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The dynamic programming and branch-and-bound approaches are combined to produce a 
hybrid algorithm for separable discrete mathematical programs. Linear programming is used in a 
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1. Introduction 

This  p a p e r  p r e s e n t s  a new a p p r o a c h  to the  so lu t ion  of  s e p a r a b l e  d i s c r e t e  

m a t h e m a t i c a l  p r o g r a m s .  The  a p p r o a c h  is a syn thes i s  of  d y n a m i c  p r o g r a m m i n g  
(DP) and  b r a n c h - a n d - b o u n d  (B & B). R e l a x a t i o n s  and f a t h o m i n g  cr i te r ia ,  w h i c h  
are  f u n d a m e n t a l  to b r a n c h - a n d - b o u n d ,  a re  i n c o r p o r a t e d  wi th in  the  s epa ra t i on  
and  initial  f a t h o m i n g  p r o v i d e d  by  the  d y n a m i c  p r o g r a m m i n g  f r a m e w o r k  in o r d e r  
to p r o d u c e  a h y b r i d  DP /B  & B a lgor i thm.  

The  genera l  s e p a r a b l e  d i s c r e t e  m a t h e m a t i c a l  p r o g r a m  we  a d d r e s s  is: 
N 

f N ( b )  = m a x  ~'~ ri(xi), 
j - I  

N (1.1) 
s u b j e c t  to ~,  aii(xi) <- bi, l <- i <- M,  

j - I  

x j U S j ,  I < - j < - N ,  

w h e r e  S s -  {0, 1 . . . . .  Kj} with K i a finite pos i t i ve  in teger ,  and  rj(xi) is non-  
d e c r e a s i n g  on S i. To s impl i fy  the  mo t iva t i on  and  e x p o s i t i o n  we shall  begin  by  
mak ing  a non -nega t i v i t y  a s s u m p t i o n  on all of  the  p r o b l e m  data :  

b i ~ O ,  l < - i < - M ,  

ri(xi) >- O, I <- j <- N ,  xi E S ~ 

ao(xj) >-- O, l <-- i <-- M, I <_ j <_ N,  xj E Sj. 
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This makes (1.1) a "knapsack type"  resource allocation problem [1,5,24,28] 
which can be given the following interpretation. The amount of resource i 
available is bi and if project  j is adopted at level xj then aii(x~) is the amount of 
resource i consumed and rj(xj) is the return. The non-negativity assumption will 
remain in force until Section 6. We may further assume, without loss of 
generality, that ri(0)= 0 and aij(0)= 0 for all i, j. Notice that if Kj = 1 for all j, 
then (1.1) is the familiar zero/one integer linear program. 

The hybrid DP/B & B algorithm has grown out of the authors '  earlier work on 
a DP algorithm for knapsack type problems [21] and the observation that 
bounding tests can be used to reduce the state space in DP [22]. Thus, ideas 
from B & B can dramatically enhance the computational power of DP. The 
hybrid algorithm may be viewed as a DP recursion which uses bounding tests at 
each stage to eliminate (fathom) some of the states. Alternatively, it may be 
viewed as a B & B tree search which uses elimination by dominance, as well as 
by bound, and which employs the ultimate "breadth first" search strategy. The 
partitioning of the problem into stages, which is inherited from DP, leads 
directly to a new way of using linear programming to compute bounds. This is 
called the resource-space tour and it has the attractive feature that each simplex 
pivot yields a bound for every active node in the search tree. The DP point of 
view also focuses attention on the optimal return function fN(b) and leads to a 
procedure for solving a family of parametric integer programs with related 
right-hand-sides [18]. Related work on the synthesis of branch-and-bound with 
dynamic programming can be found in [1, 2, 3, 6, 7, 13, 14, 19, 23, 27, 31]. 

The plan of the paper is as follows. The hybrid approach will be developed in 
Section 2, assuming the availability of an algorithm for solving some relaxation 
of problem (l.1) and of a heuristic for finding feasible solutions of (1.1). Specific 
relaxations and heuristics will be discussed in Sections 3 and 4, respectively. The 
resource-space tour technique for computing bounds is introduced in Section 3. 
Section 5 contains a summary, of computational results. In Section 6, the 
modifications required for the general case (positive and negative data) are 
indicated. Suggestions for further research are given in Section 7. 

2. Development of the hybrid algorithm 

Consider the following n-stage subproblem of (1.1) 

f~(b) = max ~ rj(xj), 
j-1 

subject to 2 aij(xj) <- bi, 1 <- i <- M, (2.1) 
j=l  

x i E S #  l<- j<-n f o r n = l  . . . . .  N. 

Le t  Xd denote a subset of the set of feasible solutions of (2.1). The feasible 
solution x @ Xd is said to be dominated by the feasible solution x' E Xd, if we 
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have both 

and 

n 

a,j(xi) - ~ aii(xi), 1 <- i <- M, 
]=1 ]=1 

~. ri(x)) >- ~ rj(xj), 
j=l j=l 

with at least one strict inequality. If x E X~ is not dominated by any other 
e lement  of X~, then we say that x is el~cient with respect  to X~. Let  X ,  ~ denote 
the set of efficient solutions of (2.1). 

The set X }  of all efficient solutions of the complete  problem (1.1) can be 
constructed recursively by using the following relationships: 

and 

where 

and 

x~ c__- x (  c x ° = s,, 

x e ~ x t { ~ _ _ X ° = X e n _ 1 X S  n for n = 2  . . . . .  N 

X °  = {(Xl . . . . .  Xn-1, Xn) [ (Xl . . . . .  Xn-1) ~ x e  1, Xn ~ Sn}, 

X [  = {x E X °  ] ~ aij(xi) <- bi, 1 <- i <- M} ,  
/=1 

X~ = {x E X~] x is efficient with respect  to X~}. 

If ~ ~ X~ and Z~_I aii(Yi) = ~i for 1 - i - M, then Y is an optimal solution of (1.1) 
with b replaced by /3. This follows directly f rom the definition of dominance.  
Thus finding all efficient solutions of (1.1) for right-hand-side b is equivalent to 
finding all optimal solutions for every right-hand-side b '  -< b. 

The procedure  for obtaining X}  may be stated quite simply as follows: 

DP Algor i thm 

Step 1. Set n = 1, X ° =  $1. 
Step 2. Construct  X [  by eliminating all infeasible elements  of X °. 
Step 3. Construct  X ,  ~ by eliminating all dominated elements  of X[.  
Step 4. If n = N, stop. Otherwise set n = n + 1, generate X ° = X~-I x S,, and 

go to Step 2. 

This procedure  is equivalent  to an imbedded state space dynamic program- 
ming algorithm [21] and is similar to the approaches  to capital budgeting 
problems taken in [24] and [31]. It may also be interpreted as " reaching"  in the 
sense of Denardo and Fox [4]. The feasibility testing (Step 2) is simply a matter  
of checking the amount  of each resource used against the amount  available. The 
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dominance testing (Step 3) is more complicated but can be done quite efficiently 
through the use of (M + 1) threaded lists, as described in [21]. Upon termination, 
X} is at hand and the optimal solution of (1.1) for any right-hand-side b ' -  < b may 
be determined by inspection: 

N 

fN(b')  = m a x t 2  r~(xi) I 
t . j=l  

N } 
x @ X } a n d ~ a i i ( x ~ ) - < - b } , l < - i < - M  . 

/=1 

Notice that the optimal return function f u (b ' )  is a nondecreasing, upper semi- 
continuous step function on 0 -< b '  -< b [11, 20, 21]. 

The "pure"  dynamic programming algorithm just presented produces all of the 
optimal solutions for every right-hand-side b ' -  < b. Let  us now restrict our 
attention to finding an optimal solution for the given b-vector  alone. This is done 
by incorporating elimination by bound into the DP f ramework.  

Consider any x = (xl . . . . .  xn) ~ X~ and let 

/3 = 2 aJ(xJ) 
j=l  

where aJ(xj)= (ali(Xj) . . . . .  aMj(xj))'. We may interpret /3 as the resource con- 
sumption vector  for the partial solution x. The residual problem at stage n, given 

x, is 

N 

/~+~(b - / 3 )  = max ~ ri(xj), 
j-n+1 

N 
subject  to ~ aij(xj) <- bi -/3i,  1 <- i <- M, 

j=n+l  

x ; E S i ,  n +  l <- j<-N,  

Thus f n+l (b - /3 )  is the maximum possible return f rom the remaining stages, 
given that resources /3  have already been consumed.  For each 0 -< n -< N - 1, let 
UB,+I be an upper  bound functional for f,+l, i.e. 

fn+l(b - [3) <- UBn+l(b --/3) for all 0 --</3 -< b. 

UBn+l may be taken as the optimal value of any relaxation of the residual 

problem (2.2). (Let UBN+I ~ 0). 
Any known feasible solution of (1.1) provides a lower bound on fN(b) .  The 

best  of the known solutions will be called the incumbent  and its value denoted 
LB, so that LB-<fN(b) .  At worst,  x = 0  is feasible with value LB = 0. These 
upper  and lower bounds can be used to eliminate efficient partial solutions which 
cannot lead to a solution that is better  than the incumbent.  That  is, if x E X~ and 

2 rj(xj) + UBn+l(b - ~. aJ(xj)) <_ LB, (2.3) 
j=l  j=l  

then no complet ion of x can be better  than the incumbent.  In this event  we say 
that x has been eliminated by bound. The survivors at stage n will be denoted 
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X,', where 

ms={xEme]~=l rj(xj)+UBn+l(b-~ ai(xj))~kB} 
The lower bound may be improved during the course of the algorithm by 

finding additional feasible solutions. Assume that a heuristic is available for 
finding good feasible solutions and let H,+~(b - [3) denote the object ive function 
value obtained when the heuristic is applied to the residual problem (2.2). (Let 
HN+I~-0.) If (X'+l . . . . .  xk0 is the complet ion found by the heuristic for 
(Xl . . . . .  x,) E X~, then (x, x') is feasible for (1.1) and becomes  the new incumbent  
if 

~ rj(x,) + H~+l(b - 2 ai(xj)) > LB, 
j=l /=1 

i.e. if 

N 

2 r j(xj) + ~ rj(x;) > LB. 
]=1 j=n+l 

At the end of stage n we know that fN(b) falls between LB and the global 
upper  bound 

U B = m a x l ~ r i ( x , ) + U B , + ~ ( b - ~ a i ( x j ) ) ] x ~ X ~  }. 
~.j=l /=1 

If  the gap (UB-LB)  is sufficiently small, then we may choose to accept  the 
incumbent  as being sufficiently close to optimality in value and terminate the 
algorithm rather than continue to stage N. 

To incorporate elimination by bound into the dynamic programming procedure  
we must  redefine X~ as a subset  of the efficient solutions and redefine X ° as 

X ° = X s _ l x s n  for n = 2  . . . . .  N. 

Only the survivors at stage ( n -  1) are used to generate potential solutions at 
stage n. The hybird algorithm may then be stated as follows. In the terminology 
of [9], partial solutions are fathomed if they are infeasible (Step 2), dominated 
(Step 3), or eliminated by bound (Step 5). 

Hybrid algorithm 

Step 1. Set n =  1, X ° = s l ,  L B = H ] ( b ) ,  U B = U B I ( b ) ;  choose e E [ 0 , 1 ]  and 
L-> 1. Stop if LB = UB. 

Step 2. Construct  X~ by eliminating all infeasible elements  of X °. 
Step 3. Construct  X~ by eliminating all dominated elements  of X~. 
Step 4. If IX2]-< L, set X," = X~ and go to Step 9. 
Step 5. Construct  X~ = {x E X,, e I EJn-] rj(xi) + UBn+~(b - Z~'=~ aJ(xj)) > LB}. 
Step 6. UB'  = max{Ej~_l r~(xi) + UB,+~(b - E"j=~ aJ(xi)) [ x E X~}, and UB = rain 

{UB, UB'}. 
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Step 7. LB'  = max{Y~'=l ri(x fl + H,+l(b - E7-_1 aJ(xj)) ] x E X~}, LB = max{LB, 
LB'}, change the incumbent if necessary. 

Step 8. If ( U B -  L B ) / U B -  •, stop. The incumbent is sufficiently close to an 
optimal solution in value. 

Step 9. If n = N, stop: either X ~  contains an optimal solution or the in- 
cumbent is optimal. Otherwise, set n = n + 1, generate X ° = X~_~ × S~, and go to 
Step 2. 

The parameter e determines the approximation to optimality, with e = 0 
corresponding to exact optimality. For e > 0  we have L B - ( 1 - e ) U B -  
(1 - e)fN(b)  when termination occurs at Step 8. Note that an early stop at Step 8 
may occur even for the e = 0 case if UB = LB. To find all of the alternative 
optimal solutions for right-hand-side b, use "_> LB"  rather than " > L B "  at Step 5 
and choose • = 0. 

If L = 1, then upper and lower bounds will be computed at every stage. Our 
empirical evidence indicates that the total amount of computation required may 
be substantially reduced if these bounds are determined only intermittently. This 
could be done at every k-th stage or, as shown here, whenever the number of 
efficient partial solutions exceeds a specified limit L. As long as this number 
remains less than L, we just use the trivial upper bound (UBn+I ~-+o0) and the 
trivial heuristic (H,+1 -= 0) which yield X~ = X~. 

It appears from the' statement of Step 5 that UB~+~(b-E~=l aS(xfl) must be 
computed independently for each x E X~. It will be shown in the next section 
that this is not the case. In fact the attractiveness of this hybrid approach stems 
largely from the ease with which information about the UB,,+~(.) function can be 
shared among the elements of X~. 

3. Relaxations for upper bounds 

Our development of the hybrid algorithm has assumed the availability of 
algorithms for solving relaxations of (2.2) and of heuristics for finding feasible 
solutions of (2.2). In this section and the next we present some of the relaxations 
and heuristics that are appropriate in this context and that we have tested 
computationally. 

Solving any relaxed version of the residual problem (2.2) yields a valid upper 
bound. The simplest relaxation is to drop all of the constraints. This gives 

UB.+,(b - /3 )  = ~ rj(Ki) (3.1) 
]=n+l 

which is independent of /3. A less drastic relaxation is to keep just one 
constraint, say constraint i. The "best remaining ratio" for constraint i at stage n 
is 

BRRi..+I = max {max{rj(k)/aij(k)[ k = 1 . . . . .  Ki}} 
n+l_~j<N 

where the ratio is taken as + ~  if air(k) = 0. An upper bound based on constraint i 
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is~ 

UB/+l(b - 13) = (bi - / 3 i )  * BRRi ;n+I  

and if this is computed  for each i = 1 . . . . .  M then we also have 

UB,+,(b - / 3 )  = min UB~+,(b - /3 ) .  (3.2) 
l<_i~M 

Note that the best  remaining ratios can be tabulated in advance  for 1---i-< M 
and 0 --- n --- N - 1 so that the maximizat ions are done only once. 

These upper  bounds are useful and very simple to compute ,  but they are quite 
weak. They generally overes t imate  f , + l ( b - / 3 )  by a wide margin. To obtain 
stronger bounds we must  resort  to linear programming.  Let  us consider first the 
case where (1.1) is a linear integer program, i.e. ri(xj) = rix i and aij(xj) = aoxj for 
all i, j. The contirmous relaxation of (2.2) is then a linear program whose value 
may be taken as UB,+I(b - /3 ) .  

N 

UB,+I(b - / 3 )  = max ~2 rjx i, 
j-n+l 

N 
subject  to ~ .  aijxj <-~ bi --/3i, 1 <-- i <-- M,  (3.3) 

j-n+l 

O<--xj <-Ki,  n +  l < - j < - N .  

This linear program has a finite optimal solution for every  0-</3 -< b since x = 0 
is always feasible and all of the variables have upper  bounds.  By linear 
programming duality, then we may write 

M N 

UBn+~(b - / 3 )  = min ~ ui(bi - -  /3i) -}- Z viKj, 
i = l  j = n + l  

M 

subject  to ~ .  uiaij 4:- 1)j ~ ri, n + I <-- ] <-- N ,  (3.4) 
i=1  

ui>_O, l < _ i < _ M ,  

vj_>0, n + l < - j < - N .  

We propose  to use linear programming in a way that is quite different f rom the 
usual practice in branch-and-bound methods [8]. Our approach is based on the 
fact  that the residual problems corresponding to the partial solutions in X~ are 
identical, except  in their right-hand-sides. This makes it possible to obtain 
bounds for all of these problems s i m u l t a n e o u s l y ,  as will now be demonstrated.  

Let  X ~ = { x J , x  2 . . . . .  x °}  and let the corresponding resource consumption 
vectors  be/31, 132 . . . . .  /30 where 

n 

/ 3 q = ~ ' , a i j x  q for i = l  . . . . .  M. 
j = l  

The feasible region of the dual problem (3.4) is a non-empty,  unbounded 
polyhedron which will be denoted Dn+~. Let  {(u t, v t ) ] t  ~ Tn+~} be the set of 
ext reme points of D~+~. Since /3-< b, (3.4) achieves its minimum at an ext reme 
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point  of  Dn+ 1 and 

M N 

UBn+a(b - - /3)  = rain ~ uf(bi -/3i) + 2 v~K] for  0 -< 13 -< b. (3.5) 
tETn+I i = l  j = n + l  

It fol lows that for  q = 1 . . . . .  Q we have 

M N 

UB.+1(b - /3o)_< ~ ul(b, -/3iq) + ~, v~K s for  all t E Tn+~. (3.6) 
i = l  ] = n + l  

This means  that  any dual ex t reme point  can be used to pe r fo rm a bounding  test 
on every e lement  of  X~. Combining  (2.3) and (3.6) we see that  x q is el iminated by 
bound  if 

rixf + ~, u}(b~ - /3~) + ~, v~Kj <_ LB f o r s o m e t E T ~ + l .  (3.7) 
j = l  i - 1  i-n+1 

To exploit  this oppor tun i ty  for  sharing dual solutions among  the e lements  of  
X e, we p ropose  a parametr ic  tour  of  /3-space which  visits /31,/32 . . . . .  /30. 
Suppose  that (3.4) has been solved fo r /3  =/31 and that  we are in the process  of  
obtaining an optimal solution for  13 =/32 by parametr ic  linear p rogramming:  
/3 = / 3 1 +  i ( /32_/3 i )  for  0-< A -- 1. At  each iteration (dual simplex pivot) we move  
to a new dual ex t reme point  and have a new oppor tun i ty  to eliminate not  only x 2 
but also x 3 . . . . .  x °. If  x q is el iminated,  then /3 q may  be d ropped  f rom the 
i t inerary of  the tour. The details of  such a s t ra tegy are spelled out  in the 
fol lowing " r e sou rce - space  tou r"  p rocedure ,  which  may  be used at Ste p 5 of  the 
hybrid  algorithm. At the beginning of  the tour  we set s ( q ) =  1 for  each q = 
1 . . . . .  Q. If  x q is el iminated by a (3.7) test, then we set s(q) = 0, so that at the 
end of  the tour  we have Xd = {x q C X~ I s(q) = 1}. 

Resource-space tour 

Step 1. Set s ( q ) = l  for  q = l  . . . . .  Q. Solve (3.4) f o r / 3 = / 3 1 .  If  

2 rjx] + UBn+I(b  - / 3 1 )  < LB 
y-1 

el iminate x 1 by  setting s(1) = 0. Set p = 1. 
Step 2. Se t /3*  = / 3 C / 3 *  is the start ing point  for  the next  parametr ic  segment.  
Step 3. If  p = Q  or s ( q ) = 0  for  all q > p ,  stop. Otherwise  set c =  

min{q > p I s(q)  = 1}. /3c is the dest inat ion of  the next  parametr ic  segment.  
Step 4. Use  parametr ic  p rogramming  on (3.4) with /3 = / 3 * +  A(/3 c - / 3 * )  to 

drive A f rom 0 to 1. At  each basis change,  A = A, use the dual solut ion (a, 15) to 
execute  Steps 5 and 6. 

Step 5. For  q = c , c + l  . . . . .  Q:  if s ( q ) = l  and 

M N 

rjxf + ~ ai(bi - /3~)  + ~ gjgj -< LB,  
] I i-I  i-n+1 

eliminate x ° by setting s ( q ) =  0. 
Step 6. If  A = I ,  set p = c  and go to Step 2. If  A < I  but  s (c )=O,  set 
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/3, = / 3 ,  + ~(/3c _/3") ,  set p = c, and go to Step 3. Otherwise continue with Step 
4. 

Fig. l illustrates the possible outcome of such a parametr ic  tour for /3 E R 2. 
The x 's  mark the successive basis changes. The path shown would result if x 2 
were eliminated by the dual solution obtained at A and x 5 were eliminated by the 
dual solution obtained at B. We shall use the term direc t  hi t  to describe the 
elimination of x 2, since/3 2 was the destination of the current  parametr ic  segment,  
and ind irec t  hi t  to describe the elimination of x 5. The computat ional  advantage 
achieved by the resource-space  tour is primarily because of the frequent  
occurence of indirect hits. The partial solutions in X~ share dual solutions and 
therefore share (:he computat ional  burden of the simplex pivots. 

In the results to be reported here, the elements of X e were always ordered 
according to their object ive function value, i.e. 

2 rix ~ < - ~ r i x  q÷l for q = l  . . . . .  Q - 1 .  
]=1 j-1 

We are not currently aware of any more compelling criterion. Notice that an 
optimal LP solution is obtained for each survivor in X~. If  x ~ X~ and x* is the 
optimal LP solution for the corresponding residual problem, then x may be 
dropped f rom X~ if x* is all integer. The complete  solution (x, x*) becomes  the 
new incumbent.  

When problem (1.1) is nonlinear, we may still use linear programming to 
compute  strong upper  bounds.  For  each variable xj, if Kj > 1 and some of the 
functions ri(.), a+~(.) . . . . .  aMj(') are nonlinear, then we call x i a nonlinear variable 
and " expand"  it into the binary variables 

Yik = otherwise,  for k = 0, 1 . . . . .  Kj. (3.8) 

b2 

~2 

oBS 

e~2 

Fig. 1. A typical resource-space tour in R 2. 

b) 
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The following multiple choice constraint on the Yik will insure that xj assumes 
one of its permissible integer values: 

Ki 
~ ,  Yik : 1. (3.9) 

If all of the variables are nonlinear, then (1.1) is equivalent to the following 
zero/one integer linear program with multiple choice constraints: 

N Kj 
max ~'~ 2 r~kYjk, 

j = l  k=0 

N K~ 
subject to ~ aiikYik <-- b,, l<-- i<--M, 

i = l  k=O 
Kj 

Y~k = 1, 1--<]--<N, 
k=O 

yik E {0, 1}, I<-- j<--N,  O < - k < - K j  

where rjk = r~(k) and a~jk = a~j(k). (In general only the nonlinear variables would 
have to be expanded.) 

When (3.10) is relaxed to a linear program, the simple upper bounds (Yik -< 1) 
may be dropped since they are implied by the multiple choice constraints. This is 
important since it means that we do not have explicit dual variables for them. 
The multiple choice constraints may be handled implicitly as generalized upper 
bounds (GUB's). Thus in the nonlinear case we have: 

M N 

UB.+I(b - / 3 )  = min ~ ui(bi -- 1~i) -t- Z Dy 
i=1 j = n + l  

M 

subject to ~ uiaiik + Vi >-- rjk, n + 1 <-- ] <-- N ,  0 <-- k <- K i, 
i=1 

ui>_O, l < _ i < _ M ,  

vj>_O, n + l < - j < _ N .  

The (vl  . . . . .  VN) are now the dual variables for the GUB constraints, and the 
resource-space tour may be performed exactly as described above. 

The use of transformation (3.8) rather than the traditional binary expansion 
leads to the introduction of a GUB constraint (3.9) rather than a general linear 
constraint to impose the upper bound Kj. The practical importance of this was 
recently pointed out by Glover [10]. 

4. Heuristics for lower bounds 

There are several effective heuristics which may be applied to linear problems. 
These include Senju and Toyoda  [29], Toyoda  [30], and Petersen [26]. The latter 
two have been incorporated into the computer  code for the hybrid algorithm and 
their performance will be discussed in Section 5. We have also obtained good 
integer solutions by rounding d o w n  LP solutions. These integer solutions may 
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then be improved by re-allocating the resources freed by rounding down. That  is, 
we may increase by one any variable that is currently below its upper  bound and 
that consumes no more than the lef tover  resources.  This may be repeated until 
there is no such variable remaining. 

In the nonlinear case, heuristics may be applied directly to (1.1) or to its linear 
representat ion (3.10). If  y* is the optimal LP solution of (3.10) and 

Ki 
xT=ZkyL 

k-O 

then rounding down x* may not result in a feasible solution of (1.1). (The  same 
is true for any residual problem.) In this event,  the components  of x* may be 
reduced one at a time until a feasible solution is obtained. At wors t  this will be 
x = 0. Then a re-allocation procedure  similar to the one described above may be 
applied. 

For linear or nonlinear problems the following "myop ic "  heuristic is useful. 
Consider the variables x,+l . . . . .  xN in order. For  each one determine the largest 
feasible value it can assume,  given the values chosen for the preceding variables. 
That  is 

X,+l = max{x,+l ~ S,+l [ a"+'(Xn+l) --< b - / 9  q} 
and 

( } ~j = max xi E Si I aJ(xi) <- b - ~q -- Z aP(xP) 
p~n+l 

for j = n + 2 . . . . .  N. Then ~ is feasible for (2.2) and 

N 

g , + , ( b - / 3 q )  = ~ rj(~j). (4.1) 
j-n+l 

Various "g reedy"  heuristics could also be used, see for example Magazine, 
Nemhause r  and Trot ter  [16]. 

5. Computational Results 

The hybrid algorithm has been  tested on a set of capital budgeting problems 
taken f rom the literature. Problems 1 and 2 are among those solved in [26]. 
Problems 3 and 4 are problems 7 and 5, respectively,  of Petersen [25]. Problems 
5 and 6 are constructed f rom parts of problems 1, 2, 3, and 4. (Problem 5 is a 
subset  of problem 6). Problems 9 and 10 are the 30 x 60 problem of Senju and 
Toyoda  [29] with their right-hand-sides A and B, respect ively (A is 60% of B). 
Problems 7 and 8 have the first 30 columns of the Senju and Toyoda  problem 
and half of right-hand-sides A and B, respectively.  

These problems are all of the zero/one knapsack  t y p e - i . e ,  they satisfy the 
non-negativity assumption.  The coefficient matrices are all at least 90% dense in 
non-zero elements.  All of the problems were solved to exact  optimality (e = 0). 
Prior to solution the columns were sorted into nonincreasing order of their 
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objective values and renumbered. Thus: 

r l  >_ r2 >.  . . . >_ rN . 

Four heuristics were employed: Petersen [2611 Toyoda,  [30], Rounding and 
M y o p i c - t h e  latter two as described in Section 4. The Petersen heuristic gave 
the best results, but was also the most time consuming. (We used only the First 
Search and Fitback procedures.) For this reason Petersen was used only once on 
each problem, at the top of the search tree (stage 0). Toyoda,  Rounding and 
Myopic were applied to every survivor of the resource space tour. 

The resource space tour was made only when the number of partial solutions 
exceeded the threshold L. (All of the LP computations were performed by 
subroutines of the SEXOP system [17].) The r(K)-bound,  (3.1), and the BRR- 
bound, (3.2), were used at every stage since they could be applied so cheaply. 

Tables IA and 1B summarize our experience with these zero/one problems. 
The "Values" section of the table records the continuous and integer optimal 
values as well as the initial lower bounds obtained by the Petersen and Rounding 
heuristics. The "Improvements" section gives the number of improved feasible 
solutions discovered by each heuristic. The "Eliminations" section records the 
number of nodes (partial solutions) eliminated by each of the several techniques. 
Those eliminated by the resource-space are divided into direct hits and indirect 
hits, as described in Section 3. The "LP & H" row gives the number of stages at 

Table 1A 
Zero/one integer linear programs 

Problem number 1 2 3 4 5 5 

M 5 5 5 10 15 15 
N 30 45 50 28 30 30 

V a l u e s :  

LP optimum 7700.53 12078.69 16612.82 12465.60 12 138.11 12 138.11 
Integer Optimum 7515.00 11 949.00 16537.00 12410.00 12005.00 12005.00 
Petersen 7383.00 11 885.00 16 400.00 12 310.00 - -  11 970.00 
Rounding 7265.00 11 370.00 16 425.00 12 310.00 11 915.00 11 915.00 

I m p r o v e m e n t s  : 
Rounding 0 1 5 0 1 1 
Toyoda 0 0 1 1 0 0 
Myopic 1 0 3 0 0 0 

E l i m i n a t i o n s  : 
Feasibility 53 76 31 14 49 33 
Dominance 58 130 152 95 0 0 
r(K) ,  (3.1) 187 353 311 189 165 161 
BRR, (3.2) 29 50 15 70 134 96 
Direct hits 17 24 45 7 19 18 
Indirect hits 79 378 795 86 180 202 
LP & H times 1 4 7 1 2 2 
Initial LP pivots 40 56 32 18 67 67 
Total LP pivots 153 184 609 66 211 199 
Projects selected 12 29 35 16 17 17 
time (sec.) 1.605 3.360 10.714 1.155 3.608 3.286 
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which LP and the heur is t ics  were invoked;  i.e. the n u m b e r  of t imes there were 
more  than  L efi]cient part ial  solut ions.  The  threshold  L was set at 100 for 

p rob lems  1-9  and  at 200 for p rob lem 10. "P ro j e c t s  se lec ted"  is the n u m b e r  of 

ones  in the integer  opt imal  solut ion.  The  c o m p u t a t i o n  t ime is in C P U  seconds  for 

an IBM 370/168. 
The  P e t e r s e n  heur is t ic  was quite effect ive on these p rob lems ,  usual ly  wi thin  

1% of the op t imum.  To see how the a lgor i thm would  fare wi thou t  such a good 

initial  lower  bound ,  we ran  p rob lems  5, 6, and  7 with and  wi thout  the Pe te r sen  

heurist ic .  In  the lat ter  case the R o u n d i n g  value was used as the ,initial lower  
bound .  The  compu ta t i on  t imes were  greater  wi thout  Pe te r sen ,  bu t  no t  dramat ic -  

ally so. The o ther  three heur is t ics  were able to br ing the lower  b o u n d  up to or 
above  the Pe t e r s en  value very  quickly.  The  resul ts  i l lustrate the value of having  

a d iverse  col lect ion of heuris t ics .  

One of our  chief surpr ises  in expe r imen t ing  with the hybr id  algori thm was that  
the LP b o u n d s  and heuris t ics  would  be invoked  so few times.  Table  2 sum- 
marizes  a series of runs  on p rob lem 2 which compare  different  values  of the 

threshold L. It is appa ren t  that  when  LP  is used only in te rmi t t en t ly  the weaker  

bounds ,  and d o m i n a n c e ,  play' a much  larger role. Not  us ing  LP for several  stages 
causes  us to accumula t e  a great  m a n y  una t t r ac t ive  part ial  so lu t ions  that  would  

have been  f a thomed  by LP.  Some of them are so una t t r ac t ive  that  they can be 

f a thomed  by the weak  r ( K )  and  BRR-bounds .  The ones  that  surv ive  are 

Table 1B 
Zero/one integer linear programs 

Problem number 6 6 7 7 8 9 10 

M 20 20 30 30 30 30 30 
N 30 30 30 30 30 30 60 

Values : 
LP Optimum 11 610.39 11 610.39 3837.93 3837.93 4466.70 7839.28 8773.20 
Integer Optimum 11 540.00 11 540.00 3704.00 3704.00 4357.00 7772.00 8722.00 
Petersen - -  11 505.00 - -  3704.00 4349.00 7772.00 8704.00 
Rounding 11 300.00 11 300.00 3670.00 3670.00 4329.00 7661.00 8722.00 

Improvements : 
Rounding 5 1 1 0 0 0 0 
Toyoda 1 0 1 0 0 0 0 
Myopic 1 0 1 0 1 0 0 

Eliminations : 
Feasibility 40 47 168 192 159 400 622 
Dominance 0 0 5 4 3 0 27 
r(K), (3.1) 110 104 117 135 151 214 249 
BRR, (3.2) 51 57 26 28 31 25 34 
Direct hits 20 16 5 6 26 29 105 
Indirect hits 273 222 80 68 179 459 1608 
LP & H times 3 2 1 1 2 4 7 
Initial LP pivots 52 52 157 157 121 168 107 
Total LP pivots 253 180 289 281 485 626 2578 
Projects selected 14 14 9 9 14 20 33 
time (sec.) 5.154 3.242 6.051 5.912 11 .319  26.043 122.381 
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e l i m i n a t e d  v e r y  e f f i c i en t ly  by  i n d i r e c t  hi ts  w h e n  L P  is f ina l ly  ca l l ed  in f o r  a 

" c l e a n  u p " .  T h i s  w a s  o u r  o t h e r  c h i e f  s u r p r i s e - t h e  f r e q u e n c y  of  i n d i r e c t  hi ts .  

T a b l e  2 s h o w s  c l e a r l y  tha t  t he  r e l a t i v e  n u m b e r  o f  i n d i r e c t  h i ts  i n c r e a s e s  w i t h  t he  

t h r e s h o l d  L as m o r e  and  m o r e  u n a t t r a c t i v e  n o d e s  a re  a l l o w e d  to a c c u m u l a t e .  I t  

w a s  q u i t e  c o m m o n  f o r  t h e  n u m b e r  o f  pa r t i a l  s o l u t i o n s  to d r o p  f r o m  o v e r  100 to 

less  t h a n  10 w h e n  L P  w a s  a p p l i e d - w i t h  m o s t  o f  t he  e l i m i n a t i o n s  b e i n g  b y  

i n d i r e c t  hi ts .  

W e  h a v e  a lso  i n v e s t i g a t e d  the  e f f e c t  o f  a l l o w i n g  the  v a r i a b l e s  to a s s u m e  v a l u e s  

in {0, 1, 2} o r  {0, 1, 2, 3}° ( L e t  K d e n o t e  a c o m m o n  u p p e r  b o u n d ,  Kj  = K f o r  all  j.) 

T h e  i n c r e a s e  in c o m p u t i n g  t i m e  c a n ,  o f  c o u r s e ,  be  v e r y  g rea t .  F o r  a f ixed  l e v e l  o f  

r e s o u r c e s ,  h o w e v e r ,  t h e r e  m a y  be  a g r ea t  d e a l  o f  e l i m i n a t i o n  by  i n f e a s i b i l i t y  

w h e n  K is i n c r e a s e d  f r o m  1 to 2 o r  3. T h i s  is i l l u s t r a t e d  in T a b l e  3. T h e  first  

Table 2 
The effect of the threshold L on problem 2 (5 x 45) 

L 1 25 50 ! 00 
LP & H times 44 10 6 4 
Eliminations: 
Feasibility 13 20 54 76 
Dominance 2 36 70 130 
r(K), (3.1) 82 119 190 353 
BRR, (3.2) 3 11 18 50 
Direct hits 60 29 26 24 
Indirect hits 114 217 316 378 
Total LP pivots 419 243 210 184 
Time (sec.) 10.987 5.131 3.585 3.360 

Table 3 
The effect of the number of choices at each stage K, on problem 1 
(5 x 30) 

K 1 2 3 3 
Values: 
LP optimum 7700.53 8725.44 9131.90 16 754.38 
Integer optimum 7515.00 8451.00 8920.00 16 570.00 
Rounding 7265.00 8135.00 8824.00 16 168.00 
Improvements  : 
Rounding 1 2 2 6 
Myopic 3 3 1 2 
Eliminations : 
Feasibility 30 218 400 247 
Dominance 19 47 9 12 
r(K) ,  (3.1) 101 74 85 93 
BRR, (3.2) 9 22 85 52 
Direct hits 27 28 15 68 
Indirect hits 101 297 343 735 
LP & H times 3 5 4 13 
Initial LP pivots 40 40 46 36 
Total LP pivots 232 323 154 1107 
Time (sec.) 2.224 3.493 1.786 14.308 
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th ree  co lumns  r e p r e s e n t  p r o b l e m  1 so lved  for  K = 1,2, 3 r e s p e c t i v e l y .  The  
b - v e c t o r  was  the  s ame  in each  case .  The  fou r th  co lumn  is the  K = 3 case  
r e p e a t e d  wi th  the  or ig inal  b - v e c t o r  doub led .  To p r o m o t e  c o m p a r a b i l i t y  the  
P e t e r s e n  and T o y o d a  z e r o / o n e  heur i s t i c s  we re  not  u sed  in the  K = 1 case .  A 
t h r e s h o l d  of  L = 50 was  used  in all 4 runs.  

Tab le  4 r epo r t s  the  resu l t s  of  s o m e  e x p e r i m e n t s  on non l inea r  va r i a t ions  of  
p r o b l e m  1. In  each  case  the  va r i ab l e s  we re  a l l owed  to a s s u m e  va lues  in {0, 1, 2}. 
The  c o n v e x  o b j e c t i v e  fo r  run 2 was  rj(2) = 4rj(1) for  all j ;  the  c o n v e x  cons t r a in t s  
for  run  3 we re  ai j (2 )=4ai i (1 )  for  all i ,];  and run 4 had  r j ( 2 ) = 4 r i ( 1 ) + l O  and  
aii(2) = 4aij(1) + 10 for  all i, ]. The  t h r e sho ld  was  L = 50 fo r  all runs  and on ly  the  
R o u n d i n g  and M y o p i c  heur i s t i c s  were  used .  The  c o m p u t a t i o n  t ime was  i n c r e a s e d  
by  a f a c t o r  of  f rom 2 to 5 ove r  the  l inear  case  (run 1). This  is due  to a w e a k e n i n g  
of  bo th  the  heur i s t i c s  and  the L P  bounds .  

The  feasibiliiLy tes t ,  the  r ( K ) - b o u n d ,  and  the B R R - b o u n d  are  all v e r y  cheap  to 
a p p l y  and p r o d u c e  more  than  enough  e l imina t ions  to " p a y  for  t h e m s e l v e s " .  The  
r e s o u r c e - s p a c e  tour  is e x p e n s i v e  c o m p u t a t i o n a l l y ,  but  it is u sed  spa r ing ly  and  
wi th  d r a m a t i c  effect .  The  cos t - e f f ec t i venes s  of  the  d o m i n a n c e  tes t ,  h o w e v e r ,  is 
open  to ques t ion .  I f  l inear  p r o g r a m m i n g  is u sed  at  e v e r y  s tage ,  then  the re  a re  
v i r tua l ly  no e l imina t ions  by  d o m i n a n c e  (see Tab le  2). O t h e r w i s e ,  the  n u m b e r  of  
e l imina t ions  by  d o m i n a n c e  d r o p s  to ze ro  a f te r  each  r e s o u r c e - s p a c e  tou r  and  then  
i nc r ea se s  at  e v e r y  s tage  unti l  the  L - t h r e s h o l d  is r e a c h e d  again.  I t  a p p e a r s  tha t  
d o m i n a n c e  is on ly  e f fec t ive  aga ins t  " e a s y "  nodes  tha t  cou ld  o t h e r w i s e  be 
e l imina t ed  by  bound .  To tes t  this ,  we r e - r an  p r o b l e m s  2, 3, and  4 w i thou t  

Table 4 
Nonlinear integer programs, variations on problem 1 (5 x 30) 

K 2 2 2 2 
Objective linear convex linear convex 
Constraints linear linear convex convex 
Values : 
LP optimum 8725.44 17 450.88 7 7 0 0 . 5 3  9011.91 
Integer optimum 8451.00 16 385.00 7 5 1 5 . 0 0  8419.00 
Rounding 8135.00 13 305.00 7 2 1 1 . 0 0  6626.00 
Improvements : 
Rounding 2 2 0 0 
Myopic 3 5 3 9 
Eliminations: 
Feasibility 218 274 151 219 
Do minance 47 109 45 10 
r(K), (3.1) 74 104 66 57 
BRR, (3.2) 22 48 6 36 
Direct hits 28 120 109 27 
Indirect hits 297 170 120 170 
LP & H times 5 5 4 3 
Initial LP pivots 40 51 72 49 
Total LP pivots 323 1022 822 432 
Time (sec.) 3.493 15.844 11.565 6.408 



36 R.E. Marsten, T.L. Morin/ A hybrid approach to discrete MP 

Table 5 
Computational 
dominance 

results without elimination by 

Problem Number 2 3 4 

M 5 5 10 
N 45 50 28 
Improvements: 
Rounding 1 7 1 
Toyoda 0 1 0 
Myopic 0 2 1 
Eliminations : 
Feasibility 66 49 17 
r(K), (3.1) 233 353 178 
BRR, (3.2) 65 55 82 
Direct hits 20 59 7 
Indirect hits 651 951 192 
LP&H 5 8 2 
Total LP pivots 188 797 74 
Time (sec.) 3.476 13.590 1.297 

dominance  testing. The results  are presented  in Table 5. ( In format ion  not  given 
in Table 5 is the same as in Table 1A.) The mos t  consp icuous  change  is the 
substantial  increase in the number  of  indirect  hits. The  extra  indirect  hits are 
picking off the descendan t s  of  the nodes  that  would  have been  el iminated by 
dominance .  The more  rapid accumula t ion  of  nodes  causes  the r e source - space  
tour  to be pe r fo rmed  more  of ten  - one extra  time in each of  these problems.  The 
solution time in each case is s o m e w h a t  less with dominance  testing than without.  
Time saved by not  doing the dominance  tests is offset  by  time spent  doing extra  
simplex pivots  and bounding  tests. Thus  dominance  testing is saving more  time 
than it costs ,  but  only  marginal ly so. In view of  the substantial  amoun t  of  logic and 
m e m o r y  space required for  pe r fo rming  dominance  tests, it might well be bet ter  to 
neglect  dominance  and put  more  rel iance on the r e source - space  tour. This is 
especial ly evident  in the results  for  the larger problems (6-10). 

6. Dropping the non-negativity assumption 

Allowing negative objec t ive  funct ion  values does not  require any  change  to the 
hybrid  algorithm. Allowing negat ive values in the const ra in t  funct ions  and on the 
r ight-hand-side requires the feasibil i ty test at Step 2 to be modified or aban- 
doned.  The non-negat iv i ty  assumpt ion  insures that  every  descendan t  of  the 
partial solution x E X, ° will cons um e  at least as much  of  each resource  as x does.  
This implies that  x has no feasible descendan ts  w h e n e v e r  /3i > bi for  some i. 
Wi thout  this a ssumpt ion  we must  either abandon  the feasibili ty test, in which 
case we may  redefine 

X,~ = {x E X ° I  x is efficient with respec t  to X, °} 
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at Step 3, or else', replace it with some weaker  sufficient condition for eliminating 

x. For example:  x has no feasible descendants  if for  some i,/3i > bi and 

N 

/3i + ~ min{0, min{ai j (k)  I k = 1 . . . . .  Kj}} > bl. 
j = n + l  

Even  when Step 2 is omitted, some elimination by reason of infeasibility takes 
place as a special case of elimination by bound. If x E X~ does not have any 
feasible descendants ,  then its residual problem (2.2) is infeasible and this may be 
detected when the LP relaxation (3.3) is solved. When this happens x is 
eliminated by bound, provided we adopt  the usual convent ion that the optimal 
value of an infeasible maximizat ion problem is ( -0% 

The resource space tour must  be modified to share ext reme rays as well as 
ext reme points among the members  of X~. Let  X 2 = {x 1 . . . . .  x o} and consider 
the linear programs (3.3) for /3 =/31 . . . . .  flo. If  one of these is infeasible, then 
the corresponding dual (3.4) has an unbounded solution along an ext reme ray 
(#,  ~) of D,+I. As soon as this ex t reme ray is obtained it can be used to perform 
what amounts  to a feasibility test on each x °. That  is, x ° has no feasible 
descendants  if 

M N 

i - 1  j = n + l  

since this condition means that UB,+I(b - / 3  °) = - ~ .  
The most  important  consequence of dropping the non-negativity assumption is 

that it becomes  much more difficult to devise good heuristics. Intuitive or 
common  sense approaches  to "knapsack  type"  problems break down when 
negative data is admitted, and there is no easy way to round an LP solution and 
obtain a feasible integer solution. Heurist ics for general integer programs,  such 
as those of Hillier [12] and Kochenberger  et al. [15], would have to be 
incorporated into the hybrid algorithm. 

7. Conclusion 

This paper  has presented a hybrid DP/B & B algorithm for separable discrete 
mathematical  programs and evidence of its computat ional  viability. If the hybrid 
algorithm is viewed as dynamic programming,  then the introduction of bounding 
arguments  serves to reduce the size of the state space at each stage and enables 
us to compute  an optimal solution for one particular right-hand-side vector,  b, 
rather than for  all 0 -< b '  -< b. If  on the other hand the hybrid algorithm is viewed 
as branch-and-bound,  then the incorporation of a DP f r amework  has two main 
consequences.  First, DP provides an additional fa thoming technique: 
dominance.  S.econd, and of greater  importance,  DP takes control of the search 
strategy. The B & B methodology achieves its great flexibility by leaving its user 
with many  different choices to make.  Among these are: how to separate  a node 
that cannot  be fa thomed (e.g. which variable to branch on) and which node to 
a t tempt  to fa thom next (e.g. depth first, breadth first, best  bound, priority, etc). 
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In the hybrid algorithm, the DP f ramework  dictates that the same branching 
variable be used across each level of the search tree and that we at tempt  to 
fa thom all of the nodes at the current  level of the tree before proceeding to the 
next level. The only f reedom left is in the choice of which variable to associate 
with each level of the tree and in what  order to consider the nodes at the current  
level. This rather rigid structure leads directly to the surprisingly effective 
" resource-space  tour"  technique for computing and sharing bounds. 

Our ultimate breadth first search strategy is admittedly an extreme one. It is 
quite possible, however ,  for a more conventional  branch-and:bound procedure 
to use the hybrid algorithm to fa thom particular sub-trees while retaining 
higher-level strategic control. We have not yet a t tempted this but it appears  to be 
an exciting avenue for further research. 

At the conceptual  level, the central role of the optimal return function in DP 
has led to the discovery of a generalization of the usual B & B bounding test 
which makes it possible to solve, in one search, a family of parametr ic  integer 
programs whose right-hand-sides lie on a given line segment. This has been 
developed in a separate paper  [18]. 

It is our hope that, beyond its computat ional  value, our work will have further 
theoretical ramifications and will lead to a unifying f r amework  for discrete 
optimization. That  is, this work may help to break down the artificial barriers 
which exist between DP and B & B. We have made a start in this direction by 
showing how bounding arguments may be used to enhance any dynamic 
programming algorithm [22], not just the special one considered here. Further- 
more,  we feel that the hybrid viewpoint  will lead to a deeper understanding of 
right-hand-side sensitivity. In view of the intimate relationship between right- 
hand-side sensitivity and duality for convex programs,  this may ultimately result 
in new concepts  of duality for discrete programs.  

Acknowledgment 

This work was supported in part  by N S F  grants GJ-1154X2 and GJ-1154X3 to 
the National Bureau of Economic  Research,  NSF  Grant  ENG-7614396 to Purdue 
Universi ty,  and U.S. Army contract  DAAG29-76-C-0064 to the Massachuset ts  
Institute of Technology.  The authors are grateful to one of the anonymous  
referees for many  helpful comments  and suggestions. 

References 

[1] J.H. Ahrens and G. Finke, "Merging and sorting applied to the zero-one knapsack problem", 
Operations Research 23 (1975) 1099-1109. 

[2] O.G. Alekseev and I.F. Volodos, "Combined use of dynamic programming and branch-and- 
bound methods in discrete programming problems", Automation and Remote Control 37 (4) Pt. 2 
(1976) 557-565. 



R.E. Marsten, T.L. Morin/ A hybrid approach to discrete MP 39 

[3] N. Christofides, "A minimax-facility location problem and the cardinality constrained set 
covering problem", Management Science Research Report No. 375, Graduate School of 
Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1975). 

[4] E.V. Denardo and B.L. Fox, "Shortest route methods: reaching, pruning, and buckets", Yale 
University (May 1977). 

[5] V. Dharmadhikari, "Discrete dynamic programming and the nonlinear resource allocation 
problem", Technical Report CP-74009, Dept. of Computer Science and Operations Research, 
Southern Methodist University, Dallas, TX (1974). 

[6] S.E. Elmaghraby, "The one-machine sequencing problem with delay costs", Journal of In- 
dustrial Engineering 19 (1968) 105-108. 

[7] M.L. Fisher, "A dual algorithm for the one-machine scheduling problem", Mathematical 
Programming 11 (1976) 229-251. 

[8] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (Wiley-lnterscience, New York, 
1972), 

[9] A.M. Geoffrion and R.E. Marsten, "Integer programming algorithms: a framework and state-of- 
the art survey", Management Science 18 (1972) 465491. 

[10] F. Glover, "Improved linear integer programming formulations of nonlinear integer problems", 
Management Science 22 (1975) 455-460. 

[11] R.E. Haymond, "Discontinuities in the optimal return in dynamic programming", Journal of 
Mathematical Analysis and Applications 30 (1970) 639-644. 

[12] F.S. Hillier, "Efficient heuristic procedures for integer linear programming with an interior", 
Operations Research 17 (1969) 600-637. 

[13] T. Ibaraki, "The power of dominance relations in branch-and-bound algorithms", Journal of 
the Association for Computing Machinery 24 (1977) 264-279. 

[14] E. Ignall and L. Schrage, "Application of the branch-and-bound technique to some flow-shop 
scheduling problems", Operations Research 11 (1965) 400-412. 

[15] G.A. Kochenberger, B.A. McCarl, and F.P. Wyman, "A heuristic for general integer program- 
ming", Decision Sciences 5 (1974) 36-44. 

[16] M.J. Magazine, G.L. Nemhauser, and L.E. Trotter, Jr., "When the greedy solution solves a class 
of knapsack problems", Operations Research 23 (1975) 207-217. 

[17] R.E. Marsten, "SEXOP: subroutines for experimental optimization", Sloan School of 
Management, MIT, Cambridge, MA (1974). 

[18] R.E. Marsten and T.L. Morin, "Parametric integer programming: the right-hand-side case", 
Annals of Discrete Mathematics 1 (1977) 375-390. 

[19] L.G. Mitten and A.R. Warburton, "Implicit enumeration procedures", Working Paper 251, 
Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, 
B.C., Canada (1973). 

[20] T.L. Morin and A.M.O. Esogbue, "Tile imbedded state space approach to reducing dimen- 
sionality in dynamic programs of higher dimensions", Journal of Mathematical Analysis and 
Applications 48 (1974) 801-810. 

[21] T.L. Morin and R.E. Marsten, "An algorithm for nonlinear knapsack problems", Management 
Science 22 (1976) 1147-1158. 

[22] T.L. Morin and R.E. Marsten, "Branch-and-bound strategies for dynamic programming", 
Operations Research 24 (1976) 611-627. 

[23] G.L. Nemhauser, "A generalized permanent label setting algorithm for the shortest path 
between specified nodes", Journal of Mathematical Analysis and Applications 38 (1972) 
328-334. 

[24] G.L. Nemhauser and Z. Ullman, "Discrete dynamic programming and capital allocation", 
Management Science 15 (1969) 494-505. 

[25] C.C. Petersen, "Computational experience with variants of the Balas algorithm applied to the 
selection of R & D project", Management Science 13 (1967) 736-750. 

[26] C.C. Petersen, "A capital budgeting heuristic algorithm using exchange operations", AIIE 
Transactions 6 (1974) 143-150. 

[27] F. Proschan and T.A. Bray, "Optimal redundancy under multiple constraints", Operations 
Research 13 (1965) 143-150. 



40 R.E. Marsten, T.L. Morin/ A hybrid approach to discrete MP 

[28] H.M. Salkin and C.A. DeKluyver, "The knapsack problem: a survey", Naval Research Logistics 
Quarterly 22 (1975) 127-144. 

[29] S. Senju and Y. Toyoda, "An approach to linear programming with 0/1 variables", Management 
Science 15 (1968) BI96-B207. 

[30] Y. Toyoda, "A simplified algorithm for obtaining approximate solutions to zero-one program- 
ruing problems", Management Science 21 (1975) 1417-1427. 

[31] H.M. Weingartner and D.N. Ness, "Methods for the solution of the multi-dimensional 0/1 
knapsack problem", Operations Research 15 (1967) 83-103. 


