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When supply and demand curves for a single commodity are approximately linear in each of 
N regions and interregional transportation costs are linear, then equilibrium trade flows can be 
computed by solving a quadratic program of special structure. An equilibrium trade flow 
exists in which the routes carrying positive flow form a forest, and this solution can be 
efficiently computed by a tree growing algorithm. 
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1. Introduction 

The optimization problem considered in this paper  arises f rom a simple 

equilibrium model of international or interregional trade in a single commodity .  

We assume that in each region there is a market  characterized by classical 
supply and demand curves. The equilibrium price and quantity produced and 

consumed will be determined,  in the absence of imports  or exports ,  by the 
intersection of these curves. If  imports  are introduced into this local market ,  

consumption will exceed production but at a lower equilibrium price. 
This type of equilibrium model has been extensively discussed in the literature 

of economics.  Samuelsou in [2] pointed out that an equilibrium solution is also 

the maximizer  of a function which he called net social payoff. Lemmas  1 and 2 
below are implicit in his discussion, but not stated and proved formally. More 
recently,  Takayama  and Judge [3] examine a number  of models in which supply and 
demand curves are assumed to be linear, as in Fig. l, and formulate a quadratic 
program which, when solved, yields equilibrium supplies, demands,  trade flows and 
prices. The purpose of this paper  is to show how their solution procedure  can be 
greatly simplified by taking advantage of the very special structure of the problem. 

2. Equilibrium conditions 

The first simplification is to observe  that, f rom the global view, the internal 
supply and demand of each region are irrelevant; it is only the net import  
quantity and the local market  equilibrium price that matter.  If  local supply and 
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Fig. 1. 

demand functions are linear, then there is a linear relation between price and net 

imports of the form 

pi = a i -  biyi (1) 

where 
pi is the equilibrium price in the ith region, 
yi is the net import of the ith region, 
ai is the equilibrium price in the absence of imports (and exports) and is 

positive, 
b~ is related to elasticity of supply and demand, and is also positive. 
Clearly, if p~ exceeds a~, then supply locally exceeds demand, the difference 

being available for export.  Thus, y~ is not restricted to be nonnegative in (1); 
negative values of y~ are simply interpreted as exports. 

Once the price pi has been determined from global equilibrium considerations, 
the local supply and demand quantities are uniquely determined. 

Now introduce nonnegative flow variables x~ = exports from region i to region 
], and transportation costs cij = cost per unit shipped from i to j. 

We assume all shipments take place over the least cost route, therefore the c~j 
will obey the triangle inequality: 

Cij ~ Cik -~- Ck]. 

The additional interregional trade equilibrium conditions are: 

p~ + cij -> p~ for all i, ] (2) 
and 

(p~ + cij - p j ) x i j  = 0 for all i, j. (3) 

The rationale behind these conditions is that if inequality (2) fails to hold, 
exporters will buy in market i at price p~, transport  to market  j at unit cost c o and 
sell at price pj thus making a profit. Exports  from i to ] will increase until the 
elasticity effects in markets i and j raise (and lower) these prices so that 
additional profit to exporters is no longer possible. Thus, if xij > 0, (2) must be 
satisfied as an equality, and we have the complementary slackness condition (3). 
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The model is completed by the flow conservation equations (a definition of net 
imports): 

N N 

y i -~x i i+~_ ,x i i=O,  i = 1 , 2  . . . . .  N. (4) 
j= l  j= l  

We seek a procedure for calculating the equilibrium prices and flows from the 
data (ai, bi, cii; i = 1, N ;  j = 1, N).  One such procedure begins by formulating an 
optimization problem which has the interesting property that the optimality 
conditions of the problem (Kuhn-Tucker  conditions) are the equilibrium con- 
ditions (1)-(4). The quadratic program that has this property is: 

maximize z =  ~ (aiYi--lbiy{- E CljXij) ' 
(P): ' (5) 

subject to (4) and xii>-O, for all i,j. 

This objective can be shown to be equivalent to the net social pay-off function 
of [2]. The quadratic program has the special feature that the nonlinear part of 
the objective is separable in unrestricted variables. Since all b,- are positive, the 
objective function is negative definite, hence a unique global maximum exists. 

It is easy to show that a dual of (P) is (see [1]): 

minimize ~i (ai -- hi)  2 
2bi ' (6) 

(D): 
subject to A i -Ae-<cq  for a!l i ,  j. (7) 

The equilibrium solution can be obtained by solving (P) or (D) by any of a 
number of algorithms for the quadratic program. 

3. A tree growing algorithm 

We discuss here an algorithm that takes advantage of the special network 
structure of an equilibrium solution. 

Lemma 1. An equilibrium solution exists in which the trade routes of positive 
flow form a forest (a collection of trees). 

Proof. An equilibrium solution exists because (P) and (D) have optimal solu- 
tions. Recall that a tree is a connected graph of k nodes and k - 1  arcs and 
contains no loops. Now suppose in an equilibrium solution, we find a subset of k 
regions connected by k or more trade routes (arcs) over which positive flow 
occurs. Then there must be a subset of these arcs that form a loop. Now we 
superimpose a flow around this loop in a direction opposite to at least one 
pre-existing arc flow, and increase the value of this loop flow until it exactly 
cancels one of the pre-existing arc flows. Observe that net imports remain 
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unchanged and hence so do prices. Thus conditions (2) and (3) remain satisfied. 

Hence,  any loops in the structure of an equilibrium trade flow pattern can be 

eliminated, leaving a collection of trees. 
Thus w :  see that an equilibrium solution exists in which the set of N regions 

is partitioned into trading coalitions. The members of each coalition trade only 
with each other, and the set of active trade routes within each coalition forms a 

spanning tree for  the coalition. 
Stated formally, a coalition C is a set of k nodes and k - 1 active arcs having 

the following properties: 

(P1) Internal  equil ibrium: conditions (1), (2), (3) and (4) are satisfied 
for all nodes i, i in C. 

(P2) Tree structure:  the set of active arcs (ij), such that xij > 0, is a 
spanning tree for C. Hence,  there are no loops of active arcs. 

In addition, without loss of generality (see Lemma 2), we require 

(P3) Al ternat ing  arc orientation: each node in a coalition (which 
contains more than one) is either an exporter  or an importer,  i.e., 
no transshipment occurs. 

Thus, the unique path connecting a pair of nodes in C consists of arcs of 
alternating orientation. Starting from an importing node, for example, all 
adjacent nodes are exporters  and the movement  along this unique path is against 
the direction of goods flow. All nodes adjacent to exporters are importers, so 
movement  is with the orientation of the arc on which goods flow. 

Lemma 2. A n y  coali t ion having propert ies  (P1) and (P2) has a tree o f  act ive  

routes such  that proper ty  (P3) obtains.  

Proof. Suppose in a coalition, xii > 0 and Xjk > 0 SO node j is both an importer 
and an exporter.  We call j a transshipment node, and the chain i ~ j ~ k  a 

transshipment route. The equilibrium conditions (2) and (3) then imply that 
Cik >-- Cij + Cik. This inequality is the reverse of the triangle inequality which holds 
because of the least cost shipment route assumption, so we conclude that 

Cik ~ Cij + Cjk. 

Thus a flow around the loop i ~ k ~ j  ~ i can be increased, with no change in 
objective function value, till either xgj or xik becomes zero. Then arc (ik) is 
included in the tree of active arcs and at least one of (ij), (jk) is no longer active 
and is deleted from the tree. As in the proof of Lemma 1, the equilibrium 
conditions (1)-(4) still hold. 

Now observe that if i (and k) was not a transshipment node before,  it is not 
after this step is completed. Furthermore,  the number of transshipment routes 



102 C.R. Glassey/ A quadratic network optimization model 

passing through node j has been reduced by one. A finite number  of repetitions 
of this step will eliminate all such routes through j so a finite number  of 

repetitions will produce a tree having proper ty  (P3). 

The algorithm below finds an equilibrium solution by building up a set of 

coalitions which are, at termination, in equilibrium with each other as well as 

being in internal equilibrium. 

Algor i thm A1 

Step O. Initialization: set p~ = a~, y~ = 0, i = 1 . . . . .  N ;  x~j = 0, all arcs (ij). Each 

node is a coalition of one member .  

Step 1. Find a pair of nodes (j, k) such that pj + Cik < Pk. If  no such pair exists, 
the current  solution is equilibrium. 

Step 2. Let  E and I be the coalitions containing j and k respectively.  Let  e in 

E and i in I be, respectively,  exporting and importing nodes (i.e., y~-< 0 and 
y~ - 0) such that 

e~/= p~ + c~/-  p / =  min {pj + Cjk -- Pk}. 
j~E,kcl 

(a) Increases x~i, the flow from e to i, while maintaining equilibrium conditions 
(1), (3), and (4) within each coalition, until either: 

(b) pe(x~i) + c~i = pi(x~i) where pk(Xei) is the equilibrium price at k as a function 
of Xei. This equilibrium value of x~ is computed  f rom (13) below. The new 
equilibrium prices in E and I are computed  by adding 6~ and 6i (see (12) below) 

to the old prices. Form a new coalition f rom the union of E and I plus the arc 

(ei). Then go to step 1. Or: 

(c) Xik = 0 for some arc (jk) in E or L Then split the coalition containing (jk) at 

(jk) and call the part  that contains e (or i) E (or I) .  Go to (2a). 

Notes  on computa t iona l  details 

Step 1. If the current solution is not equilibrium, additional profits are to be 

made by shipping f rom some exporting node to some importing node. 
Step 2. The minimum computed  in step 2 is attained at an arc (jk) where j is 

an exporting node and k is an importing node. This fact  can be deduced as 
follows: suppose j is not an exporting node (Yi > 0). Then there is a node e in E 
such that xei > 0 and hence, by (3), pe + cej--Ps. This equality, together with the 

triangle inequality Cek <-- C~ i + Cjk, implies that C~k --< Cik. The case Yk < 0 is analysed 
similarly. 

This result  implies that the search process  of step 1 can be confined to arcs 
(jk) with j exporting and k importing. 

Step 2 preserves  proper ty  (P3) in the new coalition. 
Step 2a. Let  yi(xei) be the equilibrium net import  at node j as a function of xei. 

Conservat ion of flow implies that 
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(9) 

and 

~ e E  [~i = Xei : - - ~ i E  [ 3k 
i cE  k c l  

where /3i = 1/b i. 
Step 2b. This condition is met when 

6i -- 6e = pe (O)  4:- Cei -- p i (O)  = Gi. 

(11) and (10) yield 

k~I  kEEUI 

and 
,~,=ee, E/3k/  ~] /3k 

kEE kEEUI 

Step 2c. 
is, the path from i to j in I traverses (jk) in the direction from k to j. Increasing 
Xei will reduce Xik. Flow conservation shows that 

Xik=-- ~ Yn (14) 
nET i 

where T i is the subtree of I rooted at ] which is obtained when arc (]k) is deleted 
from L Using (1), (10) and (14) we obtain 

axik = - x e , "  E/~° /E /~ . .  
nET i n@l 

This relationship is illustrated in Fig. 2. 
Thus the critical value of Xei that causes Xik to be reduced to zero is: 

(15) 

ojk = xik ~]/3,,/Y. /~,,. (16) 
nEl nET i 

Similarly, when (]k) E E and is oriented opposite to (ei) we obtain 

Oik = Xik ~_~ ft./ ~ ft.. (17) 
nEE nCT k 

(lO) 

(11) 

X e ' =  C e i E  ~ k ' E  [~i [ E [~k. 
kEE jEI kEEUI 

(12a) 

(12b) 

(13) 

Now consider an arc (jk) in I which is oriented opposite to (ei), that 

]~E kc l  

where Ayj = yj(xei)- yi(0). 
Let  

~e : pe(Xe i )  -- pe(0), 

~i : p i (Xe i )  -- p i (O) .  

Observe that the complementary slackness condition (3) implies all prices in 
each coalition E and I change by 6¢ and 6i respectively, since the nodes in E, 
and L are connected by a tree of active arcs. Note that, while G is positive, & is 
negative. Hence',, (1) and (9) combine to give: 
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/ k 

Xei / ~ 

Fig. 2. An importing coalition. 

S tep  2c is a c c o m p l i s h e d  by  c o m p u t i n g  the m i n i m u m  of  Oik given by  (16) and (17) 

for  those  a rcs  in I and  E o r i en t ed  o p p o s i t e  to (ei). Note  tha t  on ly  the  pr ices  need  

be u p d a t e d  for  each  coa l i t ion ,  s ince  Yi is c o m p u t e d  f rom Pi in (1) and  arc  flows in 

each  t ree  can  be  c o m p u t e d  f rom (14). 

Example  (A F o u r  Reg ion  Sys t em) .  

Data. 

a = 9 13 16 30 

/3 = 0.25 2.5 3.0 0.25 

c = 0  2 1 1 

2 0 3 1 

1 3 0 2 

1 1 2 0 

Cycle 1. 

Step 1. min ~?ij = g,4 = - 2 0 .  

Step 2. F o r m  coa l i t ion  C1 = (1 4). 

X14 = --Yl = Y4 = 2.5 

p = 1 9  13 16 20 

Cycle 2. 

Step 1. rain 60 = c24  = - 6 .  

Step 2. En la rge  coa l i t ion  by  add ing  2; x24 = 2.5, cl = (1 2 4): 

Pl = 14 P2 = 14 

1.25 --~ G ( ~ )  ~-- 2.5 

G 3,, 
P3 = 16 P4 = 15 
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Cycle 3. 
Step 1. min cq = c13 = - 1 .  
Step 2b. P3 = 15.5, Pl = 14.5, x31 = 1.5. 

Step 2c. (see eq. 17) 

3 
0~3 = 1 . 2 5 ~  = 1.36. 

i.e., x14 is reduced to zero when x3~ = 1.36 < 1.5. Hence  E becomes  the single 

node 1 ; the coalition (2, 4) is split f rom E when x31 = 1.3636 and 

1.3636 
~e = 0.25 + 0.25 + 2.5 = 0.4545 (eq. 10). 

Step 2b now gives 

p3 = 15.538, pl = 14.538, 

The equilibrium solution is: 

X31 = 1 . 3 8 5 .  

Pl = 14.538 P2 = 14.455 

1.385 --~ ( ~  ( ~ )  <"- 3.636 

1.385<--@ @ - - - ~  3.636 

P3 = 15.538 P4 = 15.455 

Lemma 3. The marginal profit, Pi 'Pe--Cei ,  is the partial derivative of  the 
objective function (5) with respect to xei aflter (4) has been used to eliminate the yi 

terms from (5). 

Proof.  The equilibrium prices and flows within coalition I are an optimal 

solution to the subproblem derived by restricting (P) to the nodes of I and all the 
arcs directly connecting them. Consequently,  the price pi is the shadow price 

associated with eq. (4), and hence is the partial derivative of the optimal 
object ive of this subproblem with respect  to the right hand side of (4), which is 

x,i. Similarly, Pe is the negative of the partial derivative of the corresponding 

subproblem defined on E (since positive Xei reduces the available stock at node 
e). The change in total object ive function of P with respect  to x~; is the sum of 
the changes of the two subproblem object ive functions less the t ransportat ion 

c o s t  CeiXei. 

We can now state a convergence result: 

Theorem 1. The Algorithm A1 reaches an equilibrium solution in a finite number 
of  operations. 
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Proof. Each step is finite. Violation of the condition (2) implies the partial 
derivative of the objective function with respect to xij is positive, so a positive 
objective increase will occur if xij is increased by a positive amount  in step 2. 
Eq. (12) shows that 6e and 6~ are positive and (13) shows the new equilibrium 
flow implied by step 2b is positive. The possible break up of the coalition in step 
2c can only occur at a positive flow value xei, since internal flows within a 
coalition are always positive. Hence the objective is strictly increasing on each 
cycle of steps 1-2. The equilibrium prices and flows within each coalition are 
uniquely determined, consequently different values of the objective correspond 
to different coalition structures. Since only a finite number of possible coalitions 
exist, the proof is complete. 

The reader will be struck by similarities with the primal simplex algorithm of 
linear programming, both in the motivation of the improvement  step and the 
method of proof of finite convergence.  Note, however,  major differences. The 
set of arcs which can carry positive flow is, in general, not a basis for the primal 
problem (it is only a tree for the complete graph if all nodes are in the same 
coalition). Furthermore,  increasing flow on a profitable arc may result in zero, 
one, or several arcs being reduced to zero flow. 

4. An alternative algorithm 

Some computational experience with Algorithm AI suggests that during step 2 
the increase in flow along arc (ei) is rarely limited by the feasibility test of step 
2c. This observation suggests that some computations may be saved if the 
requirement that xij be nonnegative is relaxed at least temporarily and then 
enforced only when necessary, as in the following. 

Algorithm A2. 

Step O. Initialization: set pi=ai ,  y i = 0 ,  i =  1 , 2 , . . . , N ;  x i j=0,  all (ij); list 

L = empty set. 
Step 1. Find a pair of nodes j, k such that pi + cjk < pj. If no such pair exist, go 

to step 3. 
Step 2. Same as step 2, Algorithm A1 except the feasibility test of step 2c is 

made only for arcs (]k) in list L. Update node prices. 
Step 3a. For each coalition of more than 2 nodes, compute Yi from (I), Xjk 

from (14). If all arc flows are nonnegative, stop. The solution is equilibrium. 
Step 3b. If negative flow exists in any coalition, split the coalition at the arc 

(jk) of most negative flow. Compute new node prices in each component  as 
follows: let A be the subtree containing j, B the subtree containing k. Add/~j and 
~ to all prices in A and B respectively, where 
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i E A  

ak = xlk / ~ ,  13i. 
i@B 

Add arc (jk) to list L. Compute net imports and flows in the newly formed 
coalitions, and repeat step 3b. After all negative arc flows have been eliminated 
by splitting coalitions, go to step 1. 

Theorem 2. The algorithm A2 obtains an equilibrium solution in a finite number 
operations. 

Proof. At worst, steps 1, 2 and 3 are repeated till all arcs appear on the list L, at 
which point Algorithm A2 reduces to A1. When the algorithm terminates, all 
equilibrium conditions are satisfied; step 3 guarantees nonnegativity of flows, 
step 1 tests for dual feasibility and all other equilibrium conditions are main- 
tained at all steps. 

The three growing algorithm A2 has been used to solve a few small test 
problems. For these problems, no use was made of the list L because an 
equilibrium solution was reached after two cycles of steps 1-3. The arcs deleted 
in step 3b of cycle 1 were not selected in step 1 of cycle 2. 

While direct comparison of computing times of algorithm A2 with general 
purpose quadratic programming algorithms have not been made, it seems at least 
plausible that taking advantage of the forest  structure of an optimal solution and 
using network concepts will result in a more efficient solution procedure.  
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