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1. Introduction 

Recently, there has been considerable interest in acceleration waves in thermo- 
elastic materials, see e.g. [2-10] and the references therein. In this paper we study the 
behaviour of acceleration waves as predicted using the nonlinear thermoelasticity 
theory of Green and Lindsay [1]. This theory, which was developed with the aid of  an 
entropy inequality due to Green and Laws [11], allows heat to travel with a finite 
wavespeed: the present study, therefore, may be regarded as an extension of work on 
the conventional theory of thermoelasticity which, from the nonlinear acceleration 
wave viewpoint taken here, was revived in 1961 by Truesdell [9] and continued by 
Chen [5, 6] and Chadwick and Currie [2, 3, 4]. 

Green [8] has investigated acceleration waves in the linear isotropic theory of 
thermoelasticity of Green and Lindsay [1]. He demonstrated that the theory allowed 
for two coupled waves, which may be thought of as arising due to discontinuities in 
the acceleration of the body and an 'acceleration',  ~, of the temperature 0. The present 
writers [12] continued this work by examining the behaviour of a thermal wave in a 
rigid conductor of Green and Laws [11] type. Since no linearity was assumed the 
amplitude of the thermal wave could become infinite in a finite time; an effect which 
may be associated with shock wave formation. We here take the work a stage further 
and investigate the behaviour of an 'acceleration' discontinuity in the coupled non- 
linear theory of thermoelasticity presented in [1]. As with [12], the possibility of an 
infinite amplitude is encountered, but we here find there are two coupled waves, both 
of which exhibit nonlinear behaviour. 

Several other models allowing for a thermal wave of finite speed (usually known 
as a second sound effect) appropriate to thermoelastic media have been based on the 
Maxwell-Cattaneo relation, the more general temperature-gradient history approach 
of Gurtin and Pipkin or an idea of phonon diffusion; see [7, 13-19]. It is highly likely, 
as the work of [7] would indicate, that the Chen-Gurtin-Pipkin theory will predict 
similar results to those obtained here. However, we believe that the theory of Green-  
Laws-Lindsay is more tractable in that less cumbersome algebraic manipulations are 
involved since the constitutive variables are quantities defined at the present time only 
and do not employ histories as in [7, 20]. It might be mentioned, at this point, that it 
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would be interesting to investigate nonlinear wave propagation according to each of  
the aforementioned theories and compare the various results. However, this broad 
objective is beyond the scope of  the present paper. 

2. A Brief Review of the Generalized Temperature Theory of Thermodasticity 

For completeness, points of the theory o f  thermoelasticity presented by Green 
and Lindsay [1] relevant to the present study, are collected here. 

Thermodynamic arguments are based on the inequality 

d 
-~ fvPo*TdV- f v ~  dV + f o v - ~  dA > 0, (2.1) 

which holds for all sub-volumes, V, of  some reference configuration, and where 
~7, P0, r, q~( > 0) and Q are, respectively, the specific entropy, reference density, externally 
supplied heat, temperature function and the heat flux vector acting over the surface at 
time t but measured per unit area of ~3V. ~ is a function of the Kelvin temperature 0 
and all other independent variables in the constitutive theory. It transpires that 
reduces to a function of 0 and 0, the functional form of ~ to be determined by inter- 
pretation of  analysis in accordance with physics (cf. the problem of determining the 
functional form of the strain energy in classical nonlinear elasticity). However, the 
canonical form for ~b may be motivated from a statistical mechanical viewpoint and 
may be thought of as a continuum attempt to explain the idea of heat being conveyed 
by molecular collisions. 

Standard indicial notation (see e.g. Truesdell and Toupin [21]) is employed 
throughout with x~ denoting spatial coordinates and XA reference coordinates. The 
momentum, energy and mass conservation equations are then 

PA~,.4 q-  PO'~ = PoJCi, (2.2) 

Po~ - por - fci,.4P.4i + Q~.r = 0, (2.3) 

JP = Po, (2.4) 

where j = det (x~.A) and where e, p and ~ are the specific internal energy, Piola- 
Kirchoff stress tensor and body force, respectively. (The Cauchy stress tensor, t, and 
the usual heat flux vector, q, are given byjt~k = Xi.APA~c andjq~ = X,.AQA.) 

A free energy function r (=  e -- r/~ ) is introduced and constitutive equations are 

assumed such that 

r r 71, Q and p (2.5) 

are functions of  

0, 0.a, O and F~a, 

where F~a = x~,A. (It is  assumed throughout this work that the reference body is 
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homogeneous and so X is omitted from the abow: list. This is not essential to the 
development of  the theory, see [1 ].) Then, with the z.id of  (2.1), the following relations 
are deduced: 

q~ = 4,(0, 0), (2.6) 

e~b (2.9) PAi= Po ~xt.~ 

The function ~b is restricted in that ~fE = 0, where a line followed by a subscript 
E indicates evaluation in a state of  constant temperature (0 = 0A = 0). Moreover, 
we note for later use that if the material is in a static configuration at uniform defor- 

mation and temperature and if the initial body has a centre of  symmetry, then 

OPa~ 8QK 8e OQK, (2.10) 
80 

are identically zero. 

3. Acceleration Waves in Anisotropic Materials 

For the notation employed here the reader is referred to Chen [5], Sections 4 
and 5. 

The waves considered in this paper are propagating singular surfaces across 
which the discontinuities of  lowest order are the second derivatives of  displacement 
and temperature. The wave normal  n and the local speed of propagation U = u~ - ~ .n  
of  an acceleration wave ~(t) are respectively the unit vector normal to ~(t) in the 
direction of travel and the component  in the direction of n of  the velocity with which 
the wave moves relative to the material. ~(t) is the spatial representation of  the surface 
and a material representation E(t) is also useful, together with its associated normal N 
and the speed of propagation UN. The wave amplitudes a(t) and ~(t) are defined by 

a =  [ ~ ] - - i -  - ~ +  and ~ =  [0], (3.1) 

and we suppose throughout that a :~ 0, ~ -~ 0. 
It should be observed that thermoelastic waves defined as above are different 

from the analogous ones in the classical theory of thermoelasticity, see Chadwick and 
Currie [3], and as may be expected they lead to different results to those predicted by 
the classical theory. 

It is supposed the body force and heat supply are zero. The calculation of the 
equation governing wavespeeds is now a routine application of compatibility relations 
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given in e.g. Chen [6]. (The analysis leading to the propagation and growth of  ampli- 
tude equations is now well known and so we merely present a statement of the final 
results together with the relations needed to calculate the coefficients appearing in 
them. However, complete details are given in [22], available from the writers.) In fact, 
the propagation conditions are 

- = o ,  

X~2)~ - x~a)a, = 0, (3.2) 

where X (x), X C2) and X tS) are defined by 

X~I) poU,~a~j Ots, 

(3.3) 

X~a) apa~ . = NANK UNNA apAt, 

and where A and ~ j (N)  are given by 

aQr  apA, (3.4) A = - N a N r ~  and 0~ j=  NaN~sFjB .  

From (3.2) it follows that 

(Xi~)X (2) - Xla)X~3))a j = 0. (3.5) 

We suppose henceforth that the material ahead of the wave is an isothermal 
region at rest in a fixed homogeneous configuration, and that the reference body 
has a centre of symmetry. 

By Chen [6], (4.10), we have 

Iv,el NA = FtA ~ n,, (3.6) 

and so defining fl~j by 

= IVx~[ {~Pa, (3.7) 
flij ~ \ t~0 FjA) E' 

we may, noting the symmetry properties of  the body, write (3.2 h as 

(Q~jldn) - p o U ~ j ) a j  - Uue~flijn~ = 0, (3.8) 

where Q~j(n) is the tensor Q~j represented now as a function of n rather than N. 
Equation (3.8) is similar to equation (2.1) of Chadwick and Currie [3] and the 

term [3 plays an analogous, important r61e to the corresponding term in [3]. As with 
[3] we shall require [3 to be nonsingular, and since det F r 0 is a basic assumption of  
the theory this reduces to requiring det (c~pad~O) r 0. A physical motivation for this 
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requirement may be obtained as in [4], p. 305: the contact force on an arbitrary surface 
element is always changed when the temperature velocity, 0, is changed at constant 
deformation. 

Theorem 2 of [3] may now be used to show there is at least one direction n* such 
that [~n* is an eigenvector of  Q. Since the wave is propagating into an isothermal, 

homogeneous region at rest, Q is a constant matrix and so [~n* is fixed. Furthermore,  
since [$ is a constant matrix it follows n* must be a fixed direction. We may, therefore, 
consider the propagation of a plane acceleration wave in the direction n*, with 
amplitude in the direction [~n*. Following Chadwick and Currie [3], these waves may 
be termed generalized longitudinal waves. 

Let the unit vector in the direction of [3n* be v, and so a = a~. Since a # 0 (3.5) 
leads to the wavespeed equation 

(V?~ - V~, ) (U~ - U~.) + KU,~ = O, (3 .9)  

where 

l A ~ \  ] U~. = ~ IPo-~) E' U~ = (Q,f~vjIPo)[E, (3.10) 

and 
f l 

(3.11) o 

Equation (3.9) clearly admits two solutions for U~ under suitable conditions on the 
coefficients and, indeed, appears superficially to be the same as the equation for the 

wavespeeds of  harmonic waves in a classical linear elastic material, see e.g. Sneddon 
[23], p. 43. However, unlike the classical case, (3.9) admits two real solutions for U~. 
(Other areas in which two distinct wavespeeds exist are in granular media, Nunziato 
and Walsh [24]; mixtures, Bowen and Chen [25] and Bowen and Wright [26]; and the 
present writers have observed a similar phenomenon with temperature-twist waves in 
the Ericksen-Leslie theory of Nematic liquid crystals based on the thermodynamics 
of  Green and Laws [1 I], these waves being an extension of the isothermal twist waves 
studied by Shahinpoor [27].) 

Equation (3.9) has real solutions if either 

(i) K >_ (UM + UT) 2 or (ii) K <_ (UM -- Ur) 2. 

However, (i) is inconsistent with the fact that U~ > 0, arLd so we find it necessary that 
(ii) holds. We have already assumed det (~pA~/~O) ~ O, and we suppose also that the 
derivatives of  r and ~ with respect to 0 do not vanish. Thus, K =~ 0. I f  ~ = V(~, F~A), 
then sgn K = - sgn (~/04,), and we may expect from this that K < 0, although we 
still examine the possibility of  K > 0. 

K < 0 .  

For this case. 

U~ 2)2 < (U~, Ur 2) < U~ )2. (3.12) 

UM is the speed of an acceleration wave in an elastic material neglecting thermal 
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effects, see Chen [6], whereas Ur is the speed of  a temperature wave in a rigid heat 
conductor, i.e. neglecting elastic effects, see Lindsay and Straughan [12]. Therefore, 

(3.9) gives two solutions, one which represents a wave travelling with speed greater 
than either an isothermal acceleration wave or a temperature wave in a rigid heat 
conductor, and the other slower than either of  these. (Of course, this occurs only at 
the instant of  generation of the wave, for, after that the slower wave advances into a 

nonequilibrium region.) The speed of the second wave has then to be calculated f rom 
Eqns. (3.2). A similar situation was encountered by Nunziato and Walsh [24] for one- 
dimensional waves in granular materials. We can employ their ideas to show that the 
second wave cannot intersect with the first. For, the coefficients in (3.5) in the region 
between the waves are continuous functions of  x, t and so, therefore, will be U~ ). I f  
the second wave intersects the first, then at the point of  contact the normal to the 
second wave is n*, and so by (3.12) U~ ) < U~ ~ which is inconsistent with the fact that 
U~ 2~ is a continuous function of  x, t and the second wave is overtaking the first. Clearly, 
for this approach to be applicable it is necessary that the second wave remains a smooth 

surface and we have, therefore, to neglect the interesting possibility of  a caustic 
forming on the second wave with possible interaction of  both waves. 

K > 0 .  

For  this case either 

min (U~, U~) < U[ 2>2 < U~ 1)2 < max (U~, U~), (3.13) 
o r  

K = (Urn - Ur) 2, (3.14) 

which represents a single wave propagating with constant speed Us given by Us = 

(UMUr) 11~. 
We shall now proceed to give details of  the growth or decay of  amplitude of the 

first wave. The question of amplitude behaviour of  the second wave is beyond the 
scope of this paper as it requires a detailed knowledge of the deformation behind 

the leading wave. This point raises the question as to whether the second wave can 

develop into a shock wave before the first wave and whether the shock wave can then 
interact with the leading wave. 

Since the calculations now concern the fast wave only the coefficients appearing 
are all for the equilibrium region ahead of the first wave and so we shall omit the [~ 

notation. 
The differential equation governing the evolutionary behaviour of  the amplitude, 

a, is obtained by differentiating (2.2) and (2.3) with respect to time and evaluating the 
resulting expressions at the surface of discontinuity. The resulting equation is 

,~,~GU~ + 2~,aj 02o -~ U~,8,~ - AO, j + ~ X(2'N4UsA ~ + X~a)po 

( ( ~2PA 'N4NcNKb2P '4 ' }  



Vol. 30, 1979 Propagation of Mechanical and Temperature Acceleration Waves 

+ X[ a, 2NcNr XO c + poU~ + poNaNc 

[ Oapa, 
aaJ@ Ax<2)NaN~ 80 OF m 

I 

00,~ OFja + 2poUu O0 OFja UN - - ~  

where 

IX C2>A 3 /  0% } )  
+ a, am~-~N Rom + X~ ~poNANB OFmB 8FjA -- O-.m = O, 

. ~ .  = (xiPx~=~ - Xi3~x~3,)A, 

c ,  = N , ,N . [ [~ ,A .B ] ,  

a2P.4t , 
Rim -~ NaNBNG OFj~ OF,.o 
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(3.15) 

(3.16) 

and ~t is the 'displacement derivative' denoted in [6] by 3D/3t. It should be observed 
that (3.15) may be obtained for any plane wave with amplitude in a direction v~ and 
which conforms with the condition &~jvj = O, not necessarily the one travelling in the 
n* direction, and so we have presented the equation in its fuller generality. Since ~ is 
a symmetric singular matrix, forming the scalar product of (3.15) with v~ leads to a 
growth equation of the form 

~ta = --fla +om 2, (3.19) 

where a = lal- 
The solution of (3.19) with the initial value of  wave amplitude a(0) = ao is 

a(t) = fl/oJ{(fl/Omo - 1)e at + 1}. (3.20) 

The evolutionary behaviour of a(t) may now be deduced as in e.g. Chadwick and 
Currie [2], p. 152. The details are similar to those of Lemma 5.1 which deals with the 
equivalent problem for cylindrical and spherical waves. However, it is worth observing 
that whenever fl and oJ are such that terit = _ f l - 1  log ( 1 -  (fl/Omo))> 0, then 
la(t)[-+ 0% t - ~  tg~t; a phenomenon which is thought to be associated with shock 
wave formation. 

For completeness, we give the values of~o, fl for the generalized longitudinal wave 
propagating in the n* direction: 

( u~  - u~)  u,~ ~ - A ~ (U~ - U~) 
fl = , (3.21) 

0e 
- u ? . u ~ )  2 ~--~ (U~ 2 2 

(3.17) 

(3.18) 
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NON,, a~p,,, 

+ x, ~ (rrz 2NcNK 02. Qr + poNaNc b_%.~ 
x,~, ,~ , ,  - u~,) p o U g - ~  + oo ~o.o oo.~ a o . d  

X~a)v, NaNBv v_ ~ze U~) 
+ " " ( ~ " OFmn OF~a 

XC~)A 2A ca O2Pai 
+ ~ R,jmv, VjVm - -  p-~ Xm'v.NaN.v,vj O0 orjn 

- (u~, - u ~ )  ,,jN,,N~N,, ~0~ ~F,., 

_ 

0 2 8  

+ 2p~ t3t~ 8Fja 

(3.22) 

With  the aid o f  (2.7)-(2.9), o0 m a y  clearly be rewritten in terms of  derivatives of  the 
Helmhol tz  free energy ~b. In fact, the expression essentially consists o f  a combina t ion  
of  third derivatives of  ~b with respect to the independent  variables, cf. the corresponding 

expression in the classical theory o f  elasticity, e.g. [2], p. 152. 
The  behaviour  o f  the thermal  ampl i tude a m a y  now be deduced with the aid of  

equat ion (3.2). Since a(t) and a( t)  do not  change sign, and sgn ~(0) = - s g n  a(0) • 
sgn ( - K ) ,  it is, therefore,  likely that  sgn c~(t) = - s g n  a(t). 

In  the next section we examine briefly acceleration waves in isotropic materials.  

4. Principal Waves in Isotropic Materials  

The theory appropr ia te  to the present  paper  for  an isotropic thermoelast ic  
mater ial  was developed by Green  [8] in the linear case and by Lindsay [28] for the 
nonlinear  case. We review the presentat ion of  [28]. The continuity,  m o m e n t u m  and 

energy equations are in the current  frame, 

k + p~t, = o. 

k p  p.fp = po~-p + t,~, 

Pe = t=kdik -- q~i + pr, 

(4.1) 

(4.2) 

(4.3) 

1 ~ where d~k = ~(x~,k + xk.~) are the covar iant  components  of  the rate of  deformat ion  

tensor,  the other  quantit ies being defined as in Section 2. 
The  constitutive equations for  an isotropic thermoelast ic  material  are ([28]) 

t~ ho3~- + hlb} + , a ~ k r (4.4) = h2babj + habrbjg g~ + h4g~gl, 
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~ J ( 4 . 5 )  q'  = (koS} + klb} + k=b,b j )g  , 

where g~ = O~, b ~j = gaBx~axJl~, gA~ denote the metric  tensor  with respect to the X 
coordinates  and h 0 , . . . ,  h4, k0, k~ and k= are functions o f  0, ~ and the invariants I , ,  
where 

- -  T 

/ 1  - b,, /2 = b}~, /3 = det b, (4.6) 
14 g~g~, Is = b}gig ~, 16 ~ ~ = = b~b~g g~. 

In fact, in terms of  the free energy function ~b, h0, �9 �9  k2 have the explicit forms:  

h~ = 2poI~ ~l~ - -~ ,  h0 = 2p0Id/z ~--~a" 

h2 = 4pol~  1t2 -~z '  

h ,  = - 2polK 112 ~I4' 

i /o,) kz = - 2polal '2  -~5 4 - ~  ' 

'2 ~r 
ha = 2poI~ -~6' (4.7) 

ko = - 2poI~ 112 -~4 ~ ' 

k2 = - 2po131'2 ~-~i6 ( 4  / ~ O )  " 

In Section 3 we have seen that  there is at least one direction in which a plane 
acceleration wave may  propagate .  We now wish to consider the case when this direc- 
t ion is an eigenvector of  the tensor b. Moreover ,  we again suppose the region, ~ ,  
ahead of  the wave is an isothermal one and is at  rest in a homogeneous  configuration.  
I t  then follows f rom (4.4) that  the principal axes o f  stress and strain coincide in ~ .  The  

propaga t ion  conditions are again (3.2), and we shall rewrite (3.2)1 as follows 

8tkp 
(pUZSPm -- QPm)a m + ~ U n ~ - - ~  = 0, (4.8) 

where the acoustic tensor  Q is given by 

3tkp 
QPm = 2 ~ b*Sn~nk. (4.9) 

Suppose now n ~1) is an eigenvector of  b, corresponding to eigenvalue (principal 
stretch) A~I ~. Then,  using (4.4) we see that  the vector  with componen t s  nk(Ot~P/OO) is in 
the direction o f  n ~I). Moreover ,  Q given by (4.9) is the mechanical  acoustic tensor  for  
an isothermal  region (see TruesdeU and Noll  [10], Section 74) and has the same 
representat ion as (74.2) o f  [10], and so we may  apply  the a rgument  given there to 
(4.8), to establish Truesdell 's  theorem for  principal waves in our  theory;  namely:  ' I n  
an isotropic material ,  the acoustic axes for  principal waves coincide with the principal  
axes; in particular,  every principal wave is either longitudinal or  t ransverse ' .  

The wavespeeds of  the longitudinal waves are obtained by contract ing (3.5) with 

n~ 1) and it is worth noting that  the waves in this case are also longitudinal in the con- 
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ventional  sense. I f  we let U~I be the wavespeed and write K(1) = ko + ,~)k~ + ,~o)k2 , 4  
then (3.5) m a y  be writ ten in the fo rm 

0r ,~,2 cot(l,]( c% ) mrz/~" A2a.~Oa)z O, (4.10, PU' ' - v' l + K , 1 )  - , 1 )  = 

where it is to be remembered  e and t(~), the principal stretch in the n (*~ direction, are 
evaluated at constant  temperature .  

As in Section 3, the wave ampli tudes  a and u may  be obta ined and the coefficients 

given by (3.21) and (3.22) are easily calculated employing (4.4)-(4.7). Details o f  these 
rout ine calculations are given in [22]. 

Transve r se  waves  

By Truesdell 's  theorem we m a y  consider a transverse principal wave travelling 
say in the n (1~ direction. We consider only the case where the ampli tude is in the direc- 

t ion o f  one of  the other  principal axes o f  stress, n (2~ or  n (3~. For  definiteness, suppose 
a = an(2L For  this case, the p ropaga t ion  condit ions (3.2) reduce to 

CoU~23~m - QPm(n(1)))a'n<p 2~ = O, 

O~ aq'~ (4.11) 
p ~ U~2 + _(1~,(1~ = 0, 

where U~2 denotes the wavespeed. These equat ions may  be interpreted as implying 
tha t  initially the wave separates into two waves, with wavespeeds 

U(1)2 t (2) J 12 = Qjnt  n(2)/p, 

U(2)2 ,,(i)~,~1) ~  ~ / t% (4.12) 

, 2  = - , . ,  , . ,  T I  
where on the (1) wave a # 0, a = 0 and on the (2) wave a # 0, a = 0. We shall 
suppose ,~2'r(2~ > v12tr(2~ at  the instant the wave is created, a l though the modifications for 
the other  cases are obvious.  For  this case the (1) wave is a mechanical  wave and travels 

into the equilibrium region, whereas the (2) wave travels behind into a nonequi l ibr ium 
region and so the coefficients in (4.12)2 have to be calculated for such a region. Again, 
the Nunz ia to -Wal sh  p roof  employed in Section 3 may be used to show the second 
wave cannot  ' ca tch  u p '  with the first. 

After  deriving the ampli tude equations it is found that  the ampli tude of  the first 

wave is that  obtained by Chen [6], i.e. ~ t a  = 0 and so a( t )  = a(O). However,  the 
ampli tude equation for  the second wave is essentially that  o f  a thermal  wave entering 
an isothermal  region, cf. [12], a l though the waveshape has first to be ca lcu la ted  before 

an a t tempt  is made  to find the ampli tude (see Section 6). 
We have seen that  for transverse waves a second sound effect is again present,  

a l though the theory essentially breaks down into that  for a classical thermoelast ic  
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material, studied extensively by Chadwick and Currie [4] and Chen [6], and further 

details may be obtained using the methods developed in these works. 

5. Curved Waves 

In the previous sections, only plane acceleration waves were considered, although 
it is clear that non-plane waves will certainly be of  importance. In order to study such 

waves, we examine the situation in which the stress in the isothermal region ahead of 
the wave is a hydrostatic pressure. The waveshape is allowed to be arbitrary, but 
smooth, although the wave amplitude is assumed to be uniform over the surface. 

Considering only longitudinal waves, we find as before two waves are present and 
explicit expressions for the wavespeeds are given. The solution of  the general amplitude 
equation depends on the mean curvature of  the waveshape and details are given in [22]. 

However, we here present explicit solutions for the physically important cases of  
cylindrical and spherical waves (cf. Chen [5, 6]). 

The stress is hydrostatic and so t = - p I  where the pressure p is a function of 

p, 0 and 0. Suppose the body has undergone a deformation of the form x = AX; then, 
since the region ahead of the wave is isothermal, the arguments of  Chen ([6], Section 

10) concerning the existence of longitudinal and transverse waves may be shown to 
continue to hold. In particular, if the region ahead of the wave is homogeneous and at 
rest, longitudinal waves have the same constant speed throughout the body and may 
propagate in every direction. 

The wavespeed, U, of  an arbitrary shaped acceleration wave moving into such a 
region satisfies the same propagation conditions as those for principal waves and in 

this case the equation for the wavespeeds of  longitudinal waves of  arbitrary shape, 
may be written as 

P U 2  - ~a2(h~ + 2A2h2) - P Fpp p 0-0 + A2ak~ O'-O 
A=O 

The same procedure as in Section 3 is again used to obtain the amplitude equation 
although since now the waves may be curved the complete compatibility expressions 
(e.g. Chen [6], (4.14), (4.16), (5.9)) are necessary. 

For cylindrical and spherical waves, the mechanical amplitudes are given by, cf. 
Chen [5], p. 247, 

e - ,(t - 1) 
aoy,( t )  = t - t,2~. _ f l  ~ -  1/2 f '  (5.2) (al 1 - e"(y(�89 - 7(�89 

t - ' ~  e - , ( t -  1) "~, 
a s p h ( / )  (5.3) 

a f  1 - f e" - { -~(~)  - E~( t z t ) )J  
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where al = a(1), and 9'(.,.) and E1 are the incomplete gamma function and exponen- 
tial integral defined by 

fo ~,(p, x )  = t p - 1  e - t  d t  

and 

The coefficients t~ and  r are determined f rom (3.21) and (3.22) and are given explicitly 
in [22]. 

Concerning the behaviour  of  the ampli tude we may  prove  f rom (5,2) and (5.3) 
the following l emma concerning the decay o f  the wave ampli tude or possible fo rmat ion  
of  a shock wave (]a] ~ oo). 

Lemma  5.1. Suppose tz > O. The amplitude o f  a cylindrical wave is such that: 

I .  I f  sgn a l  = - sgn ~, or i f  

lai-ll > eU/~-l/2{ ~ /~  -- 7(�89 

then ]a[ --+ O, t --~ ~ .  Otherwise, 

I I .  [a[ ~ ~ ,  t --+ t~,  where t~ satisfies 

?(�89 = 7(�89 + V/~(al~) -1 e -~. (5.4) 

The amplitude o f  a spherical wave is such that: 

I I I .  I f  al = - s g n  ~, or i f  

lai-ll > e"El(t~), 

then lal ---" O, t --+ oo. Otherwise, 

IV. [al --+ oo ,  t --+ t~o, where t~o satisfies 

E~(tzto~) = El(t~) - (axe) -~ e - " .  (5.5) 

Suppose now tz < O. The amplitude o f  a cylindrical wave is such that: 

V. l f s g n  ~ = sgn al then lal - +  oo,  t -+ t| where to~ satisfies (5.4). Otherwise, 

VI. a remains bounded f o r  all t and 

a(t)  --+ t~ (5.6) ~, t--+ ~ .  

The amplitude o f  a spherical wave is such that: 

VII .  I f s g n  ~ = sgn al then lal - +  ~ ,  t ~ too, where too satisfies (5.5). Otherwise 

VII I .  VI  applies. 

The behaviour  of  the thermal  amplitude,  ~, may  again be inferred f rom (3.2). 
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6. Concluding Remarks 

So far  we have been mainly  concerned  with the fast  wave. However ,  the second 

wave will in general  be as impor t an t  as the first unless its behav iour  can be shown to 

be negligible. I f  one can determine  the de fo rma t ion  and  its gradients  in the region 

behind the first wave then one can in pr inciple  de te rmine  the shape o f  the  second wave 

by using a bicharacter is t ic  me thod  developed for  elastici ty by  Var ley  and D u n w o o d y  

[29]. In  pr inciple  one can cons t ruc t  the solut ion behind  the first wave by  Tay lo r  series, 

a l though the actual  cons t ruc t ion  m a y  be difficult. I t  appears  physical ly  obvious  tha t  

the spherical  wave in Section 5 will create a spherical ly symmetr ic  de fo rma t ion  field 

beh ind  it, and  since x~,7 = -a~nj/U, and  n 1 = 1, n z = n 3 = 0, b ~J = ,~2gtJ, we deduce  

f rom the p ropaga t i on  condi t ion  (3.2)1 tha t  :~,~f is the only nonzero  c o m p o n e n t  o f  ~,~. 

However ,  to deduce the velocity behind  the wave is radia l ly  symmetr ic  one needs a 

knowledge  o f  x~,Tk and higher  gradients  a t  the wave and  the so lu t ion  to  this p rob lem is 

no t  obvious  to the present  writers.  I f  one can show tha t  ~ = (~l ( r ) ,  0, 0) behind  the 

first wave then it is s t ra ight forward  to show the second wave is spherical  (cf. Sect ion 

9.3 o f  L indsay  and St raughan  [30] where a s imilar  p rob lem is solved). Nevertheless,  

the me thod  o f  bicharacter is t ics  would appea r  to be a possible  means  o f  invest igat ing 

the second wave. 

References 

l l]  A. E. GREEN and K. A. LINDSAY, J. Elasticity 2, 1-7 (1972). 
[21 P. CHAOWlCK and P. K. CURRIE, Arch. Rational Mech. Anal. 49, 137-158 (1972). 
[3] P. CHADWICK and P. K. CURRIE, Proc. Camb. Phil. Soc. 76, 481-491 (1974). 
[4] P. CHADWICK and P. K. CORRIE, J. Elasticity 4, 301-315 (1974). 
[5] P. J. CHEN, Arch. Rational Mech. Anal. 31,228-254 (1968); 32, 400-401 (1969). 
[6] P. J. CHEN, 'Growth and Decay of Waves in Solids', in Handbuch der Physik, Vol. Via/3, 

Springer-Verlag, Berlin-Heidelberg-New York (1973). 
[7] P. J. CHEN and M. E. GURTIN, Z. angew. Math. Phys. 21, 232 (1970). 
[8] A. E. GREEN, Mathematika 19, 69-75 (1972). 
[9] C. TRUESDELL, Arch. Rational Mech. Anal. 8, 263 (1961). 

[10] C. TRUESDELL and W. NOLL, 'The Nonlinear Field Theories'. Handbuch der Physik, Vol. 11I/3, 
Springer-Verlag, Berlin-Heidelberg-New York (1965). 

[11] A. E. GREEN and N. LAWS, Arch. Rational Mech. Anal. 45, 47-53 (1972). 
[12] K. A. LINDSAY and B. STRAUGHAN, Z. angew. Math. Phys. 27, 653-662 (1976). 
[13] R. J. ATKIN, N. FOX, and M. W. VASE'C, J. Elasticity 5, 237-248 (1975). 
[14] N. Fox, Int. J. Engng. Sci. 7, 437-445, (1969). 
[15] N. Fox, J. Inst. Maths. Applics. 5, 373-386 (1969). 
[16] H. W. LORD and A. A. LOPEZ, Acta Mech. 10, 85-98 (1969). 
[17] H. W. LORD and Y. SHULMAN, J. Mech. Phys. Solids 15, 299 (1967). 
[18] C. E. BEEVERS, Acta Mech. 17, 55-68, (1973). 
[19] C. E. BEEVERS, Acta Mech. 20, 67-79 (1974). 
[20] M. E. GURTIN and A. C. PIPKIN, Arch. Rational Mech. Anal. 31, 113-126 (1968). 
[21] C. TROESDELL and R. A. TOUPlN, 'The Classical Field Theories', in Handbuch der Physik, 

Vol. Ii t /I ,  Springer-Verlag, Berlin-Grttingen-Heidelberg (1960). 
[22] K. A. L1NDSAV and B. STRAUGHAN, Acceleration Waves in Thermoelastic Materials Admitting 

Second Sound. Unpublished report (1977). 
[23] I. N. SNEDDON, The Linear Theory of Thermoelasticity, Springer-Verlag, Wien-New York 

(1974). 
[24] J. W. NUNZlAXO and E. K. WALSH, Arch. Rational Mech. Anal. 64, 299-316 (1977). 
[25] R. M. BOWEN and P. J. CHEN, J. M~canique 14, 237-266 (1975). 
[26] R. M. BOWEN and T. W. WR1GHr, Rend. Circ. Matem. di Palermo 21, 209-234 (1972). 



490 K. A. Lindsay and B. Straughan ZAMP 

[27] M. SHAHINPOOR, Q. J1. Mech. Appl. Math. 28, 223-232 (1975). 
[28] K. A. LINDSAY, On the Use of  Entropy Inequalities. D. Phil. thesis, Oxford (1973). 
[29] E. VARLEY and J. DUNWOODY, J. Mech. Phys. Solids 13, 17-28 (1965). 
[30] K. A. LINDSAY and B. STRAUGHAN, Arch. Rational Mech. Anal. 68, 53-87 (1978). 

Abstract 

The behaviour of acceleration waves in the nonlinear theory of thermoelasticity of  Green and 
Lindsay [I ] is investigated systematically. It is shown that two coupled waves may propagate with 
different finite wavespeeds. For waves entering isothermal homogeneously strained regions, explicit 
results are obtained for the wavespeeds and wave amplitudes, and the possibility of shock-wave 
formation is discussed. 

Zusammenfassung 

Das Verhalten von Beschleunigungswellen in der nichtlinearen thermoelastischen Theorie 
yon Green und Lindsay [1] wird systematisch untersucht. Es wird gezeigt, dass zwei gekoppelte 
Wellen mit verschiedenen endlichen Wellengeschwindigkeiten wandern kt~nnen. Fiir Wellen, welche 
in isotherme, homogen verzerrte Gebiete eintreten, werden die Wellengeschwindigkeiten und 
Amplituden explizit bestimmt, und es wird die M6glichkeit der Bildung von Stosswellen diskutiert. 
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