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We consider a version of the knapsack problem which gives rise to a separable concave minimization 
problem subject to bounds on the variables and one equality constraint. We characterize strict local 
miniimizers of concave minimization problems subject to linear constraints, and use this characterization 
to show that although the problem of determining a global minimizer of the concave knapsack problem 
is NP-hard, it is possible to determine a local minimizer of this problem with at most O(n log n ) operations 
and 1 + [log n ] evaluations of the function. If the function is quadratic this algorithm requires at most 
O(n log n) operations. 
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I. Introduction 

C e r t a i n  c o m b i n a t o r i a l  o p t i m i z a t i o n  p r o b l e m s  can  be  p o s e d  as q u a d r a t i c  p r o g r a m -  

m i n g  p r o b l e m s  sub jec t  to spec ia l  types  o f  cons t ra in t s .  C o n s i d e r ,  fo r  e x a m p l e ,  t he  

O -  1 knapsack  p r o b l e m :  G i v e n  n in tegers  a~, a2, •. • ,  a,,, a n d  an i n t ege r  y, d e t e r m i n e  

i f  t he re  is a subse t  J c { 1 , . . . ,  n} such  tha t  

a j = y .  
j c J  

This  p r o b l e m ,  a lso  k n o w n  as the  subset  s u m  p r o b l e m ,  was  one  o f  t he  first c o m -  

b i n a t o r i a l  p r o b l e m s  to be  p r o v e d  N P - c o m p l e t e .  F o r  m o r e  i n f o r m a t i o n  on  this  

p r o b l e m  see,  fo r  e x a m p l e ,  P a p a d i m i t r i o u  a n d  Ste ig l i tz  [1982].  

G i v e n  an  i n s t ance  o f  the  k n a p s a c k  p r o b l e m ,  c o n s i d e r  t he  o p t i m i z a t i o n  p r o b l e m  

m i n  xi(1 - x i ) :  0 <~ x <~ e, aixi = y , (1.1) 
i 1 i = 1  
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where e is the vector whose components are unity, and the relation x ~ y between 
vectors is the standard componentwise relation. This is a quadratic programming 
problem subject to bounds on the variables and one equality constraint. Note that 
if the global minimium of (1.1) is zero, then the components of the corresponding 
minimizer satisfy x, c {0, 1}, and thus the minimizer is a solution of the knapsack 
problem. Conversely, a solution to the knapsack problem is a global minimizer of 
problem (1.1), and the global minimum is zero. This argument, due to Sahni [1974], 
shows that determining a global minimizer of problem (1.1) is an NP-hard problem. 

Although global minimizers of problem (1.1) are relevant to the solution of 
knapsack problems, little is known about local minimizers of quadratic programming 
problems of the form (1.1). One of the aims of this paper is to present an O(n log n) 
algorithm for determining a local minimizer of quadratic programming problems 
of the form 

min{xTDx+cTx:I<~x<~u' ~ aix'=Y} ' i ~ 1  (1.2) 

where the vectors ! and u specify bounds on the variables, and the matrix D is 
diagonal with negative diagonal entries. Note that problem (1.1) is a special case 
of (1.2) where D is the negative of the identity matrix, and that since the knapsack 
problem is reducible to a special case of problem (1.2), finding a global minimizer 
of problem (1.2) is NP-hard. 

Local minimizers of quadratic programming problems of the form (1.1) do not 
seem to have a useful interpretation in terms of the combinatorial knapsack problem. 
Local minimizers provide upper bounds and can be good approximations to the 
solution of the global problem. They could also be useful in a branch-and-bound 
algorithm for the global problem, but these possibilities have not been explored. 

At first sight determining a local minimizer of problem (1.1) should be possible 
with a standard quadratic programming algorithm. However, for the indefinite case, 
a standard quadratic programming algorithm is only guaranteed to find a stationary 
point in a finite number of operations. We also note that the results of Murty and 
Kabadi [1987] show that even for a relatively simple indefinite quadratic program- 
ming problem 

min{xTAx +cTx: l<~x<~ U}, (1.3) 

it is NP-hard to determine whether a feasible point x is a local minimizer; related 
results can be found in the paper of Pardalos and Schnitger [1988]. Our theorems 
implicitly give polynomial-time tests for a local minimizer of (1.2), and our algorithm 
finds a local minimizer in polynomial time. 

Algorithms which guarantee a local minimizer of a quadratic programming prob- 
lem in a polynomial number of operations are only known in a few cases; in all 
cases known to us, the quadratic is strictly convex. For example, Pang [1979] obtains 
a polynomial bound on the number of operations for problems of the form (1.3) 
provided the matrix A is positive definite with non-positive off-diagonal entries. 
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Strictly convex quadratic programming problems of  the form(1.2) arise as subprob- 
lems in several optimization algorithms. See, for example, Cottle, Duvall, and Zikan 
[1986], Lin and Pang [1987], and Calamai and Mor6 [1987]. For the strictly convex 
case Helgason, Kennington, and Lall [1980] obtained an O(n log n) algorithm, 
while O(n) algorithms have been developed by Brucker [1984], and Calamai and 

Mor6 [1987]. The strictly concave case has not received attention, although as noted 
above, this case arises naturally in the modelling of certain discrete optimization 
problems. In this paper  we attack the strictly concave case of  problem (1.2) by 
developing an algorithm which determines a local minimizer of  the problem 

min qi(xi):  l<~x<~ u, Y, aix i = ")/ , (1.4) 
i 1 i = l  

where the functions q i : R  ~ R are strictly concave differentiable functions. 
lbaraki and Katoh [1988] survey algorithms for problem (1.4) with qi a strictly 

convex function. They also provide an extensive list of  applications which require 
the solution of a problem of the form (1.4). Related work on problem (1.4) in the 
non-convex case includes the algorithm of Luss and Gupta  [1975] for special classes 
of concave functions qi, and the algorithm of Van Den Bosch and Lootsma [1987] 
for general functions qi. 

Problem (1.4) is a concave minimization problem. Algorithms for the determina- 

tion of a global minimizer of  this problem have received considerable attention. 
See, for example, Pardalos and Rosen [1986, 1987]. In a similar vein, we note that 
although much is known about global minimizers of  concave minimization problem 
(see Section 32 of Rockafellar [1970]), little is known about the properties of  local 
minimizers. 

Section 2 contains some results on local minimizers of  concave minimization 
problems. The main result is a characterization of the strict minimizers for the 

general problem 

min{q(x): x ~ f2} 

where f2 is polyhedral and q : R n ~  R is a differentiable concave function on I2. 

This result is unusual because in general it is not possible to characterize local 
minimizers. Also note that this result complements the analogous result for the 
convex case where x* is a global minimizer if and only if V q ( x * ) W d  >i 0 for every 
feasible direction d. 

Sections 3 and 4 propose and study the CKP (Concave Knapsack Problem) 
algorithm for the solution of problem (1.4). The main result of  Section 3 is that the 
CKP algorithm obtains a local minimizer in at most n iterations. In Section 4 we 
show that algorithm CKP can be implemented so that execution requires at most 
O(n 2) operations and n + 1 evaluations of  each derivative q~. We also show that 

algorithm CKP can be modified so that execution requires at most O(n log n) 

operations and 1 + [log n ] evaluations of  each derivative ql. Hence, in the case of  
problem (l.2), the CKP algorithm determines a local minimizer in at most O(n log n) 
operations. 



400 J.J. Mord and S.A. Vavasis / Concave knapsack problems 

2. Characterization of strict minimizers for concave problems 

The first step in the development  o f  algorithms for problem (1.4) is to characterize 

minimizers o f  problem (1.4). We develop this characterizat ion result by considering 

the problem 

min{q(x):  x ~ J2} (2.1) 

where J2 is polyhedral  and q : R" -~ R is a concave funct ion on S2. As we shall see, 

the development  for general linearly constra ined g/ does not offer any added 

difficulties. 

A vector x* in J2 is a minimizer of  problem (2.1) if there is a ne ighborhood  S of  

x* such that  q(x*)  <~ q(x)  for all x i n / 2  ~ S. The minimizer is strict if q(x*)  < q(x)  

for all x ~ x* in J2 c~ S. The following result characterizes strict local minimizers in 

terms of  feasible directions d at x* in the sense that x * +  a d  belongs to O for all 
a > 0 sufficiently small. 

Theorem 2.1. Assume  that J2 is polyhedral, that q : R "  -~ R is a concave function on 

J2, and that q is differentiable at x*. The vector x* is a strict local minimizer o f  problem 

(2.1) i f  and only i f  the set 

{d c R ' :  V q( x * ) T d <~ O, d a feasible direction, d ~ 0} (2.2) 

is empty. 

Proof. Assume that x* is a strict minimizer o f  problem ( 2 . 1 ) a n d  let d ~ 0  be a 
feasible direction at x* such that  Vq(x*)Td  <~ O. Thus the concavi ty  o f  q implies that 

q(x* + ad)  <~ q(x*)  + a V  q(x*)W d <~ q(x*)  

for all a > 0 sufficiently small. However,  this contradicts  the assumption that x* is 

a strict minimizer. Thus, the set (2.2) is empty. 

N o w  assume that the set (2.2) is empty. Since J2 is polyhedral ,  the set of  feasible 
directions is closed. Hence,  a compactness  a rgument  shows that there is an s > 0 

such that 

Vq(x*)Wd>~elldll 

for  any feasible direction d. Since d = x - x *  is a feasible direction if x c S2, the 

differentiability of  q at x* implies that 

I q (x )  - q (x*) - Vq(x*)T(X -- x*)[ ~ ½e Ilx - x* II 

for all x in a ne ighborhood  of  x*. In particular,  q(x)  > q(x*)  for x ~ x* and thus 

x* is a strict local minimizer. [] 

The result that  x* is a strict local minimizer if the set (2.2) is empty is a consequence 

o f  the s tandard  second order  sufficiency condit ions provided q is twice differentiable 

at x*. The above p roo f  shows that it is only necessary to assume that q is differentiable 
at x*. 
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Theorem 2.1 is also related to results o f  Contesse [1980] and Mangasar ian  [1980] 
for quadrat ic  p rogramming  problems. They show that if q : R " ~  R is a quadrat ic  

and /2 is defined by linear constraints then the s tandard second order  sufficiency 

condit ions characterize strict minimizers o f  the quadrat ic  p rogramming  problem. I f  

q : R"  ~ R is a concave quadrat ic  these results o f  Contesse and Mangasar ian  follow 

from Theorem 2.1. 
The fol lowing result shows that a search for  strict minimizers o f  a concave funct ion 

only needs to examine the extreme points o f  /2. Note  that in this result /2 is a 

general closed convex set. 

Theorem 2.2. If~2 is a closed convex set and q : R ~ ~ R is a concave function o n / 2  

then an), strict minimizer must be an extreme point of~2. 

Proof.  Let x* be a strict minimizer o f  q and note that if x* is not  an extreme point  
o f / 2  then x* =½(xt+xa)  where x~ c / 2  and xi ~ x* for i = 1, 2. We can also assume 

that xl and x2 are arbitrarily close to x*, and thus, that  q ( x * ) <  q(x~) for i = 1, 2. 

Hence,  the concavity o f  q implies that 

q(x*) l 1 >I ~q(xl) + ~q(x2) > q(x*).  

This contradict ion shows that  x* must  be an extreme point. []  

Al though a strict minimizer  must  be an extreme point  o f  J2 this does not hold 

for minimizers. For  example,  let 12 be the set o f  x such that [[x[[ ~< 1 and define q 

by setting q(x ) - -  -½ for [[x[[ ~<½ and q(x)=-] lx[[  otherwise. In this case all vector 

x with Ilx[[ <½ are minimizers o f  problem (2.1), but  they are not  extreme points o f  

/2. On the other  hand,  it is known that i f / 2  is a closed convex set which does not  

contain lines and q attains the global min imum on /2, then the global min imum is 

achieved at an extreme point  of /2 .  For  a p r o o f  o f  this result and more  informat ion 
on global minimizers o f  concave functions,  see Section 32 o f  Rockafel lar  [1970]. 

We now show, in particular,  that if q is strictly concave o n / 2  then any minimizer 

must  be an extreme point  o f /2 .  

Theorem 2.3. I f  q : R n ~ R is a strictly concave function on a polyhedral 12 then any 

minimizer x* is a strict minimizer o f  q. 

Proof.  S ince /2  is polyhedral ,  there is an e > 0 such that if x c / 2  and [ Ix -  x*]] < e, 

then 

for all a sufficiently close to 1. This claim is established by not ing that /2 is the 

intersection o f  a finite number  o f  half-spaces and choosing e so that both x* and 
x lie in the relative interior o f  the same half-spaces. 
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Given any minimizer x* o f  q we can also choose  e > 0 such that if x c S2 and 

I Ix-  x*ll < ~ then q(x*) <~ q(x). Hence, in view of  the above claim, given x c g2 with 

Ilx -x* l l  < ~, there is a y ~ O with [[y-x*ll  < ~ such that  

x=c~y+(1 -a )x* ,  c~ ~ (0, 1). 

I f  x ~ x* then y ~ x*, and thus the strict concavi ty  o f  q implies that 

q(x) > aq(y) + (1 - a)q(x*) >1 q(x*). 

This shows that  x* is a strict minimizer o f  q. []  

3. Algorithms for the concave knapsack problem 

Theorems 2.1 and 2.3 characterize local minimizers of  problem (1.4) when the 

functions qi:R ~ R are strictly concave differentiable functions. In this section we 
use these results to develop a finite algori thm which finds a strict minimizer of  (1.4). 

We assume that ai ~ 0 for all i, because if ai = 0 then xi is decoupled from the 

rest of  the problem, and a minimizer may be found  for that variable independently.  

Since qi is concave,  a global minimizer occurs at either li or u~. 

Since a i ¢ 0 ,  we can scale each variable xi by 1/ai to simplify the equality 

constraint.  Thus, problem (1.4) is equivalent to the problem 

min qi(xi): l<~x<~u, x i = y  , (3.1) 
i 1 i ~ l  

where the functions qi:R-~ R are strictly concave ditterentiable functions. Recall 

that  a ditterentiable funct ion q~ is strictly concave if and only if ql is strictly 
decreasing. 

In problem (3.1) we may assume that li < ui for all i because of  li = ui then xi is 

uniquely determined and may  be replaced by a constant.  We can also assume that 

l i<'y< ~ ui, (3.2) 
i--1 i--1 

because if y does not satisfy this constraint  then either problem (3.1) is infeasible 
or there is only one feasible point. 

Theorems 2.2 and 2.3 show that any minimizer o f  problem (1.4) must  be an 

extreme point.  Hence,  x~* lies in the open interval (/i, ui) for at most  one index i. 

Assumpt ion  (3.2) shows that we must have x* ~ lj for some index i. This implies 
that there is an index set F and an index rn £ F such that x* = li for i c F and x* = u~ 

for i~ Fw{m} .  Moreover ,  x* ,>  lm. In the remainder  of  this section we show that 

the following algori thm determines an appropr ia te  set F. 

Algorithm CKP. Initialize F by setting F = O ,  and update  F according to the 

following steps until the halting condi t ion is satisfied. 
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1. For each i¢~ F define r, by 

r i = y - -  2 (i-- E Uj+ui,  
jGF j ~ F  

and let G be the set of indices 

G:= {if~ F: ri> li}. 

2. Halt the algorithm if G # f) and 

w<q~(l i ) ,  i c F  and w>~ql(l~), i ¢ ( F u G ) ,  

where 

w := max{q~(ri): i c G}. 

3. Update F by setting F + := F w {k} where q'k(lk) is the largest element of 

V := { q~( li): i ;~ F, r~ <~ l~}. 

We can provide some motivation for the strategy used to update F in Algorithm 

CKP. We claim that if we defined a set F* by letting x* = l~ for i c F* and x* = r,, > lm, 
then 

q ' ( r m )  < q~(l~), i e  F*. (3.3) 

This follows from Theorem 2.1 because it guarantees that V q ( x * ) V d > O  for any 

non-zero feasible direction d; we only need to choose d as the vector whose non-zero 
components are d m = - 1  and di= 1. Now note that inequality (3.3) suggests that 

the set F should be updated by adding the index i such that q~(li) is largest. We 

only consider those indices with ri ~ li because if r~ > l~ then r~ is a possible choice 

for rm in (3.3). This is the strategy followed by Algorithm CKP. 

The analysis of Algorithm CKP is mainly concerned with the behavior of the sets 

F and G. Note that the updating of F in the third step of Algorithm CKP is defined 

provided the sets F and G do not satisfy 

F u  G =  {1, 2 , . . . ,  n}, (3.4) 

and that since the size of the set F increases by one at each step of Algorithm CKP, 

there are at most n steps. One of our first tasks is to prove that the halting condition 

of Algorithm CKP is satisfied in at most n steps. 
In our analysis of Algorithm CKP we do not make explicit the dependence of 

the algorithm on the iteration. This should not cause any confusion because the 

discussion always centers around a given iteration. References to the previous or 
the next iteration are indicated by superscripts. For example, the notation r + refers 

to r~ for the new set F +, and r~ denotes r~ for the previous set F- .  

An important observation is that the indices examined during the third step of  

Algorithm CKP are precisely those indices i ~ (F  w G). An index k is chosen during 

this step and added to F;  other indices i¢  ( F u  G) either enter G or remain outside 

F w G. We will need the following result to prove that if an index enters G then it 

remains in the updated G, that is, G c G +. 
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Lemma3.1 .  (1) I f i ~ F t h e n r i < r [  andri<~ui.  

(2) I f  r~ = u i for  some i~  F then rj = u i for  a l l j ~  F. 

Proof.  Note  that r [ -  r~ = uk - l~ where k is the index such that F + = F w {k}. Since 

uk > lk we obtain that r [ > r~. The p roof  that  r~ <~ us is similar. Since r~ - rk = u~ - Ik, 

and since rk <~ lk by the choice o f  k, we obtain that  r + ~< us. Moreover ,  if F = ~3 then 

the definition of  ri implies that 

ri = T-- ~ ~'l.j-[- I'lS ~ l, l i ,  
j = l  

This establishes the first claim of  this result; the second claim is established by 

noting that  r~ - r j  = u~-  uj for all i and j not  in F. Hence,  if r~ = ui for some i~ F 

then r j =  uj for a l l j C  F. [] 

Lemma 3.1 provides some of  the basic properties o f  the set F. The following 
result contains the basic properties o f  the set G;  in particular,  that  G ~ G +. 

Lemma 3.2. (1) G c  G +. 
(2) I f  (3.4) holds then G ~ O. 

Proof. We first prove that  G c G  +. If  i ~ G  then i ~ F  and r i> l i .  Hence, i # k  

where F + =  F w  {k}, and thus i~ F +. Moreover ,  Lemma 3.1 shows that  rT>  l~, and 
thus i ~ G +. 

We now show that if (3.4) holds then G ¢ fJ. Consider  F -  and let k be such that 

F = F -  w {k}. Then 

n 

r k = y  - Y, l j + l k > l k  
j - - I  

because o f  assumpt ion (3.2) on 3'- Thus k c G , and since in the first part o f  this 
result we established that  G c G, this implies that  k ~ G. In particular,  G g 0. [] 

Lemma 3.2 shows that  the set G becomes non-empty  at some iteration k0, and 

that  it remains non-empty  for all iterations k t>/Co. The p roof  that  the other two 

requirements o f  the halting condi t ion are satisfied in at most  n steps requires the 

results formulated in the following three lemmas. 

Lemma 3.3. I f  j ~ ( F u G)  then q ';( !j ) <~ q~( li ) f o r  i ~ F +. 

Proof. This result is established by not ing that  the assumpt ion that  j ~  ( F w  G) 

implies that  the index j was available for selection at the third step during all 

previous iterations. Since the index j was not  selected, we must  have q)(lj) <~ q's(li) 

for i c F. Moreover ,  the choice of  k on the third step guarantees that  q'j(lj) <~ q'k(lk), 

and thus the result holds. []  
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The results  that  we have es tab l i shed  so far  do  not  d e p e n d  on the concavi ty  o f  

the funct ions  qi. All  o ther  results  in this sect ion,  however ,  d e p e n d  on this a s sumpt ion .  

The p r o o f  that  the ha l t ing  cond i t ion  is even tua l ly  sat isf ied requires  two p re l imina ry  

results.  We  first show tha t  when the set G becomes  non-empty ,  the first par t  of  the 

hal t ing cond i t i on  is satisfied. 

L e m m a 3 . 4 .  I f  G is empty but G ~ O then w < q'i( li) for i ~ F. 

Proof .  I f  m ~ G satisfies w = q ' ( r m )  then  rm > 1,,,, and  since q "  is s tr ict ly decreas ing ,  

t t w=q,~(rm)<qm(Im).  

Note  tha t  m ~ ( F -  u G ) because  G -  is e m p t y  and  m ~ F. Hence ,  L e m m a  3.3 shows 

that  

q'(1,,,)<~ql(li), i cF .  

The last  two inequal i t ies  y ie ld  the result .  []  

We next  show that  if  the  first par t  o f  the hal t ing cond i t ion  is sat isfied on a given 

i tera t ion,  then  ei ther  the hal t ing cond i t ion  is sat isf ied or  the  first pa r t  of  the hal t ing 

cond i t ion  is again  satisfied on the next i tera t ion.  

Lemma 3.5. I f  G ~ O  and w<q~(li) for ic  F then either 
(a) w + < q'i(li) for i c F +, or 
(b) the halting condition of Algorithm C K P  is satisfied. 

Proof.  Let  w ÷ = q ' ( r ~ )  for  some m c G +. We now show that  if  m ~ ( F  w G)  then  

w ÷ <  q~(l~) for  i e F ÷. Fi rs t  note  that  r~ > Im because  m c G ÷, and  thus the strict 

concavi ty  o f  qm impl ies  that  

W + _ _  t + - -qm(rm)<q ' ( lm) .  

Moreover ,  s ince m ~ ( F w  G) ,  L e m m a  3.3 shows tha t  

q ' ( l ~ )  <~ ql(li) ,  i c F +. 

Hence ,  the  last  two inequal i t ies  prove  tha t  w + < q'~(l~) for  i c F + as desi red.  

N o w  assume that  m c ( F ~  G)  and that  the a lgor i thm does  not  halt .  Since m c G +, 

we must  have m ~  F, and  thus the a s sumpt ion  that  m c ( F u  G)  impl ies  that  m c G. 

Thus,  q'(rm)<~ w by the def ini t ion o f  w, and  r~ > rm by L e m m a  3.1. Hence ,  the 

concavi ty  o f  qm impl ies  that  

W + _ _  r + -q,~(r,~)<~q2(rm)<~w. 

The a s sumpt ion  that  the  a lgor i thm does  not  hal t  guaran tees  that  w < q'j(lj) for  some 

j ~ ( F  u G) ,  and  thus L e m m a  3.3 shows tha t  

w<q~(lj)<~ql(li),  i ~ F  +. 

The last  two inequal i t ies  p rove  that  w ÷ < q'~(l~) for  i c F + as desi red.  []  
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Lemmas 3.2 and 3.4 show that there is an iteration/Co such that  G is non-empty  
and w < q~(ll) for i c F. Lemma 3.5 shows that if the halting condi t ion is not satisfied 

on any iteration k >~ k0 then w < q~(l~) for i6  F on all iterations k/> ko. The halting 

condi t ion must  hold in at most  n steps because (3.4) holds in at most  n steps, and 

then w>~ q~(l~) for i~ ( F w  G) holds trivially. Thus argument  yields the following 

result. 

Theorem 3.6. The halting condition of  Algorithm C K P  is satisfied in at most 

n steps. [] 

I f  the halting condi t ion o f  Algori thm C K P  is satisfied for a given set F and m is 

the index chosen so that w = q ' ( r m ) ,  then we show that the vector x* defined by 

setting 

~ li, i c  F, 

x * = l r m  , i = m ,  (3.5) 

[.ui, i ~ F w { m } ,  

is a strict minimizer o f  (3.1). It is important  to note that at this point  that  this result 

does not depend on the fact that  m is the first index at which the halting condit ion 

is satisfied. In other words,  the following results show that x* is a local minimizer 
o f  (3.1) even if we forget to check the halting condit ion on some iterations. This is 

necessary because the O(n log n) implementat ion o f  the algori thm is not guaranteed 

to find the first index m for which the halting condit ion is satisfied. 

Theorem 3.7. I f  the halting condition of  Algorithm C K P  is satisfied for a given set 
F and m is the index chosen so that w = q'(rm),  then the vector x* defined by (3.5) 

is a strict minimizer of  problem (3.1). 

Proof.  We first show that x* satisfies all the constraints. Lemma 3.1 shows that 

r,n ~ urn, and the choice o f  rm guarantees that r , , >  lm. Hence,  x* satisfies the 

inequali ty constraints. Moreover ,  the definition o f  r~ shows that x* also satisfies the 

equality constraint.  We next show that 

q'i(l~)>~q'(r,,), i c F ,  (3.6) 

q~(u~)<~q',,(rm), iV:F. (3.7) 

I f  i 6 F then the halting condi t ion shows that (3.6) is strictly satisfied. For  (3.7) we 

have two cases: either i ~ ( F  • G) or i c G. I f  i ~ ( F  u G) then the halting condit ion 

implies that  q'(rm)>~ ql(li). In addition, q'i(li)> q~(ui) by strict concavity. Thus, 

(3.7) is satisfied strictly in this case. If  i c G then the definition o f  w implies that 

q'(rm) >~ ql(r~). Moreover ,  q~(r~) >~ q~(ui) because Lemma 3.1 guarantees that r~ <~ u~. 

Thus, (3.7) is also satisfied strictly unless rj = uj for some j c G. 
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N o w  consider  a feasible direction d at x* such that Vq(x*)Xd <~ 0 where q : R" ~ R 

is the funct ion defined by 

n 

q(x) = E qi(xi). 
i--1 

We now show that d = 0 and thus Theorem 2.1 yields that x* is a strict minimizer. 

Since d is a feasible direction at x*, we have that dj/> 0 for j ~ F, that  dj <~ 0 if 
j ¢  Fw{m} ,  and that d y e = 0 .  Hence, (3.6) and (3.7) imply that 

O~Vq(x*)Td 

= ~ qrj(lj)dj+q~(rm)d,,,+ ~ q~(uj)dj 
j~ F j~ Fu{m} 

~q'(rm) ~ d j = 0 .  
j - -  1 

In particular,  since we have shown that (3.6) holds strictly, dJ = 0 for j 6 F. I f  (3.7) 
also holds strictly then dj = 0 for j ~ F, and thus d = 0 as desired. On the other hand,  

if (3.7) fails to hold strictly then have shown above that r i = u/ for some j ~  F. 

However ,  in this case Lemma 3.1 implies that r~ = urn. The definition of  d as a 

feasible direction at x* then shows that dm ~ 0, and thus dj ~< 0 for j ¢ F. We have 

now established that dJ = 0 f o r j  c F and that  dj ~ 0 f o r j ~  F. Since dTe= 0, we must  

have d = 0  as desired. [] 

4. Implementation 

In this section we first propose  an implementat ion of  Algori thm C K P  which requires 
at most O(n 2) operat ions and n + l  evaluations o f  each derivative q'i. A more 

sophist icated algorithm requires at most  O(n log n) operat ions  and 1+  [log n]  

evaluations of  each derivative q'i. I f  q'/ can be evaluated at any x in [l/, ui] with a 

bounded  number  ( independent  o f  n) ari thmetic operat ions,  then the execution times 
o f  these algorithms are O(n 2) and O(n log n), respectively. This assumpt ion  on the 

evaluat ion time of  q~ holds if qi is a quadrat ic ,  and is a reasonable  assumpt ion for  

general q/. 

Each step o f  Algori thm C K P  can be implemented in O(n)  operat ions  provided 

the r~ are upda ted  at each step. This can be done  by noting that if 

or1 = ~ lj, or, = 5~ u/, (4.1) 
j ~ F  j e f f  

then ri = Y - o-~ - cr u + u~. I f  F is upda ted  by adding the index k, then o-~ and ~u can 

be upda ted  by adding lk to o-~, and subtracting Uk from cru. Since each step requires 

O(n)  operat ions,  Algori thm C K P  can be implemented  with O(n  2) operations.  This 

establishes the following result. 
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Theorem 4.1. Algorithm CKP determines a local minimizer of  problem (3.1) with at 
most O(n 2) operations and n + 1 evaluations of  each derivative q~. [] 

An algorithm for solving problem (3.1) in O(n log n) operations is obtained by 

first generating the same sequence of sets F as in algorithm CKP, and then doing 

a binary search in this sequence of  sets to find a set F which satisfies the halting 

conditions. We elaborate on these remarks in the remainder of this section. 
Consider algorithm CKP, but assume that the halting conditions are not checked. 

In this case algorithm CKP generates a sequence F1, F 2 , . . . ,  F, with F1 = 0, and 

terminates when 

F, u G , = { l , 2 , . . . , n } .  

We can generate this sequence in O(n log n) operations by first noting that it is not 

necessary to compute all the ri for i~ F;  we only need to compute those r~ which 
contribute to the computation of the largest element of V. Another important 

observation is that the search for the largest element of V is simplified if the set 

W : -  {ql(l~): i~ F} 

is sorted in decreasing order. In this case it is only necessary to search W until we 

find an element with rk <~ lk. These two observations show that the following algorithm 

generates the same sequence of sets F as Algorithm CKP. 

Algorithm FGEN. Initialize F by setting F = 0 .  Sort W={q~(li): l<~i<~n} in 

decreasing order. Initialize ~r I and cru. 

For i = l , . . . , n :  

1. Let ki be the index of the i-th largest element of W. 

2. Compute r~ by setting rk~ = y - ~r~ - o-u + uk~. 

3. If  rk, <~ lk, set F+:  = F w  {ki} and update ~rt and ~ru. 

As noted above, Algorithm FGEN generates the same sequence F1, F2 . . . .  , F, 

of  sets as Algorithm CKP provided the halting conditions are not checked. Algorithm 

FGEN requires O(n log n) operations to sort the array W initially. The body of 

Algorithm FGEN only requires O(n) operations. 

We now use a binary search on the sequence F1, F 2 , . . . ,  F, of sets generated by 

Algorithm FGEN to find a set which satisfies the halting conditions. Note that if 

the halting conditions are not satisfied with F, then 

w >1 ql(li) for some i c F,. (4.2) 

Assume that we have an integer s with s <~ t such that G, is not empty and 

w < ql(l,), i e  Fs. (4.3) 

The following result shows that an integer s which satisfies G, ¢ 0 and (4.3) can be 

obtained from Algorithm FGEN. 
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Lemma 4.2. I f  k, is the first index generated by Algorithm F G E N  such that rk~ > lk~ 
then G, ¢ 0 and (4.3) holds. 

P r o o f .  Since ks is the first index generated by Algorithm F G E N  such that % > lk,, 

F s = { k l , . . - ,  k~-,}, 

and thus k, ~ Gs. Now let km c G, satisfy w = q~,,,(rk,,,). Then m ~> s because km ~/~;, 
' 1 and since {qk,( k,)} is sorted in decreasing order, 

q'k,,,(lk,,,)<~q~(li), i ~ F , .  

Now note that since rk,,, > lk,,,, the strict concavity of q'k,,, implies that 

q'k,,,(rk,,,) < q'k,,,( lk,,,). 

The last two inequalities show that (4.3) holds. [] 

We have shown how to obtain integers s and t which satisfy (4.2) and (4.3) with 

Gs ~ 0. Given an integer k between s and t, Lemma 3.2 shows that Gk ~ 0. The 
following algorithm updates s or t so that (4.2) and (4.3) hold. 

Algorithm CKP*. Use Algorithm F G E N  to determine integers s and t which satisfy 
(4.2) and (4.3) with G, ~ 0. I f  neither s nor t satisfy the halting conditions, update 
s and t according to the following steps until the halting condition is satisfied. 

1. Let k =  [ l ( s + t ) ]  and determine Fk. 
2. Test for the halting condition at Fk. 
3. I f  w <ql(l~) for i~ Fk set s = k; otherwise t = k. 

We claim that Algorithm CKP* requires at most O(n log n) operations to deter- 

mine a set Fk which satisfies the halting conditions. The halting conditions are 
satisfied by Algorithm CKP* when t = s + 1 because Lemma 3.5 shows that if (4.3) 
is satisfied, then either the halting conditions hold with F,, or (4.2) does not hold 
for t = s + 1. Since Algorithm CKP* needs at most [log n ] steps to update s and t 
so that t =  s +  1, and since checking the halting conditions can be done with O(n) 

operations, Algorithm CKP* requires at most O(n log n) operations. 

T h e o r e m  4.3. Algorithm CKP* determines a local minimizer o f  problem (3.1) with 
at most O( n log n) operations and 1 + [log n ] evaluations of  each derivative q~. [] 

5. N u m e r i c a l  resu l t s  

In this section we present numerical results obtained while testing the O(n 2) and 

O(n log n) algorithms on concave knapsack problems of the form 

rain x i (a i - x i ) :  O<~xi<-ai, x~ = ,/ . (5.1) 
i 1 i ~ l  
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The numer ica l  results were done  in double  precision (about  16 decimal  places) on 

the All iant  F X / 8  at the Advanced  Compu t ing  Research Facili ty of Argonne  Nat ional  

Laboratory.  

For  each value of n we generated the data values ai in problem (5.1) by a un i form 

dis t r ibut ion on the interval (0, 1); the cons tan t  y was chosen so that 

a j = y  
. i c d  

for some index set J of  size near  ½n. These choices lead to a problem (5.1) with a 

zero opt imal  value. Since we were interested in the ability of the algorithms to 

determine local minimizers  with low funct ion  values, for each value of n we generated 

30 problems,  and  for each problem we computed  the value of the quadrat ic  

n 

q ( x ) =  Y~ x i ( a i - x i )  
i - -1  

at the local minimizer  x*. In Tables 1 and  2 the quanti t ies  'qvaL' and  'qm~x' represent,  

respectively, the average and  the m a x i m u m  values of q(x*) over these 30 problems,  

while ' t ime '  represents the average execut ion time in seconds. 

Table 1 presents the numer ica l  results for the O(n 2) algorithm. The execution 

t ime of this algori thm is not  propor t ional  to n 2 because for these problems the 

n u m b e r  of i terations required for convergence decreases with increasing values of 

n. The decl ine in execut ion time, however,  is not sufficiently large to make the O(n 2) 
algori thm acceptable for large values of n. 

Also note that the values of qva~ and  q . . . .  decrease with increasing values of n. 

This behavior  was not  expected. It is reassuring that the behavior  of the algori thm 

does not  deteriorate with large values of n. 

Table 1 
Numerical results for O(n 2) algorithm 

n qvaJ qmax time 

10 0.572D - 02 0.395 D - 01 0.278E - 02 
100 0.665 D - 03 0.454D - 02 0.361 E - 01 

1000 0.923D -04 0.512D -03 0.224E+ 01 

Table 2 
Numerical results for O(n log n) algorithm 

n qval  q m a x  time 

10 0.572D - 02 0.395D - 01 0.222E- 02 
100 0.665 D - 03 0.454D - 02 0.194E - 01 

1000 0.923D -04 0.512D -03 0.202E + 00 
10 000 0.863D-05 0.606D -04 0.224E + 01 
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Table 2 presents the numerical results for the O(n log n) algorithm. Although we 
expected  the execut ion  t ime to be proport ional  to n log n, these results show that 

the execut ion  t ime is essential ly  linear. Also  note  that the values o f  qv~t and q . . . .  
are identical  in both tables. This is a c o n s e q u e n c e  o f  the observat ion that for these  

problems  the values o f  s and t obtained from algorithm F G E N  are near; on most  

problems  I s - t I ~< 3. 
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