.19) (0.09) (1.42) (7.20) (14.63)

150 0.903 0.963 0.991 1.000 0.912 0.968 0.994 1.000
(0.20) (3.19) (15.99) (32.33) (0.20) (3.21) (16.09) (32.53)

200 0.902 0.975 0.995 1.000 0.911 0.980 0.997 1.001
(0.36) (5.75) (28.76) (58.16) (0.36) (5.77) (28.88) (58.38)

50 0.869 0.947 0.989 1.000 1.018 1.087 1.127 1.138
(0.02) (0.35) (1.72) (3.47) (0.02) (0.37) (1.87) (3.77)

100 0.905 0.957 0.988 1.000 1.020 1.076 1.100 1.106
(0.08) (1.37) (6.88) (13.91) (0.10) (1.55) (7.75) (15.65)

150 0.898 0.970 0.994 1.000 1.009 1.077 1.104 1.110
(0.19) (3.16) (15.81) (31.97) (0.22) (3.50) (17.52) (35.39)

200 0.908 0.972 0.994 1.000 1.003 1.061 1.084 1.092
(0.35) (5.68) (28.45) (57.53) (0.45) (6.60) (32.85) (66.31)

All costs have been truncated so as to obtain integer values.
Problems of Class C represent real-life situations in which the "customers" to be

visited are clustered in a few geographical regions.
For each class, four different values of n have been considered (n = 50, 100, 150,

200); for each value of n and for each class, five instances were solved.
Table 1 compares the average performance of the 1-SST relaxation having sub-

gradient ascent with that of Procedure P3 (Section 4.2). The maximum number of
ascent iterations has been fixed at 100. The table shows the lower bound value and
the computing time after 1, 10, 50 and 100 ascent iterations. Each entry gives the
average ratio (lower bound)/ (f inal bound of the 1-SST ascent) and, in brackets, the
corresponding computing time (in VAx 11/780 seconds).

The results show that for problems of Classes A and B, the initial bound computed
by P3 is better than the value of the first 1-SST relaxation, while the difference

252 G. Carpaneto et al. / Bounds for the symmetric TSP

between the two bounds tends to decrease with the n u m b e r of ascent i terat ions (this

is not surprising, since 1-SST relaxat ion with a large n u m b e r of subgradient i terations

is known to produce very tight bounds for these problems). As for problems of

Class C, the b o u n d ob ta ined by P3 is ini t ia l ly better than the final 1-SST bound ,

and significantly grows dur ing the ascent. The better behaviour of P3 is due to the

fact that, for clustered problems, Procedure P3 general ly adds a costly edge connect-

ing different clusters to those of the shortest spann ing tree, while 1-SST uses an

edge inside the cluster con ta in ing vertex 1. The comput ing times of the two b o u n d i n g

procedures are equivalent .

Al though the ascent consis tent ly increases the lower b o u n d value even in the last

i terations, the cor responding times are quite large. Hence at the nodes of the branch

decision tree different from the root, one is interested in a faster, a l though less

Table 2

Bounding procedures comparison

Class n P1 P1 PI P1 P3 P3
+ + + (20 it.) (20 it.)
P2 P3 P3 +

(20 it.) (20 it.) P4
+
P2

A 50 0.929 0.961 0.947 0.966 0.996 0.997
(0.29) (0.42) (1.11) (1.17) (0.78) (0.91)

100 0.914 0.938 0.927 0.942 0.987 0.990
(1.29) (1.80) (4.57) (4.83) (3.22) (3.69)

150 0.921 0.953 0.933 0.955 0.992 0.993
(3.05) (4.24) (10.48) (11.09) (7.36) (8.42)

200 0.897 0.940 0.911 0.943 0.989 0.991
(5.89) (7.99) (19.23) (20.32) (13.27) (15.18)

50 0.920 0.962 0.945 0.963 0.992 0.995
(0.24) (.036) (1.04) (1.11) (0.83) (0.95)

100 0.937 0.965 0.948 0.969 0.995 0.997
(0.97) (1.48) (4.40) (4.66) (3.32) (3.77)

150 0.935 0.958 0.951 0.962 0.994 0.995
(2.26) (3.46) (9.78) (10.39) (7.52) (8.58)

200 0.932 0.971 0.948 0.974 0.994 0.995
(4.02) (6.17) (17.49) (18.58) (13.48) (15.39)

50 1.119 1.160 1.153 1.165 1.109 1.126
(0.24) (0.36) (1.06) (1.13) (0.86) (0.99)

100 1.087 1.108 1.112 1.115 1.097 1.100
(0.90) (1.41) (4.19) (4.45) (3.63) (4.10)

150 1.103 1.134 1.126 1.139 1.096 1.106
(2.10) (3.25) (10.04) (10.63) (8.20) (9.44)

200 1.067 1.085 1.081 1.089 1.081 1.086
(3.91) (5.99) (17.57) (18.62) (15.40) (17.34)

G. Carpaneto et al. / Bounds for the symmetric TSP 253

accurate, bounding procedure. To this end, six different bounding procedures have

been computationally evaluated:

- Procedure P1 (Section 3.1)

- Procedures P1 and P2 (Section 4.1) in sequence, according to the additive

approach;

- Procedures P1 and P3 in sequence;

- Procedures P1, P3 and P2 in sequence;
- Procedure P3;

- Procedures P3 and P4 in sequence (with P4 reapplied until no bound increase

occurs, see Section 4.3).

The maximum number of ascent iterations of Procedure P3 has been fixed at 20.

Procedures P2 and P4 proved to be almost equivalent for both computing time
and bound quality, and could be interchanged.

Table 2 compares the average performances of the six bounding procedures above.
Table entries give the same information as those of Table 1.

Table 2 shows that Procedures P1 and P1 + P2 are very fast, and produce very
good results for problems of Class C. Procedures P1 + P3 and P1 + P3 + P2 require

longer computing times, but for Classes A and B yield only small bound improve-

ments with respect to P1 and P1 + P2, respectively (these results could probably be

improved by tuning the ascent technique used in P3 so as to take into account the

fact that reduced costs are considered instead of the original ones). Procedures P3
and P3 + P4 produce, for problems of Classes A and B, lower bounds comparable

with those obtained after 50 ascent iterations of the 1-SST relaxation with computing

times approximately halved (see Table 1); as for problems of Class C, they both

outperform the final 1-SST lower bound.

Computational results show that the new lower bounds improve on the perform-

ance of that based on 1-SST relaxation, mainly for problems of Class C. The practical

effect of the new bounds on the behaviour of branch and bound algorithms, as
regards both fathomings and initial reductions, is to be investigated.

Acknowledgment

Work supported by Ministero del la Pubblica Istruzione, Italy.

References

A.V. Aho, J.E. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

E. Balas and N. Christofides, "A restricted Lagrangian approach to the Traveling Salesman Problem,"
Mathematical Programming 21 (1981) 19-46.

254 G. Carpaneto et aL / Bounds for the symmetric TSP

G. Carpaneto, M. Dell'Amico, M. Fischetti and P. Toth, "A branch and bound algorithm for the Multiple
Depot Vehicle Scheduling Problem," Networks" 19 (1989).

G. Carpaneto, S. Martello and P. Toth, "Algorithms and codes for the Assignment Problem," in:
B. Simeone, P. Toth, G. Gallo, F. Matiioli and S. Pallottino, eds., FORTRAN Codes for Network
Optimization, Annals of Operations Research 13 (1988) 193-223.

N. Christofides, "The shortest Hamiltonian chain of a graph," SIAM Journal on Applied Mathematics
19 (1970) 689-696.

E.W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik 1 (1959)
269-271.

J. Edmonds, "Optimum branchings," Journal of Research of the National Bureau of Standards 71B (1967)
233-240.

M. Fischetti and P. Toth, "An efficient algorithm for the Min-Sum Arborescence Problem," Technical
Report OR/87/7, DEIS, University of Bologna (Bologna, 1987).

M. Fischetti and P. Toth, "An additive approach for the optimal solution of the Prize-Collecting Travelling
Salesman Problem," in: B. Golden and A.A. Assad, eds., Vehicle Routing: Methods and Studies
(North-Holland, Amsterdam, 1988) pp. 319-343.

M. Fischetti and P. Toth, "An additive bounding procedure for combinatorial optimization problems,"
Operations Research 37 (1989) 319-328.

M. Fischetti and P. Toth, "An additive bounding procedure for the Asymmetric Travelling Salesman
Problem," submitted to Mathematical Programming (1990).

B. Gavish and K. Srikanth, "An optimal method for large-scale multiple traveling salesman problems,"
Operations Research 34 (1986) 698-717.

K. Helbing Hansen and J. Krarup, "Improvements of the Held-Karp Algorithm for the Symmetric
Traveling-Salesman Problem," Mathematical Programming 7 (1974) 87-96.

M. Held and R.M. Karp, "The Traveling-Salesman Problem and minimum spanning trees," Operations
Research 18 (1970) 1138-1162.

M. Held and R.M. Karp, "The Traveling-Salesman Problem and minimum spanning trees: Part II,"
Mathematical Programming l (1971) 6-25.

J.B. Kruskal, "On the shortest spanning subtree of a graph and the Traveling Salesman Problem,"
Proceedings of the American Mathematical Society 7 (1956) 48-50.

E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston, New
York, 1976).

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization (Wiley, Chichester, 1985).

M.W. Padberg and M. Gr/Stschel, "Polyhedral computations," in: E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan and D.B. Shmoys, eds., The Traveling Salesman Problem: a Guided Tour of Combinatorial
Optimization (Wiley, Chichester, 1985).

M.W. Padberg and G. Rinaldi, "Optimization of a 532-City Symmetric Traveling Salesman Problem by
branch and cut," Operations Research Letters 6 (1987) 1-8.

R.C. Prim, "Shortest connection networks and some generalizations," BSTJ 36 (1957) 1389-1401.
T.H.C. Smith and G.L. Thompson, "A LIFO implicit enumeration search algorithm for the Symmetric

Traveling Salesman Problem using Held and Karp's 1-tree relaxation," Annals of Discrete Mathematics.
1 (1977) 479-493.

R.E. Tarjan, "Finding optimum branchings," Networks' 7 (1977) 25-35.
T. Volgenant and R. Jonker, "A branch and bound algorithm for the Symmetric Traveling Salesman

Problem based on the 1-tree relaxation," European Journal of Operational Research 9 (1982) 83-89.
T. Volgenant and R. Jonker, "The Symmetric Traveling Salesman Problem and edge exchanges in minimal

1-trees," European Journal of Operational Research 12 (1983) 394-403.

