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We consider the space L(D) consisting of Lipschitz continuous mappings from D to the Euclidean 
n-space R n, D being an open bounded subset of N". Let F belong to L(D) and suppose that ff solves 
the equation F(x)= 0. In case that the generalized Jacobian of F at ff is nonsingular (in the sense of 
Clarke, 1983), we show that for G near F (with respect to a natural norm) the system G(x)= 0 has a 
unique solution, say x(G), in a neighborhood of ~. Moreover, the mapping which sends G to x(G) is 
shown to be Lipschitz continuous. The latter result is connected with the sensitivity of strongly stable 
stationary points in the sense of Kojima (1980); here, the linear independence constraint qualification 
is assumed to be satisfied. 
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I. Introduction 

G i v e n  an o p e n  b o u n d e d  subse t  D o f  the  E u c l i d e a n  n - s p a c e  R n, we  c o n s i d e r  t he  

space  L ( D )  cons i s t i ng  o f  all  m a p p i n g s  F : D ~ ~ "  w h i c h  are  L i p s c h i t z  c o n t i n u o u s  

o n  D. O n e  o f  t he  m a i n  resu l t s  o f  this  p a p e r  is an  I m p l i c i t  F u n c t i o n  T h e o r e m  o f  t h e  

f o l l o w i n g  type .  Let  F c L ( D ) ,  ~ ~ D, s u p p o s e  t h a t  F ( ~ )  = 0 and ,  m o r e o v e r ,  t ha t  t he  

g e n e r a l i z e d  J a c o b i a n  o f  F at  ff (in the  sense  o f  C l a r k e  [1]) is n o n s i n g u l a r .  T h e n  

t he r e  exis t  r ea l  pos i t i ve  n u m b e r s  /~, u, s u c h  tha t  fo r  e a c h  G c L ( D )  b e l o n g i n g  to  

s o m e  / x - n e i g h b o r h o o d  o f  F (de f ined  in a n a t u r a l  way ) ,  t he  sys tem G ( x ) =  0 has  a 

u n i q u e  so lu t i on ,  say x ( G ) ,  in the  u - n e i g h b o r h o o d  o f  )7; m o r e o v e r ,  t he  m a p p i n g  

G~--~x(G) is L ipsch i t z  c o n t i n u o u s .  
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As a basic application we shall show how the latter result can be used in order 
to analyse the sensitivity of  stationary points in nonlinear programming problems 

of the type 

P(f ) :  minimize fo(z) 

s.t. f ( z )  =0, i=  1 , . . . ,  1, (1) 

fj(z)<~O, j=l+l , . . . ,m,  

where f o , f ~ , . . . ,  fm are supposed to be twice continuously differentiable functions 
from ff~" to R. 

In fact, following Koj ima [7], the Karush-Kuhn-Tucker stationary conditions 

for P(f) can be written as a system of equations 

F(z,y)=O, (2) 

defined by 

F ( ~ y ) =  

(Vfo(z)+ ~ yiVf(z)+ ~ yfVfj(z) I 
i=1 j I+1 

--f, (Z) 

-:5(z) 
yt+l -fl+l(Z) 

(3) 

ym -fro(z) 

where Vf  denotes the gradient of  f and for o~ ~ • we put 

a + = max{0, ~}, a -  = min{0, a}. (4) 

Each solution x = (z, y) of  the equation F(z, y) = 0 will be called a stationary point 
of P(f). 

In [7] Kojima introduced the concept of  strong stability of stationary points, and 

presented necessary and sufficient conditions for it in terms of  first and second order 
derivatives of  the functions f ,  i = 0, 1 , . . . ,  m. 

Now, assuming the Linear Independence Constraint Qualification, we shall show 
that Kojima's  conditions on strong stability are equivalent to the nonsingularity of  
the generalized Jacobian of  F at the stationary point under consideration. The 
Lipschitz continuous dependence of stationary points on C2-perturbations of  the 
functions f ,  i = 0, 1 , . . . ,  m, is then a consequence of our Implicit  Function Theorem. 
In this way, our results give a deeper insight into the concept of  strong stability and 

present a connection with Clarke's theory on nondifferentiable mappings (cf. [1]). 
We mention that a relationship with Robinson's  concept of strong regularity, 
introduced in [13], is elaborated in [6]. 
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The p a p e r  is organized as follows. In Sect ion 2 we are concerned  with the above  
men t ioned  Impl ic i t  Funct ion  Theorem.  As an interesting by -p roduc t  we state a result 
on the m a p p i n g  degree of  a Lipschitz cont inuous  mapping .  Then,  Sect ion 3 contains 
the re la t ionship  with strong stability of  s ta t ionary  points.  

In the sequel we will use the symbols  cl A, conv A and bd  A which  s tand for  the 
closure,  the convex hull and  the b o u n d a r y  of  a set A c Rn, respectively.  Moreover ,  
V2f denotes  the Hess ian  o f f  By ]1" [] we denote  the Eucl idean  n o r m  on Rn. 

2. An Implicit Function Theorem 

Using the nota t ion  of  Section 1, we in t roduce a no rm on the space L(D) by 

IIG[[L: = sup max{[I G(x)]],  L ip (G)}  
x c D  

for  each G~ L(D),  where  

L i p ( G )  := inf{c [][ G(x) - G(y)[[ ~ e [[ x - y  1[ for  all x, y c D}. 

N o w  we recall  the definit ion and some proper t ies  of  the general ized Jacob ian  of  a 
Lipschitz cont inuous  vector  funct ion (cf. [1]). Given  G c L(D) and )7 c D, the set 
o f  (n, n)-matr ices  

OG()7) := conv{M 13x k ~ )7: x k c E c  and V G(x k) ~ M} 

is called the generalized Jacobian of  G at )7, where  Ec  c D is the set o f  all points  
x for  which the Jacob ian  V G ( x )  exists. This definit ion is justified by  the fact that  

each G c L(D) is a lmost  everywhere  on D differentiable ( R a d e m a c h e r ' s  Theorem,  
cf. [3]). As usual,  the set OG()7) will be regarded  as a subset  o f  the l inear  space 
R,×n which is endowed  with the associa ted  matr ix  no rm 

IllM[II := max{ [[ Mh Ill h e N n, II h II = 1} 

for  each M ~ R n×n. Then  the fol lowing holds for  )7 c D (cf. [1]): 

(a) OG(x) is a n o n e m p t y  convex compac t  subset  of  N"×"; 

(b) aG is uppe r  semicont inuous  at )7; 
(c) if  G1, G2eL(D)  then G I + G a e L ( D )  and o(Gl+G2)('Y)vcaG~()7)v+ 

OGz()7)v holds  for  all v c N". 

R e m a r k  2.1. For  G ~ L(D)  we have the fol lowing inequality:  

sup [[[Ml[[~Lip(G ). 
MEOG(x) 

xED 

To show this, let x e D and M ~ OG(x) be arbi trar i ly chosen.  By definit ion of OG(x), 
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there are matrices M ~ , . . . ,  Ml and sequences {xik}, i = 1 , . . . ,  l, such that 

M • conv{M~, . . . ,  M/}, 

x ik • Ec  V k  Vi  c { 1 , . . . ,  1} and X ik ) X Vi  • { 1 , . . . ,  1}, 
k-~oo 

M i = l i m V G ( x  ik) V i • { 1 , . . . , 1 } .  
k o o o  

Let e be any positive real number. For each i • { 1 , . . . ,  l} and each k • {1, 2 , . . .  } 
we have 

G( x ik + flh ) = (7( x ~k) + fl V (7( x~k) h + o(fl ) 

for all h • R  n with I l h l l = l  and all 13>0 (where o(/3) . /3 -~ ~0), since x~k• 
/3~0 

Ec  Vk V i e { l , . . . ,  1}. Hence 

~<l 
IIV G(x'~)h ll ~-~ IlG(x '~ +13h) -  (7(x'~)ll ~ o(13)13 

~< Lip((7) + e, 

if fl is sufficiently small. Passing to the limit, we get 

[[Mihll<~Lip(G)+e V i • { 1 , . . . , l } ,  

and so 

I[IMd[[<~Lip(G) Vi•{1  . . . .  ,l} and IIIMIII ~ Lip((7) ,  

where we have taken into account that e was an arbitrarily chosen positive number. 

Remark 2.2. For (71, (72 • L ( D )  satisfying ]] (71- (7211L~ < e (with e > 0), one has 

O G , ( x ) v c O ( 7 2 ( x ) v + e B ,  V x 6 D ,  V v • ~ " :  I lvl l=l,  

where Bn is the closed unit ball in Nn. To show this, we only note that for all x • D 

and all v c R  ~ with Ilvll = 1, 

0 G l ( x )  t) c O G 2 ( x )  v -F O( GI - G2) ( x )  v c 0 (72(x)  v -f- Lip( Gl - G2) Bn, 

where Property (c) of generalized Jacobians and Remark 2.1 were used. 

Now we shall formulate the main result of this paper. We shall say that a nonempty 
subset S ofR "×n is nonsingular, if every matrix M • S is nonsingular. In the following 
we shall denote by /}, the open unit ball in ~n, by B(~, e) and /}()~, e) the closed 
and the open e-neighborhood of 2, respectively, by B,×, the closed unit ball in 
~"×", and by U~(F)  (with F c L ( D ) )  the set { G c L ( D ) [ ] ] F - G ] I L < t x } .  



H. Th. Jongen et al. / Implicit functions and sensitivity 127 

Theorem 2.1 (Implicit Function Theorem). Let  D be a nonempty open bounded subset 

o f  R", let F ~ L ( D ) ,  and let ~ c D be a point satisfying F ( ~ )  = O. Suppose that OF(£) 

is nonsingular. Then there exist positive real numbers ~,, I~ and y such that the following 

holds: 

(i) For each G c  U~,(F), B(Y~,½I,) contains a solution x ( G )  o f  G ( x ) = 0  which is 

unique in B(Y,, ~,). 
(ii) The mapping G~--~x( G)  satisfies a Lipschitz condition on U~(F)  with Lipschitz 

modulus y, i.e., i f  G1, G2E Ukt(F ) then I I x ( G 1 ) - x ( G 2 ) I I ~  ~/IIG1-G~IIL. 

It is worth noting that the proof  of the theorem will in fact provide that 

]]x(GO-x(G2)][<~ y m a x  I IG~(x ) -G2(x )H for all G~, G2c U~,(F), 
x c V  

where V:= B(g, ½~,). 
The proof  of Theorem 2.1 is based on the Inverse Function Theorem for Lipschitz 

functions, given by Clarke [1], and on a lemma on the degree of  a Lipschitz 
continuous function ~. First we shall present the above mentioned Inverse Function 
Theorem in a version which is convenient for our purposes. 

Lemma 2.1 (Clarke [1]). Let Q be a nonempty open subset o f  ~n, let cp : Q ~ "  be 

Lipschitz continuous on Q, x° c Q and ~ ( x  °) = O. Let  ~2 be a nonempty, convex and 
compact subset o f  R n×n, and suppose that ~ is nonsingular. Further, suppose that there 

is a positive real number r such that B ( x °, r) ~ Q and o @( x ) v c ~ v  for  all x c B ( x °, r) 

and all v c R n with II v II = 1 Let := min{[I  MvlIIM II v II = 1} (hence ~ > 0). 
Then there exists a mapping x (  . ) : l r6Bn -~ B(  x °, r) satisfying the following properties: 

(a) For each v ~ ½r6[ln, x ( v )  is a solution o f  the equation CP(x) = v, which is unique 

in B ( x  °, r). 
(b) x(  . ) is Lipschitz continuous on l r6B, with Lipschitz modulus 1/ & [] 

Lemma 2.1 follows at once from Lemmas 1-3 in the proof  of the Inverse Function 
Theorem in [1, Theorem 7.1.1]. We shall omit the details of the proof. For con- 
venience, we have used in the formulation of  the lemma a notation similar to that 
in [1, pp. 252-255]: replace the F in [1] by q~ and take the definition of  S2 in [1, 
p. 254] into account. 

Given a nonempty open bounded subset V of ~", a continuous function ~ : c l  V 
~n and a vector c ~ R" such that ~ (z )  ~ c for each z ~ bd V, the Brouwer degree of 

at c w.r.t. V, which we denote by deg(~,  V, c), is well defined (cf. [2, 10]). 

Lemma 2.2. Let  Q be a nonempty open subset o f  ~n. Let  ~ : Q ~  R n be Lipschitz 

continuous on Q, x° ~ Q, and suppose that ~ ( x  °) =0.  I f  a ~ ( x  °) is nonsingular, then 

there exists an r > O with B ( x  °, r ) c  Q such that 

deg(~ , /~(x  °, r), 0) = sign det A, 

where A is any element f rom a~(x°) .  In particular, we have deg(~ , /~(x  °, r), 0 )c  
{+1, -1}. 
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Proof. Let us first note that sign det A is constant and nonvanishing for all A c OdP(x°), 
since O~(x °)  is nonsingular and connected. Now, choose A c Oq~(x °) and put 

H ( x , t ) : = ( 1 - t ) ~ ( x ) + t A ( x - x ° ) ,  x 6 ~ " ,  t~R.  

We note 
(i) H ( x  ° , t )=O for all t~R;  

(ii) ~r~OH(x °, t) c O@(x °) for all t ~ [0, 1], 
where ~ a H ( x  °, t) signifies the set of all (n, n)-matrices M such that, for some 
vector b c R n, the (n, n + 1)-matrix [M, b] belongs to OH(x °, t). 

From (ii) we see that ~rxOH(x °, t) is nonsingular for all t c [0, 1]. Together with 
(i) and the Implicit Function Theorem of Clarke (cf. [1, p. 256]), we obtain: for 
each 7c[0,  1] there exist Y>0  and ~>0  such that B(x  °, 7)~ Q, and (x °, 7) is the 
unique solution of the equation H(x,  t) -- 0 in B(x  °, F) x ( i ' -  Y, ~'+ Y). Choose ~ 
[0, 1], i = l , . . . , k  (<oo), such that [0, 1 ]cUf_ l (~ / -F i ,  ~/q-6i), with (x °, ~) the 
unique solution of H(x,  t) = 0 in B(x  °, F~) × ( ~ - ~, ~ + ei), and put r := minl~,~k ~. 
Then, H(x,  t) ~ 0 for all (x, t) c bd B(x  °, r) × [0, 1]. Hence, in virtue of  the homotopy- 
invariance of the degree (cf. [2, Satz 1, p. 39]), we have 

d e g ( H ( . ,  t) , /~(x °, r), 0) = constant for t c [0, 1]. 

Consequently, the assertions follow in view of the obvious fact that 

deg(x~--~A(x-x°),  B(x  °, r),O) = sign det A. [] 

As a corollary of Lemma 2.2, we immediately obtain: 

Lemma 2.3. Let Q be a nonempty open subset of ~n. Let @ : Q-~ ~n be Lipschitz 
continuous on Q, x ° c Q, and suppose that C~ ( x °) = O. Furthermore, suppose that O ~ ( x °) 
is nonsingular. 

Then, for each e > 0 there is some c~ > 0 such that for each continuous function 
cp : Q ~ ~ with supx~Q II q~(x) - q~(x)II < c~, the ball B(x  °, e) contains at least one 
solution of  C~(x) =- O. [] 

Remark 2.3. We note that Lemma 2.3 may be considered as a special case of 
Kummer's Implicit Function Theorem [8, Theorem 4.1] for Kakutani mappings 
(which are introduced in [8] to be convex-valued and closed multifunctions F : Z  c 
~ n ~ R "  such that for each r > 0  there is some s > 0  with F(z)c~sBm ~ )  if z 6 Z c ~  
rBn). The mentioned theorem particularly says that if a point x ° 6 R n, and e > 0 and 
a multifunction F : B ( x  °, e)-~ R n are given, and if for some t > 0 the multifunction 
y~--~F-(y) := {x 6 B(x  °, e) lY c F(x)} defined on t. bd B,, is a Kakutani mapping, then 
the set {xc  B(x  °, e)10~/~(x)} is nonempty whenever /~ is a Kakutani mapping 
"near"  F. With F :=  {~}, /~:= {~}, and by use of Lemma 2.1, it is not difficult to 
verify that Kummer's theorem applies to the situation in Lemma 2.3. We have 
preferred the approach via the degree lemma (Lemma 2.2), because this result is 
of  interest in itself. 
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Now we prove Theorem 2.1. We recall the assumptions of Theorem 2.1: D is a 
nonempty open bounded subset of R ", F : D  ~ R ~ is Lipschitz continuous on D, and 

e D is a point such that F ( £ ) =  0 holds, and, moreover, OF(£) is nonsingular. 

Proof of Theorem 2.1. First we shall introduce a triple (v, ~/, 8) of positive real 
numbers which will be used to construct a triple (u,/z, Y) such that (i) and (ii) in 
the statement of our theorem hold. Let v, 7/, 6 satisfy the following properties: 

B(£, 3v) c D, (5) 

12 := OF(£) + 2rlB.×n is nonsingular, (6) 

OG(x)vcg2v V G e  U,(F), VxcB(X,  3v), Vv: Ilvll=l,  (7) 

8 := min{]]Mv ]]]M e/2, ]] v ]] = 1} (hence 6 > 0). (8) 

The existence of such a triple (v, ~/, 8) is clear: (6) can be ensured because aF()~) 
is nonsingular, (7) is a consequence of  the upper semicontinuity of OF at £ (which 
implies OF(x) ~ OF(£) + •B.×. for all x e B(ff, 3 v) with some v > 0, and so, by 
Remark 2.2, as G e U~ (F), O G(x) v c OF(,Y) v + 2 ni~n c S2v for all x e B (£, 3 v) and 
all v: [[v[] = 1); (5) can then be guaranteed without loss of generality, and, finally, 
in (8) the number 8 is well defined and positive because of (6). Further, let a (v )  
be a positive real number such that 

B07, ½v) contains at least one solution of G(x)= 0 if G e U~(~)(F). (9) 

The existence of a (v )  follows from Lemma 2.3. 
Let G be any element of L(D) satisfying [ [F -  G[[L < min{*?, a(v)}.  Then, by (9), 

B(£, ½v) contains at least one solution of G(x)= 0. Now let x(G) be any solution 
of G(x)  =0  in/~(ff, v). With Q:=D, 4 : =  G, x°:=x(G) and with g2 as given in (6) 
and r :=2v,  all assumptions of Lemma 2.1 are satisfied (note that B ( x ( G ) , 2 u ) c  
B(£, 3 v) and take (5)-(8) into account). Hence, by Lemma 2.1, there exists a mapping 
xG(" ): v6B, ~ B(x(G), 2v) such that 

xc(v) is the unique solution of G(x) = v in [~(x(G), 2v), (10) 

x o ( . )  is Lipschitz on vg[~, with modulus 1/8. (11) 

Since x (G)c  B(~, v) and B(~, v )c  l~(x(G), 2v), x(G) is the unique solution of 
G(x) = 0 in /~(x, v). Thus, we have shown 

and 

B(£, iv) contains a solution x(G) of G(x)= 0 which is unique in /}(£, v) 

(12) 

xc(O)=x(G). (13) 

Proof of (i). Define 

/z := lmin{,?, a(v)}. 

Since (12) even holds for each Ge U2~(F), (i) is shown. 
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Proof of (ii). First let Gc U,(F) be fixed. Let x(G) and Xo(') satisfy (10)-(13). 
Further, let e be a real number satisfying 

0 <  e < min{lp, u6/Lip(G)}. 

Setting Q := D, 4~ := G, x°: = x(G) and taking into account that OG(x(G)) is non- 
singular (because of (12), (7) and (6)), we see that Lemma 2.3 applies to this 
situation. Hence, we obtain: there exists an a, with 0 < a <~/x, such that 

G(x)  =0  is solvable in B(x(G), e) for all (~ with I[G-G[[L<a. 

Now we fix a with 0 <  a ~</x, and choose any G c  U,(G). Since, by (12), x(G)e 
B0~,lu) and so for all zeB(x(G), e), 

Ilz-mll ~< I Iz -x (O) l l  + I Ix(G)-mll  ~< ~ + ~ " < " ,  

each solution z of G ( x ) = 0  in B(x(G), e) belongs to /3(~, v). On the other hand, 
we have norm II F - G [] L ~< [I F - G [[ L + [[ G - G [] L < 2~, and so the arguments used 
above in the derivation of (12) also apply to G (instead of G), and we have that 

B(ff, lu) contains a solution x((~) of G ( x ) =  0 which is unique in/~0~, u). 

(12') 

Thus, the point x (G)  given by (12') is the unique solution of G(x)  = 0 in B(x(G), e). 
By (5), (12) and (12'), one has x (G) ,  x ( G ) ¢  D, therefore 

II a(x(d)) l l  = II a ( x ( d ) ) -  G(x(G))II ~ L i p ( G ) [ I x ( G ) -  x(a)ll ~ Lip(G)e  < u6, 

where G(x(G))= 0 was used. Hence, G(x(d,))~ ~,a~,, and so, by (10), 

x ( G)  is the unique solution of G(x) = G(x(d)) in [~(x(G), 2u). 

The definition of XG(V) in (10) thus implies 

x ( d )  = xc(G(x(d))). 

and (13) into account, we see that Taking d ( x ( d ) ) = 0 ,  (11) 

IIx(G)-x(d)ll  = [Ixo(O)-xo(G(x(a)))ll 

1 ~ IIO(x(d))ll 

_ 1 II O(x(d))-  d(x(&)ll 
6 

1 
~< - s u p  [[ G ( x )  - G(x)II 

x c D  

1 
~NIIG-dlIL 
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This means, we have shown that for each G ~  U , ( F )  there is some a := c~(G)> 0 

such that 

1 
I I x (G) -x (G) I I<~311G-GIIL  if G o U t ( G ) .  (14) 

Take now any pair G1, G2c U~(F) and consider 

H ( x , t ) : = ( 1 - t ) G l ( x ) + t G 2 ( x )  V x c D ,  Vt~[0 ,1 ] .  

It is easy to show that for each t ~ [0, 1], 

H ( . ,  t ) c  U , (F ) .  

Hence, (i) holds, i.e., for each t 6 [0, 1] there exists some point x ( H ( . ,  t)) which 
satisfies (12) and (14) (put there G:  = H ( . ,  t)). In particular, x ( G 0 :  = x ( H ( . ,  0)) 
and x(G2) := x ( H ( . ,  1)). Hence, for each t c [0, 1] there is some a = a( t )  such that 

(14) holds: 

1 
I [x(H(. ,  t ) ) - x ( H (  ", t'))ll <~3 I[( t-  7) (G2-  GI)IIL if t--ce < t '< t + a ,  

(15) 

where in (14) one has to put G:= H ( . ,  t) and G:= H ( - ,  7). This defines a covering 
of [0, 1] by open sets {B(t,  a( t ) ) l  t c [0, 1]} and so there exist finitely many numbers 

0 = 11 < t2 < • • • < t N  1 < t N  = 1 such that 

N 
(._J B(ti,  a( t , ) )  = [0, 1] 
i--1 

and, moreover, 

I , : = ( t , + l - a ( t , + l ) , t ~ + a ( t i ) ) ~ O  ( V i e { 1 , . . . , N - 1 } ) .  

Now we choose numbers sl,  S T , . . . ,  SN-1 satisfying s~c L ( i =  1 , . . . ,  N - l )  and 
tl < sl < t2 <" • • < SN 1 < tN and apply (15) with (t, 7) := ( ti, si) and (t, t') := (si, t~+l) 
for i = l , . . . , N - l :  

I Ix (Cl ) -  x(G2)ll = IIx( H ( • , 0 ) ) - x ( g ( . ,  1))11 

~< [Ix(H( • , t l ) ) - x ( H ( ' ,  sl))ll + Ibx(H( •, s 0 ) - x ( g ( ' ,  t2))ll 

+ . . .  + IIx(H(' ,  tN 1)) - x ( g ( . ,  S N 1))ll + I Ix (g ( ' ,  sN , ) ) - x ( H ( ' ,  tN))ll 

<~ Y~ II(s,--t,)(G2--G,)IIL+ ~£ I I ( t i+ l - s , ) (a2-aa) l lL .  
i=1 i=1 

By definition of IIGIIL one has IltallL= tllallL for t~>0. Thus, we then have 

< l  ( N ~  1 -s,))IIG=-G, II I I x ( G 0 -  x(G2)ll ~ 3  \ ,=1 ( s i -  t ,+ ti+, L 

1 1 
= 3  t,,, II a~ - a ,  ll~ = 3  1102- al l le ,  
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where s~ > ti > s~ ~ (i = 2 , . . . ,  N - 1), Sl > t~ = 0 and tN = 1 were used. With 3' := 1/6, 
(ii) is shown. [] 

3. Strong stability of stationary points 

Let us return to the nonlinear programming problems of the type P ( f ) ,  as introduced 
in Section 1, where f = (fo, f l ,  • • •, fro). Let (C denote the space of twice continuously 
differentiable mappings from R" to R m+l. For a given f c  (~2 the associated mapping 
F : R n+m --> E"+'~, introduced in (3), is piecewise continuously differentiable (in the 

sense of Kojima [7]) and hence, locally Lipschitz continuous. A point 2 = (5, 37) at 
which F vanishes is called a stationary point of P ( f ) ,  whereas 2 is called a stationary 
solution and y an associated multiplier. Obviously, an associated multiplier p is 

unique if the Linear Independence Constraint Qualification (LICQ) is satisfied at 2. 
LICQ: The set {Vf (5 ) I f (5 )  = O, 1 <~ i <~ m} is linearly independent. 
In this section we shall study the relationship of strong stability of stationary points 

and the nonsingularity of the generalized Jaeobian of  F, under the assumption of 
LICQ. 

F o r f ~  ~2 and a subset V ~ R "  we put 

N ( f  V) = sup sup maxdf~(z)l, IlVA(z)ll, IIIv=f(z)lll}. 
O<~i~rn zE V 

Definition 3.1 (cf. [7]). Let 5 be a stationary solution of P ( f )  for a given f c  (~2 
Then, 5 is strongly stable if for some 6* > 0 and each 6 c (0, 6*] there exists an 

a ( 6 ) > 0  such that for each g e  (g2 with : V ( f - g ,  B(5, 6 " ) ) < a ( 6 )  the set B(2, 6) 
contains a stationary solution of P(g) which is unique in B(5, 6*). A stationary 

point (2,)~) of  P ( f )  for which 5 is strongly stable is called strongly stable as well. 

The concept of  strong stability plays a central role in parametric optimization, 
homotopy  methods, multilevel methods and statements on local convergence in 
nonlinear optimization (cf. [4, 5, 7, 9, 12]). Under  LICQ, Kojima presented necessary 
and sufficient algebraic conditions for strong stability [7, Theorem 3.5 and Corollaries 

3.6, 4.3]. We will actually use the latter equivalent conditions; but before stating 
them we need some additional notation. 

At a stationary point (f, 37) we define 

I o = { i ~  {l+ 1 , . . . ,  re}If(5)  =0}, (16) 

I+ = {i e Iolfi, > 0}, (17) 

I 

c v%+ E 37,v2f + +v2f, = y j  j[~" 
i=1  j = l + l  

Moreover, we put for J =  { 1 , . . . ,  m}, 

A(J)  = (Vf(5) ,  i c J) ,  
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and for I with I+ ~ I ~ Io (assuming for simplicity that I = {1 + 1 , . . . ,  k}), 

C A ( I ~ w I )  O)  
M ( I ) =  - -AT(I~wI)  0 0 , 

\ - A r ( / )  0 E 
(18) 

where Ie={1 . . . .  ,1}, / = { l + l , . . . ,  m } \ I  and E is the unit matrix of order m - k .  

Lemma 3.1 [7]. Let (~, 37) be a stationary point o f  P ( f )  for a given f c ~2. Suppose, 
moreover, that LICQ is satisfied at g. 

Then, ( ~, 37) is strongly stable if and only if 

sgn det M (  I)  is constant and nonvanishing 

for all I with L c I ~ Io. [] (19) 

We will prove the following two theorems. 

Theorem 3.1. Let f c ~2 and let F be the associated mapping introduced in (3) and 
let (~, 37) be a stationary point of  P ( f ) .  

The, the nonsingularity of  OF at (Z, 37) is equivalent with (19). 

Theorem 3.2. Let (2 = (~, 37) be a stationary point for P ( f )  with f ~ ~2. Suppose that 
is strongly stable and the LICQ is satisfied at ~. Let 8" be chosen according to 

Definition 3.1. 
Then there exist positive real numbers v, tx and ~/ such that the following hold: 
(i) For each g~ ~2 with ~ f ( f - g ,  B(~, 8*) )< 12 (the latter set being denoted by 

G~f) the set B(X, ½~) contains a stationary point of  P(g) ,  say g(g) := (~(g), 37(g)), 
which is unique in B(~, ~). 

(ii) The mapping g~-~(g)  is Lipschitz continuous on Gaf  with Lipschitz modulus ~,, 
i.e., if  g 1, g2 ~ Golf, then 

ii£(gl) _ x(g2)l I ~ ~N(gl _g2, R(Z~ t~*)). 

For the proof  of Theorem 3.1 the following technical lemma from linear algebra 
is crucial. 

Lemma 3.2. Let N o be a nonsingular (n, n)-matrix and a 1, . . . ,  a k, b 1, . . . ,  b k E R n. 

Moreover, let d~ be the set of  matrices of  the form N ( I ) ,  

N ( I ) = N o +  ~ aib 'T, w i t h l c { 1  . . . .  ,k}. 
i+l 

Then, sgn det N = sgn det No for all N ~ cony A/ i f  and only if sgn det N = sgn det No 
for all N c ~ .  
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Proof.  Let us put  A / =  {No, N i , . . . ,  Nk}, with K = 2 k - 1 and  /Vj = N o + ~ 1 i  aibrr, 
/j being a specific subset  o f  { 1 , . . . ,  k}. Since A / c  conv M, one direction of  the p r o o f  

is trivial. Hence, from now on, suppose that 

sgn det N = sgn det No for  all N e J//. (*) 

For  an arbi t rary  j ~ {0, 1 , . . . ,  K},  each index set I c { 1 , . . . ,  k} with I c~/j = O, and 

each r ~ { 1 , . . . ,  k}\(I  w Ij) we show at f i r s t - -  by induct ion on q := ]I[ - -  that  the 
fol lowing two assert ions hold (a pair  (I, r) as above  is cal led admissible): 

(i) s g n d e t  ( N j +  }~ iziaibgT)=sgndet No, 
icl 

( ) (ii) 1-[-Ia.r brT Nj -k  ~ iziaib iT a t > O ,  
i~l 

for  all /zic [0, 1] ( i c lw{r} ) .  
The case q = 0. In this case we have I = 0, and (i) fol lows f rom the assumpt ion  

(*). In order  to show (ii) we use fo rmula  (2.20) in [11, p. 198] and obtain: 

det( Nj + #rarb rT) = (1 + IZrb/rNflar) • det Nj. 

I f  in par t icular ,  we put  tzr = 1, we have Nj + a rbrTc J~. This implies, according to 
the a s sumpt ion  (*), that  1 + b/rN~-~a r > O, and,  consequent ly ,  that  1 + txrbrTNfla r > 
0 for  all /x~ ~ [0, 1]. 

N o w  assume that  (i) and  (ii) are satisfied for  each admissible  pa i r  (Io, ro) with 
IIo1 <~ qo- we shall p rove  (i) and  (ii) for  an arbi t rary admissible  pa i r  (/, r) with 

[I1= q o + l .  
Let io be long  to I and  define lo = I\{io}. Note  that  ]Io] = qo. Further,  let/zi ~ [0, 1] 

for  i c I u {r}. In order  to show assert ion (i) for  (/, r) we again  use formula  (2.20) 

in [11, p. 198], and obta in  (the induct ion a s sumpt ion  guarantees  the invertibility 
which is used):  

d4 +i ,J ) = t ~  /%o iv a ) . d e t i Q ,  

where  

i~iT~ N =  Nj+ Y. txiao ]. (20) 
i~  I o 

From the induct ion a s sumpt ion  (on the pa i r  (Io, Io)) it then follows: 

sgndet(N~+~l~ga~b~T) = s g n d e t l Q = s g n d e t N ° ' ~  

and hence,  assert ion (i) is satisfied for  /. 
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In order to prove assertion (ii) we apply formula (1.13) in [11, p. 190], and obtain 
for fixed I~i c [0, 1] (i c I0 w {r}) and variable i~  c [0, 1]: 

+ ~ /x/a A (~6) := l+/~r brT ibiT a r 
i ~ l  

* - -1  i 0 /o T " - -1  N a b N  ] r  =l+ rbrT a '  

where f i / is  defined in (20). 
According to the induction assumption we have: 

lq-l_tpbPTl~ l aP>0 ,  pc{r ,  io}, 

)' l+txrb rT + ~ tx/aib ir a t > 0 ,  
i ~ I  o 

where ~ := Nj + a~ob/ow belongs to ~ since io c {1 , . . . ,  k}\/j. This implies A (0) > 0, 
A(1)>0 and, for t x ~  [0, 1]: 

sgn A (tx~ o) = sgn A(tx~o), 

where, /~r as in (20), 

~(/'/'/o) := ~ (/d'/o)[1 q-/d'/o b/°T]~/ lai°]" 

Note that A(. ) depends affinely o n / ~ .  So, we obtain sgn A (/~6) = sgn A(/~,) = 1 for 
~6c [0, 1] and hence, assertion (ii) for (I, r) follows. 

Finally, the nontrivial assertion of the lemma follows from (i) by using the 
subsequent representation for an arbitrary element N c conv rid: 

K K 

N =  ~ AjNj+(1-  ~ Aj)No 
j = l  j = l  

=No+ A aib rr= No+ ~ / iT ~ia b . (21) 
i = 1  j :  Ij J / = 1  

Since A >- 0 (i = l, ~ . . , K )  a n d Y ~ _ l & ~ l ,  t h e i n e q u a l i t y 0 ~ < ~ < ~ l ( i = l , . . . , k )  is 
satisfied in (21). [] 

Proof of Theorem 3.1. The mapping F in (3) is a continuous selection of the finite 
number of C~-mappings F ~, I c  {/+ 1 , . . . ,  m}, where 

Vfo(z) + Y. y~Vf(z) 
i c l ~ { 1 , . . .  , 1} I 

F ' ( z , y ) =  - f ( z ) ,  ic  I w { 1 , . . . ,  1} ] , 

-£(z), jc  [ / 

with / = { / + 1 , . . . ,  m}\I.  
In a neighborhood of the point (~, fi) the mapping F is pieced together by means 

of the mappings F ~ with I+ c I c Io (none of them being redundant), and Io, I+ as 
in (16) and (17). 
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Note that VFI(~,  ~) = M ( I ) ,  cf. (18). Then, from the definition of a generalized 
Jacobian it follows that OF(~, )5)= conv dJ, where 

= { M ( I ) [ I +  = I = Io}, (22) 

Hence, the nonsingularity of  OF(~, y) implies (19). In order to prove the converse, 

we use Lemma 3.2 with d// as in (22), No = M( /+)  and k = 1Io\I+[. The required 
representation for elements of  ~ follows from the relation 

M ( / 2 ) -  M ( / 1 ) =  aib iT, 

where 

e i is the ith unit vector in W", and b i is the (n + i)th unit vector in R "+m. This 

completes the proof  of  the theorem. [] 

The following lemma will be used in the proof  of Theorem 3.2. Recall the definition 

of IIGIIL and W ( f  V) in the first lines of Section 2 and 3, respectively. 

Lemma 3.3. For f, g c (g2, let F, G denote the associated mappings accordings to (3). 
Then for  any nonempty, open, bounded and convex subset D c R n+" there is a 

number A > 0 such that for  every f, g c q¢2, 

I I F -  GIIL~ AW'(f  - g ,  D1) , (23) 

where D1 = 1rzD and Vrz is the projection (z, y)~-~z (cRn) .  

Proof. Let vry be the projection (z, y)~-~y (~Rm), and put D2 = vryD. As further 

abbreviations we put 

h = f - g ,  H = F - G ,  

°li = sup[hi(z)], fli = supHVhi(z)]], Yi = supll]V2hi(z)]l[, 
z6D1 zcDi  z e D  1 

i = 0, 1 , . . . ,  m, and, finally, 

6o= max sup ]Yi]. 
l ~ i~rn  y ~ D  2 

In view of  the definition of ]]H]]L, we have to estimate sUp(z,y)EDHH(z, y)]] as well 

as Lip H in terms of dV'(h, DO. Using the inequality I~+1 ~ I~1 we obtain, with some 
z°c  cl D1, some y°c  cl D2, and Z = (2m + 1) max{6o, 2}: 

sup ]]H(z,y)[[= max ]]H(z,y)l] = IlH(z°,y°)]] 
(z ,y)cD (z,y)~clD 

Vho(z°)+ { y°Vh,(z°)+ (y°VVh (z°) + Ih,(z°)l 
i = 1  j = / + l  i = 1  

m 

~< ]]Vho(z°)ll + 2 l y ° l  • ]]Vhi(z°)ll + ~ [hi(z°)[ 
i - -1  i - -1  

rn In 

<~13o+6o Z fl~+ Y~ eq<~aW(h, D1) • 
i = 1  i = 1  
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Note that/3~ and y~ are Lipshitz moduli for h~ and Vh~, respectively (with respect 
to D1). Then using the inequalities ]a +] ~< lal, la + -/3+] ~ [a -/31, the following holds 
for every (z ~, yl), (z 2, y2) e D: 

II n(z ' ,  y~)- n ( z  ~, yZ)II 

IIVho(z~)-Vho(zZ)l[ + ~ [Y]-Y~I" ]JX7hi(zl)H 
i=1 

+ ~ lY~I" [rVhi(zl)-Vhi(z2)ll+ ~ Ih,(z')-h,(z2)[ 
i~l i~l 

 orrz'-z2,+  ,tlz'-z2,+  /3,11zl-z2JJ 
i~l i~l i=1 

( m (z2) 
~< 3'o+2 57 /3i+6o ~ y~ • 

i=l i=l yl y2 

This implies the inequality Lip( H) <~ AJV( h, D1), and, consequently, (23) is 
proved. [] 

Proof of Theorem 3.2. Lemma 3.1 and Theorem 3.1 ensure that OF is nonsingular 
at g = (£, fi), where F is the mapping introduced in (3). Then, with D :=/~(g,/~*), 
Theorem 2.1 and Lemma 3.3 provide the desired results. [] 

Remark 3.1. A counterexample in [14, p. 219] shows that z(. ) in Theorem 3.2 need 
not be Lipschitz continuous if LICQ is replaced by the weaker Mangasarian- 
Fromovitz Constraint Qualification. 
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