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This paper is concerned with collinear scaling algorithms for unconstrained minimization where the
underlying local approximants are forced to interpolate the objective function value and gradient at only
the two most recent iterates. By suitably modifying the procedure of Sorensen (1980) for deriving such
algorithms, we show that two members of the algorithm class derived related to the DFP and BFGS
methods respectively are locally and g-superlinearly convergent. This local analysis as well as the results
they yield exhibit the same sort of “duality” exhibited by those of Broyden, Dennis and Moré (1973)
and Dennis and Moré (1974) for the DFP and BFGS methods. The results in this paper also imply the
local and g-superlinear convergence of collinear scaling algorithms of Sorensen (1982, pp. 154-156)
related to the DFP and BFGS methods.
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1. Introduction

Consider the minimization problem:

Given f: X >R, X cR", fe C'(X) produce a sequence {x,} < X

that converges to a local minimizer of x, € X of f (1.1)
In this paper we shall be concerned with the unconstrained case of (1.1) where
X =R"

The sequence {x;} is usually generated by iterative algorithms starting with a
given estimate x, of x, . In most of these algorithms it is possible to interpret the
computations in the kth step which produces x,,, as being based on an appropriate
local scaling of X and/or an appropriate local approximation of f. We use the word
“local” to indicate that these scalings and approximations are defined in terms of
quantities known after x, has been obtained and to indicate that they are intended
to be used in appropriate neighborhoods of x;.. The quasi-Newton methods [7], for
example, are based on local affine scalings of X and local quadratic approximations
of f.
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In [4, 5], Davidon proposed generalizations of local affine scalings (l.a.s.’s) and
local quadratic approximations (1.q.a.’s) termed local collinear scalings (l.c.s.’s) and
local conic approximations (l.c.a.’s) respectively. We refer the reader to [5] for a
detailed discussion of l.c.s.’s and l.c.a.’s. In the rest of the paper an l.c.s. and an
l.c.a. shall have the following meaning.

A l.cs. (with reference point x;) is a mapping S, : w—Xx of the form

x=x +Jw/(1+hiw), we W, (1.2)

depending on the parameters J, e R"*" (J, nonsingular) and h, e R™ In (1.2) W, =
{w: weR", 1+ hlw 0} is the domain of the L.c.s. For use in the rest of the paper
we let W} ={w: weR", 1+hw>0}. Note that 0 W} maps to x;.

A l.c.a. (with reference point x;) is a function ¥, : X, >R of the form

g{(x—xk) l(x_xk)TAk(x—xk)
1—ai(x—x) 2 [1-aix—x)) "’

Vi (x)= ¢+ € Xy, (1.3)
with value ¥, (x,)=c. and gradient ¥(x,)=g., depending on the parameters
A eR"" (where R""" is the subspace of symmetric matrices in R"*") and a; €R.
In (1.3) X, ={x:xeR" 1—aj(x—x,)#0}. Let X; ={x:xeR", 1—ar(x—x)>0}
and note that x, € X%. If we decide to approximate f by ¥, “near” x,, then, since
fe CY(X)and ¥, is discontinuous on its horizon X5 = {x: xeR", 1—a}(x —x;) =0},
we may do so on a neighborhood Nx+(x,) < X of x;.

Since (1.2) and (1.3) generalize l.a.s.’s and 1.q.a.’s respectively we may expect to
be able to develop algorithms extending quasi-Newton methods based on (1.2) and
(1.3). Although algorithms based on (1.2) and (1.3) were given by Davidon in [4, 5],
it was Sorensen [11] who first derived a class of algorithms using (1.2), explicitly
indicating the relationships to quasi-Newton methods. He referred to his algorithms
as collinear scaling algorithms since his derivation uses (1.2) explicitly while the
underlying l.c.a.’s are implicit. We shall also use the term in the same sense.

The class of collinear scaling algorithms that Sorensen presents [11, Algorithm
3.1] is derived as follows. At x; (k=1), l.c.s. (1.2) is used to scale X and a l.q.a.
Y is used to approximate ¢ = fo S;:

St Jow/(1+ hiw))
= (W) =g (w) = f(x )+ [Tif (x )] w+3w" Bow (1.4)
where B, € R""". If in (1.4) w e Ny+(0)—a neighborhood of 0 W;—then l.q.a. in
(1.4) and the l.c.s. (1.2) yield the l.c.a.

LS Ca) 1 (> — xi) +1 (x—x) T B i (x = %)
1-hiJi'(x—x) 2 D-hJdx-x)P °

F(x) = ¥i(x) = flx) +

x € Nxi(x), (1.5)

where X7 ={x: xeR", 1—hiJ'(x —x,)>0}. Sorensen [11] chooses J, hx and By
by means of appropriate updating formulae so that the lca. in (1.5)
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interpolates the value and gradient of f at x; and x,_, and at several additional past
iterates.

Most of Sorensen’s paper [11] however, is concerned with a specific member of
the above algorithm class. This specific member, stated in [11, Algorithm 6.1], is
related to the BFGS algorithm [7] because of the formula Sorensen uses for updating
H,:=B;'. The l.c.a. (1.5) it uses at x, (k=1) interpolates the value and gradient
of fonly at x;, and x;_, and the update formulae used for J, and h, [11, equations
(4.1a,b)] are (specializations of) those given in [11, Algorithm 3.1]. Sorensen
analyzes the direct iterates [11, equations 4.5, 4.6] of his algorithm [11, Algorithm
6.1] and shows that it is locally and g-superlinearly convergent. This analysis very
critically depends on the specific formulae used for updating H,, J, and h;. In
particular, Sorensen implies [11, p. 95] that the member of his Algorithm 3.1 related
to the DFP method in analogy with his Algorithm 6.1 could not be analyzed. This
is because it seems impossible to obtain the analogue of [11, Lemma 4.1] to provide
a closed-form update formula for C.:=J.H,J; in the case of the appropriate
DFP-related member of [11, Algorithm 3.1]. This last observation also implies that
such a method may not be implemented without having to maintain and update
two matrices (J, and H, or equivalently L,:=J;" and B,= Hy").

The work of Sorensen [11] indicates how collinear scaling algorithms may be
derived as very natural generalizations of quasi-Newton methods. It is therefore of
interest to ask whether local and global convergence results similar to those known
for quasi-Newton methods hold for collinear scaling algorithms. The analysis of
Sorensen [11] of his Algorithm 6.1 is a positive step in this direction. The difficulties
in using the same methods to analyze the analogous member of his Algorithm 3.1
related to the DFP method seems however to be a stumbling block in attempting
to respond to such questions on convergence.

This paper, based on the two earlier reports [1, 2], is an attempt to continue the
theme of the work of Sorensen [11]: Collinear scaling algorithms may be derived
extending the quasi-Newton methods very naturally so that the relationships between
the two classes of algorithms extend to convergence analyses and results as well.

In Section 2 of the paper we derive collinear scaling algorithms whose underlying
l.c.a.’s at x, (k=1) are forced to interpolate the function value and gradient of f
at x, and x,_,. We emphasize that throughout the rest of the paper we are concerned
with collinear scaling algorithms whose underlying l.c.a’s interpolate function values
and gradients at the current and previous points only. The purpose of Section 2 is
to modify the derivation of Sorensen [11] so that the “duality” that exists between
the local convergence results for the DFP and BFGS methods extends to the resulting
collinear scaling algorithms related to these two methods. In particular, we use the
l.c.s. (1.2) with J:=I for all k and replace Sorensen’s consistency condition [11,
equation (2.7)], x,_; = Sx(—vr_;) where v,_, is such that x, = S,_,(v,_,), with the
condition x;_, = S (—¥,_,) where 0, is chosen appropriately. Note that since J == [
for all k we do not need (the analogue of) [11, Lemma 4.1] for local analysis and
that the issue of having to maintain and update two matrices in implementations
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does not arise. Section 2 simply demonstrates that J, :=I for all k can indeed be
used and yet have the underlying l.c.a.’s interpolate function values and gradients
at the two most recent iterates by relaxing [11, equation (2.7)].

Algorithmic Schema 2.1 in Section 2 is the class of collinear scaling algorithms
that results from our derivation. It maintains and updates h, and B, or equivalently
h, and H,. Despite the simple way our derivation differs from that of Sorensen
[11], members of Algorithmic Schema 2.1 and the appropriate special cases of [11,
Algorithm 3.1] (to enforce interpolation of function values and gradients at the two
most recent iterates only) are in general different. The following simple relation
exists between a member of our Algorithmic Schema 2.1 related to the BFGS method
and [11, Algorithm 6.1]. If in our algorithm we update y; H, (where vy, >0 would
be available when we are about to update H,) instead of H, to get H,,, we get
[11, Algorithm 6.1] provided certain conditions are satisfied by the inputs to and
the line searches of the two algorithms. However, we have not been able to find
similar relations between other appropriate members of the two algorithm classes.
In particular, this is true of appropriate DFP-related members of the two algorithm
classes.

In [12, pp. 154-156] Sorensen provides another derivation of collinear scaling
algorithms in which underlying l.c.a.’s interpolate function values and gradients
only at the two most recent iterates. In this derivation he uses the lL.cs. S; of (1.2)
at x, (k=1) to scale X, and the l.q.a. ¢, of (1.4) with B, = I for all k to approximate
¢ = f° S¢. Moreover, in the process of forcing the l.c.a. at x; to interpolate function
values and gradients at x; and x,_; he does not use the consistency condition [11,
equation (2.7)] but rather uses the condition x, _, = S,(—0;_,) for an appropriately
chosen ©,_, [12, equation (6.4)]. Atthe end of Section 2 we show that if the parameter
b, in Algorithmica Schema 2.1 is chosen so that by, == f'(x,) for all k (and if certain
conditions are satisfied by inputs to algorithms) then this special case of Algorithmic
Schema 2.1 and the class of algorithms implicit in [12, pp. 154-156] are equivalent.
Indeed this class of algorithms of Sorensen may be treated as a “factored” version
of that portion of our Algorithmic Schema 2.1 specified by the choice b, = f'(x;)
for all k.

As mentioned earlier, since we maintain J, = I for all k, we may expect that the
methods of [11] may be used to show local and g-superlinear convergence of both
the (appropriate) DFP- and BFGS-related members of Algorithmic Schema 2.1.
Sections 3 and 4 are devoted to verifying that indeed this expectation is true for
the DFP- and BFGS-related members of Algorithmic Schema 2.1 with b, = f"(x,)
for all k. We hasten to add that because of the relationship we mentioned above
between this BFGS-related member of Algorithmic Schema 2.1 and [11, Algorithm
6.1] the local and g-superlinear convergence of the former essentially follows from
the results of [11] (after some technical estimates to allow for updating H, rather
than y; H,). However, the local and g-superlinear convergence of the DFP-related
members of Algorithmic Schema 2.1 do not follow from the results in [11]. Of course
due to the (essential) equivalence of collinear scaling algorithms implicit in [12, pp.
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154-156] and those of Algorithmic Schema 2.1 with b, = f'(x,) for all k, the results
in Sections 3 and 4 readily imply the local and g-superlinear convergence of DFP-
and BFGS-related members of algorithms in [12, pp. 154-156].

2. Derivation of the class of algorithms

The main purpose of this section is to demonstrate that by setting J, :=I for all k
and relaxing the consistency condition [11, equation (2.7)] in the derivation of
Sorensen [11], collinear scaling algorithms in which the underlying l.c.a’s interpolate
function values and gradients at the two most recent iterates only can be derived
to extend quasi-Newton methods very naturally. As we shall see in Sections 3 and
4 the resulting algorithms are related to quasi-Newton methods naturally in the
sense that local analyses of certain DFP- and BFGS-related methods exhibit the
same sort of “duality” that is well known with respect to the DFP and BFGS
methods. In this section we shall also indicate certain relationships between the
class of algorithms derived here and those given in [11, 12].

Suppose that the current point is x;, and that we apply the current L.c.s. S, : w—Xx
(setting J.:= I in (1.2)) so that

x=x,+w/(1+hiw), we W, hecR" (2.1)
If we now let ¢, = f° S, then

@r(w) =f(x,+w/(1+hew)) (2.2a)
and

@i(w) =[1/(1+hiw)][I = bew™/(1+ hw)1f (i + w/(1+ hgw))  (2.2b)
for we W,. We now approximate ¢, by the l.q.a. ¢, in Ny:(0) as follows.
ei(w) = (W) = 01 (0) +[ @ (0)]"w+3w Byw, we Nyy(0). (2.3)

In (2.3) B,€R""" is supposed to approximate ¢(0). The aim now is to use the
l.q.a. (2.3) and the L.c.s. (2.1) to compute the next point x;., . Several issues (including
those that depend on the updating procedure we are about to describe) need to be
considered when computing x,,,. We shall therefore comment on the computation
of x,.+, while we describe the updating procedure. Suppose then for the moment
that we have computed x,,,, and let s, = x;, 1 — X.

We now wish to move to x,,,, update h; to h,,, and B, to B, so that we have
the updated l.c.s. Si.; and the L.g.a. ¢, t0 @1 = f° Sis; as follows.

S +w/(1+ hI+1W))
= Qi1 (W) = Preer(w)
= @ra(0)+ [‘P;c+1(0)]TW +%WTBk+1W, we NTVH](O)-

We shall then repeat the above procedure at x;.; to get X -.
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We update B, and h, to B,., and h,., respectively by requiring

Pie1(0) = @r11(0), (2.4a)
Pi1(0) = @144(0), (2.4b)
Y1 (—0x) = @1 (— D), (2.4¢)
Picer(—0) = @it (— ), (2.4d)

where 0, € R" is chosen such that —6, € W}, and x, = S, ,(—%.). Note that (2.4a)
through (2.4d) require that ¥,,,, the underlying l.c.a. at x,.,, interpolates the
function value and gradient of f at x,,, and x.

It is easy to show that the requirements x, = S, ,(—?x) and -0, € W1,,, and
(2.4a) through (2.4d) are satisfied by choosing y, >0, ¥, h.., and By, to satisfy

BB =17, (2.5a)

Die = VS, (2.5b)

BirBe=ri,  ne=f"(Xier1) = (1/ ¥ + Breasil S/ (), (2.5¢)
and

L oY sidvic+ 200 () = f (i) 1y H{ ()} i = 0. (2.5d)

The discriminant D, of the quadratic equation in vy, of (2.5d) is given by D, =
A{f () = f e )P = ke )Y s (x)} e 1. If we compute Xyy, so that Dy >0
then it can be shown that the roots yi of (2.5d) are given by yj=
—{f ()} s/ T (i) = f(xk1)} £ pi ] where py =3V Dy For future reference we also
note that GxBy. 0y = Oxri = sy = £2p, where yi = vif (x)) —(1/¥6)f(x). In
order to achieve vy, > 0 therefore, we shall require that x;,., be computed so that

{f'(x)} s <0, (2.6a)

D, >0, (2.6b)
and

S(x) = f(Xi41) > 0. (2.6¢)
We can then let

Y= vk =—{f" ()} s/ (%) = f i)} + o] > 0 (2.7a)
which leads to

Ok Bir1 O = Bkne = sk =2p,  Yie= Vi (Xae1) = (1/ i) ' (i) (2.7b)

We shall now comment on the computation of x;; based on (2.3) and (2.1). Let
us assume that the level set {x: f(x) < f(x,)} is bounded, so that in view of (2.6¢)
we can without loss of generality assume that {x: f(x)<f(x;)} is bounded. As in
[5,11] we propose to choose By positive definite and to compute x;,, based on a
linesearch strategy. One possibility that comes to mind is as follows. Compute the
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minimizer v, = — By ' @4(0) of i, let 8, = h v, and search ¢ (av;) over a € [0, 00) U
(—o0, —=1/8;) if 8,>0 or over a €[0,—1/5;) if 8, <0 until an a = a, is found so
that x4, = S (v ) with (s, == x;.. — x;) satisfies (2.6a, b, ¢). In view of the assump-
tions that {x: f(x)=<f(x.)} is bounded and that B, is positive definite such an a;
always exists unless f'(x,) =0. Note however, that if we choose a; € (-, —1/8;)
(when 6, >0) then x; and x,.,, or if 1+, <0 then x; and S, (v, ), are on opposite
sides of the horizon X9 of the underlying l.c.a. ¥,. The neighborhood of x;, on
which ¥, is really used under these conditions therefore includes (part of) the
horizon X§. Since ¥, is discontinuous on X and f is smooth, under these
conditions, some readers may question the validity of using ¥, to approximate f.
Another possibility (also implicit in [5, p. 279]) is to note that [ f'(x;)] v, <0
(unless f'(x,) =0) so that v, may be treated as defining a descent direction for f at
X in the original variable space X. We may therefore search f(x;, + Av,) over A € (0, o)
until a A=A, is found so that x..;:=x+Ae (with s, =x.,—x;) satisfies
(2.6a,b. c). Again under the assumptions that {x: f(x)=<f(x,)} is bounded and B,
is positive definite such a A, always exists unless f'(x;)=0. One may however
question this approach since the l.c.s. (2.1) is not fully utilized in computing x; .
In addition to satisfying (2.6a, b, c) it is also desirable that the linesearch yields
X+ to provide a “‘sufficient decrease” in the sense of Ortega and Rheinboldt [10].
Computing x;., so that all the above issues are properly addressed is very much
an open question. Since we are concerned with local convergence of direct iterates,
when stating algorithmic schemata in the rest of the paper, we shall assume that
we have a line search procedure LSP: C'(X) xR" x R” X R->R" which takes f, x,,
v, and §; as input and produces a point LSP(f, x;, vy, 6,) that satisfies (2.6a,b, ¢)
and other desirable criteria. We can then let x,.,:= LSP(J, xi, vk, 8;). The reader
may agree after reading Sections 3 and 4 of the paper that LSP should begin by
considering the trial point S,(v,) as a candidate for x;., if 1+8,>0.
Once vy, is determined by (2.7a), note that

(1- Vi) bic

A V)Y (2.8a)
Yk(SIbk)

for any b, € R" such that s_b, # 0 will satisfy (2.5a). In particular, by (2.6a), we can
use b= f'(x;) so that

b=

(1= y)f"Oa) '

By y = ek (2.8b)
U sk S ()]

Note that (2.8a) and (2.5c) readily imply that

1- st f'(x
rk =yk+%[yif'<xkﬂ>—4ﬁbk] (2.92)
k sicby
and if we select b, = f'(x;) leading to (2.8b) then
e = Yi/ Vi (2.9b)

where y, is as defined in (2.7b).
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The choice for h, in (2.8a) is as in [11, 12]. We use it here since our aim is to
modify only those aspects of the derivation of Sorensen [11] that, in our opinion,
prevented him from obtaining local convergence results for DFP-related collinear
scaling algorithms.

Let us now consider updating By to B, to satisfy (2.5¢). In view of (2.7b) and
the need to have positive definite By for all k, we propose using an updating formula
Uk R"XR"XR""->R""" which takes o, r, and B, as input and produces By,
that satisfies (2.5¢) and is positive definite whenever §,r, > 0. We write

By = U}c(ﬁk, T, Bi).

If we started off with an approximation H, e R""" to [¢7(0)]™" in (2.3) then we
would have ended up with

Hioire=10, 1 ::f/(xk+1)_(I/Yk)[1+hk+1sz]f,(xk)a (2.10)

instead of (2.5¢). So supposing Uz:R" xR" xR"™ " >R""" to be an updating formula
which takes r, 5, and H, as input and produces H,,, that satisfies (2.10) and is
positive definite whenever rj., > 0, we have

He = Ui(rk, O, Hi).

In particular, the DFP formula, the BFGS formula and indeed the formulae for the
Broyden family of updates indicated in Algorithmic Schema 2.1 below, represent
such update formulae U} and Ux.

Our discussion so far leads to the following algorithmic schema.

Algorithmic Schema 2.1.
Step 0 (Initialization).
Initialize x,, hy, symmetric and positive definite B, (or Hy); k:=0.
Step 1 (Search Direction).

Set
o =—By'f'(x) (or v =—H,f"(x)),
5k = h’;];Uk.

Step 2 (Linesearch).

Set x;.o, = LSP(f, x¢, vx, Ox).

/*LSP(-,-,+,-) is as described above in Section 2. If 1+§,>0 it begins by
attempting the trial point x, +uv,/(1+68,) for x..i. Xy it generates satisfies
(2.6a, b, c) and any other desirable criteria.*/

Step 3 (Stopping Criterion).

If stopping criteria are satisfied return with x,.; as an estimate of x,,.

Otherwise go to Step 4.

Step 4 (Updates).

Set

Sk = Xpean — Xies

e =V (6 = f o) ¥ = G} sl G0} s
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Y = _{f’(xk)}TSk/[f(xk) —f(Xie1) + picd,
Yie= VS (Xier) = (1 v f (%),
Ok = YicSk
fe =y + L1 =)/ vidlvif (o) = (s f ()] sibi) bi .
/*by is such that sg, # 0. A possible choice is by = f'(x,). Then r. = yi/y.*/
By, = Ulk(ﬁk’ re, By) (or Hiyy = Ui(rk, b, Hio)).
/*Update formulae U} and U} are as described in Section 2. Some possible
choices are
~T ~ T T
By = (1— f"Tv")Bk<1— ’.’f;”‘) p o

Uitk Uyl Vi li

By, Bt \"
_(1_@k)(5sz6k)< Trli Bl )( e kUk>

~' ~ T~ ~T ~
T Uk UEBkUk Filc Ui Byty

where B0, # r, and @, > 1/[1~(riBi'r ) (81 Bid)/(01r)?] or

~ T ~T o T
H. = (I B Uﬁt")Hk(I 3 r,;vf) N Uil

T~
ri Uk Fi U L Y"

D, ot T
—(1'—¢k)(f‘—erkrk)( IT)k - Hyr )( Yk Hyry )

~ T ~T T
Uit ricHirn J\vgre  ricHery

where Hyr, # 0, and ¢, > 1/[1—(ri Har (G H ' 6)/ (55r)°1%/

b =1(1— Yk)/(YkSIbk)]bk-
Set k=k+1 and return to Step 1.

Note that Algorithmic schema 2.1 has two degrees of freedom in the following
sense. The choice of update functions { U} (or {U%}) and the choice of {b,} would
generate different members of the algorithmic schema. In particular, with the choice
of update functions indicated in the comment on Step 4, Algorithmic Schema 2.1
represents generalizations of the quasi-Newton methods with the Broyden family
[7, pp. 76-77] of updates for the Hessian or inverse Hessian approximants. The
cases @, =1 (or ¢, :=0) and &,'=0 (or ¢,:=1) for all k are of special interest.
The former represents algorithms that extend the DFP methods while the latter
represents algorithms that extend the BFGS method. With different choices of {b,}
we get different generalizers of the Broyden family, and in particular, different DFP
generalizers and BFGS generalizers.

We now compare the BFGS generalizer of Algorithmic Schema 2.1 with b, = f'(x;)
for all k with Algorithm 6.1 of Sorensen [11]. In order to be specific we use a
superscript S on symbols in [11, Algorithm 6.1] whenever the same symbols is used
in Algorithmic Schema 2.1. We have:

Lemma 2.2. Suppose that Algorithm 6.1 of [11] is modified by removing Step 1° and
using Step 2 of Algorithmic Schema 2.1 instead and that Algorithmic Schema 2.1 is
modified in Step 4 5o that By, = U{, re, (1/ v3) Bi) (or Hievy = Ui(ri, B, viHi))-



32 K.A. Ariyawansa /| DFP- and BFGS-related collinear scaling algorithms

Let the inputs to these modified Algorithm 6.1 of [11] and Algorithmic Schema 2.1
be such that x3 = x,, vy =—Cof'(x3), 83 = hevy and Cy= H, and suppose that stopping
criteria in Step 2° and Step 3 are identical. Then, when applied to (1.1) satisfying the
condition that the set {x: f(x)<f(x,)} is bounded, this modified Algorithm 6.1 of
Sorensen [11] and the BFGS generalizer of this modified Algorithmic Schema 2.1 with
by = f"(x;) for all k generate identical sequences of points so that x = x; for all k.

Proof. We have x, = x}. Therefore note that in view of the formulae specifying the
computations in [11, Algorithm 6.1] and Algorithmic Schema 2.1 with b, = f'(x;)
for all k, the conclusion follows by an induction argument if we could show that if
X = x4} and X, = X3, then Hy = Cy,,. It is easy to verify this latter fact since
O =8 and when b, =f'(x.), by (29b), n=yc/vc where yi=yf"(xc+1)
—(1/v)f'(x). O

We note in passing that Lemma 2.2 depends on [11, Lemma 4.1] since the update
formula for C; in Algorithm 6.1 of [11] depends on the latter. Since we do not have
the analogue of [11, Lemma 4.1] for the DFP formula, we do not have a relation
like the one in Lemma 2.2 for DFP generalizers of Algorithmic Schema 2.1 and [11,
Algorithm 3.1].

In [12, pp. 154-156] Sorensen presented another derivation of collinear scaling
algorithms for (1.1). We refer the reader to Section 1 for a brief description of the
forms of l.c.s.”s and l.c.a.’s used in that derivation and of course to [12] for details.
We shall show that Algorithmic Schema 2.1 with b, :=f'(x,) for all k and the
algorithmic schema implicit in [12, pp. 154-156] are equivalent (under certain mild
conditions). Since we believe that the algorithmic schema implicit in [12, pp.
154-156] is useful in implementing Algorithmic Schema 2.1 (when b, == f’(x;) for
all k) we record the former in the following format for convenient reference.

Algorithmic Schema 2.3.
Step 0 (Initialization).
Initialize x,, hy, nonsingular L, (or J,); k:=0.
Step 1 (Search Direction).

Set
ve=—Li'f"(xi) (or v =—Tif'(x)),
6k = ;‘;Uk'

Step 2 (Linesearch).

Set x iy = LSP(f, xi, L "y, &) (Or Xiyqy = LSP(f, X1, Jitx, 8;))-

JELSP(-,-,-,-) is as described above in Section 2. If 1+ 8, >0 it begins by
attempting the trial point x, + Ly "o/ (1+ 8;) (or X + Jove /(14 8;)) for xipy. Xiyq it
generates satisfies (2.6a, b, ¢) and any other desirable criteria.*/

Step 3 (Stopping Criterion).

If stopping criteria are satisfied return with x,., as an estimate of x,,.
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Otherwise go to Step 4.

Step 4 (Updates).

Set

Sie = X1 — Xiey

pre =G0 = f G )Y =1 G )Y s ()} s,

Yie ={f' (%)} s/ Lf (%) = o) + pic),

Vi =Y (X)) = (1 v ) f ' (x0),

D = YieSks

1= Yi/ Vi

Choose #, such that 05, = 6, r.(>0).

Choose Ly, (or Ji4,) such that L, %, =r, and L}, 5, = ¥, (or Jos, B = 0 and
Jis1re = Ox).

/*A possible choice of ¢, and L., (or & and J.,,) is: Choose ¥, such that
Dt =0rr, with (Lid,— ) 5, #0 and set Ly.,= L+ (re— L&) (Lide—0)7/
(LED, — ©) "0 (or choose #, such that &5, = 64r, with (Jire—.)" 0, #0 and set
Jir = T (O = Jd) (Jin — 8/ (Jire — 0) ). */

e =[(- ')’k)/(YkSIf’(xk))]L;ilf,(xk)
(or Ay =[(1- 'Yk)/('Yks-ltf,(xk))]‘]z+1f,(xk))-
Set k= k~+1 and return to Step 1.

We have the following lemma which spells out the relationship between Algorith-
mic Schemata 2.1 and 2.3. In the statement of the lemma and its proof whenever
the same symbol is used in Algorithmic Schemata 2.1 and 2.3 we use the superscript
S to denote symbols pertinent to Algorithmic Schema 2.3. We hope that this use
and the use of superscript S earlier in relation to Lemma 2.2 would not lead to
confusion, since we do not intend to refer to both groups of symbols in the same
context.

Lemma 2.4. Let the inputs to Algorithmic Schemata 2.1 and 2.3 be such that x,= x5,
B,= LoLy (or Hy=J,J3) and hy= Lohg (or ho=J; " h3) and suppose that stopping
criteria in Step 3 and Step 3° are the same. Then Algorithmic Schema 2.1 with
b= f"(xy) for all k and Algorithmic Schema 2.3 are equivalent in the following sense
when applied to (1.1) where {x: f(x)<f(x,)} is bounded. There is a sequence of update
functions {U}} (or {U3}) of Algorithmic Schema 2.1 specifying {B,: k=1} (or
{H\: k= 1}) if and only if there exists a sequence of vectors {0} in Algorithmic Schema
2.3 specifying a sequence {L,: k=1} (or {J,: k=1}) so that x, = x}, for all k.

Proof. We have x; = x. Therefore note that in view of the formulae specifying the
computations in the two algorithmic schemata, the result follows from an induction
argument provided we could show that given x, = x} and x,,,=x}., there exists
symmetric and positive definite By, (or H,,) satisfying B, 0, = 1 (or Hy 1 = 0i)
where §r, > 0 if and only if there exists &, and nonsingular Ly, (or Ji.,) satisfying
Bt =(03)"re>0, Lyy, 5 = ryand L}, 5% = &, (or Jy B = 0% and J 1,7 = 0, ). This
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latter fact follows from [8, Lemma 2.1] since when x, = x5 and x,.,; = x3.+, We have
5k:5§and rk:ri. |

Using arguments similar to those in the proof of Lemma 2.4 and [8, Theorems
2.2, 2.3] it can easily be verified that under the same hypotheses of Lemma 2.4, the
BFGS generalizer (or DFP generalizer) of Algorithmic Schema 2.1 with b, == f'(x;)
for all k and the member of Algorithmic Schema 2.3 specified by o=
201/ (Gx L Lity) Lty (or B :=~2p/(rJiJir) Jir) for all k are equivalent.

In view of Lemma 2.4 we may think of Algorithmic Schema 2.3 as a ““factored”
version of Algorithmic Schema 2.1 with b, := f'(x;) for all k. We also remark that
readers familiar with quasi-Newton methods may recall that convergence analyses
are usually performed using unfactored forms of updates while a popular way of
implementing them is based on factored forms of updates (whenever they exist).
In view of the results in Sections 3 and 4 and in [2] it seems that the form of updates
in Algorithmic Schema 2.1 is more suitable for convergence analyses. On the other
hand, we believe that for purposes of implementation of those members of Algorith-
mic Schema 2.1 with equivalent members in Algorithmic Schema 2.3, the latter form
of updates may be more suitable.

3. Local and qg-linear convergence of two members of Algorithmic Schema 2.1 that
extend the DFP and BFGS methods

The purpose of this section is to analyze locally the two members of Algorithmic
Schema 2.1 that extend the DFP and BFGS methods when b, = f'(x,) for all k.

We will first specify the two iterations that we wish to analyze. They are Iterations
3.1 and 3.2 below which state the direct iterations corresponding to the DFP
generalizer and the BFGS generalizer respectively of Algorithmic Schema 2.1 when
b= f'(x,) for all k. We refer the readers to [3, pp. 224-225] for motivation for
undertaking analyses of direct iterations.

Iteration 3.1.
Initialize x,, hy, and symmetric and positive definite B,.
For k=0,1,...do
v =—Bi'f(x),
Ae=1/(1+ hioy),
X1 = X+ Aglx,
Sp = Xpe1 — X
P = VAL (6) = Gace)V = G DY el f (50} s,
Yio = = {f ()} s/ Lf(a) = f (i) + pi],
Ok = YiSks
Yie = YiS (X)) = 1/ ) f ' (x0),
e = Yic/ Yis
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Bii1=[1—rd/(0icri) 1B [ I - ﬁer/(ﬁkrk)]+ rkrf/(ﬁlrk),
e =[(1- 'Yk)/('}’ks{f/(xk))]f,(xk)a

end do.

Iteration 3.2.
Initialize x,, hy, and symmetric and positive definite H,.
For k=0,1,...do
v =—H, f'(x),
Ae=1/(1+ hioy),
Xpep1 = X T Ay,
Sk = Xie1 — Xk,
pre =V 0) = f )Y =1 G DY sl F (60} s
Yie = —{f,(xk)}Tsk/[f(xk) = f (X)) + o],

Uk = YiSk,
Vi = Vi (X) — 1/ vi ) f (i),
e = Yi Yis

H ., =[1- 5krz/(r{5k)]Hk[I_ rkﬁk/(rzﬁk)]"*’ 5k6k/(rzﬁk),
B =11 =)/ (visif ()1 (%),

end do.

The operations in Iterations 3.1 and 3.2 may not be well-defined in general.
However, in the results of this and the next sections we shall refer to them under
conditions which will ensure that they are well-defined. In the rest of the paper
when we refer to Iterations 3.1 and 3.2 we shall also tacitly assume that they generate
infinite sequences of {x;} with f'(x;)#0 for any k. Since in practice we would
terminate the iterations if we have f'(x;) =0 for some k we do not lose generality.
Moreover, this assumption facilitates stating our results.

Before proceeding with the analysis we remark that in view of Lemma 2.2 it is
possible to establish local and g-superlinear convergence of Iteration 3.2 using
appropriate estimates involving vy, starting with the local and g-superlinear conver-
gence of [11, equations (4.5), (4.6)] established by Sorensen [11]. However, it does
not seem possible to establish the local and g-superlinear convergence of iteration
3.1 using a scheme paralleling such an approach. The results we state in this and
the following sections with respect to Iterations 3.1 and 3.2 on the other hand exhibit
the same sort of “duality” that one observes in the local convergence results for the
direct iterations of the DFP and BFGS methods. These results, in view of Lemma
2.3 readily imply the local and g-superlinear convergence of both the DFP- and
BFGS-related algorithms of Sorensen [12, pp. 154-156].

In our analyses we shall have occasion to use norms on R" and R"™". || - || shall
represent the I, vector norm on R" and the induced operator norm on R"™". We
shall also have occasion to use the Frobenius norm on R"™" which we denote by
[|]¢. In our analyses, as in those of [3, 6] of quasi-Newton methods, it becomes
necessary to use a matrix norm |- ||, on R"*" that is not induced by a norm on R".
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However, the equivalence of norms on finite-dimensional vector spaces implies that
there is n > 0 such that

IQll<nllQlla, QeR™" (3.1)

We shall have occasion to use (3.1).
As in [11] we shall now state the following definition and assumptions regarding
[ X->R.

Definition 3.3. Given f: X >R, fe C*(D) where D< X is an open convex set, a
point x, € D is said to be a strong local minimizer of f if f'(x,) =0 and f"(x,) is
positive definite.

Assumption 3.4. fe C*(D) where D< X is an open convex set and x,e€Dis a
strong local minimizer of f. Furthermore, there is a neighborhood N < D of x, and
a constant L >0 such that

I£"Ges) =f" (o) || =< Ll x4 — x| (3.22)
and

£ () =f ()] < Li|xs — x| (3.2b)
for all x,,xe N.

Note that by [3, Lemma 3.1], (3.2a, b) are not inconsistent. An immediate con-
sequence of Assumption 3.4 and [3, Lemma 3.1] is that for all x,,x€ N,

£ (x0) = f'(x) = f"(x) (x4 = x)||
< L max{[|x, — x|, [|x — x|} % —x]|. (3.3)

We shall begin by stating the following lemma due to Sorensen [11]. It will ensure
that there is a neighborhood of x, where Iterations 3.1 and 3.2 are well-defined.

Lemma 3.5. Let f: X > R satisfy Assumption 3.4. Then there is a neighborhood N of
the strong local minimizer x, so that f"(x) is positive definite for all xe N; and
(3.2a,b), (3.3) are satisfied,

(f == (S s(f) s=7|s|", (3.42)
y=v(xy,x)=~(f)"'s/(f~f. +p) satisfies

N—vyl/lsl=M (3.4b)
and

1< y<3 (3.40)

Sorallx,,xe N, x, #x, wheres = x, —x, f=f(x), fv = f(x), =1 (x), fy = f(x),
p=v(f~f.)—(f)Ts(f) s and >0 and M >0 are constants.

Proof. See [11, Lemmas 4.2, 4.3 and Corollary 4.4] and their proofs. [



K.A. Arivawansa | DFP- and BFGS-related collinear scaling algorithms 37

We shall now state a result that plays a role in our analyses similar to the one
played by equation (3.2) of Broyden, Dennis and Moré [3] in their analyses of
quasi-Newton methods.

Lemma 3.6. Let f: X - R satisfy Assumption 3.4. Suppose that N is the neighborhood
of the strong local minimizer x, indicated in Lemma 3.5. Then there is a positive
constant K such that for all x,, xe N,

7= f"(x) || < Kor(x., x)|| 5| (3.5)

where 5:=ys, ri=y/y, yi=yf+—(1/9)f and o(x,, x)=max{|x. — x|, |x—x,]}.

Proof.
Ir=f" ()8l = 1Lf4 = 1/ y)°f = f'(x) ¥s|
=y fi—f =3+ A= fs = {0 =)/ VS
== =) s 1=l [Lf2 = (x)]
=1+ A+ )/ VS = xII-
Now using (3.3), (3.2b), (3.4b) and (3.4c) to estimate terms on the last right-hand
side we get
Ir=f"(x,) 3l < G+8M) Lo(x., x)||s]| < 2G+8M) Lo (x., x)|| 5]
so that (3.5) holds with K :=2(3+8M)L for all x.,xe N. [

We shall now focus our attention on Iteration 3.1. A key preliminary result used
in the local analysis of quasi-Newton methods is the so called “bounded deterioration
condition” for Hessian or inverse Hessian approximations. In the following lemma
we give such a result for use in analyzing Iteration 3.1. In order to do that we need
to define a weighted Frobenius norm | Q|4 for any QeR™™" and given positive
AeR"™" by

[Qa=A"2QA™"?||r (3.6)

where A~'/? is the symmetric, positive definite square root of A~'. In the rest of the
paper, whenever used with respect to lteration 3.1, |||, will have the meaning
indicated by (3.6).

Lemma 3.7. Let f: X >R satisfy Assumption 3.4 and put A= f"(x,) and ¢ = | A7"|.
Let N be the neighborhood of x,, in Lemma 3.6. Suppose that N is further restricted,
if necessary, so that

o(x,,x)<1/(3¢K) 3.7)

for all x,,xe N. Let BeER"" and define B.=[I1~ri"/(3"r)]B[I—-or"/(5"r)]
+rr7/(5"r) for x,, x € N where x, # x. Then there are constants a,>0, a,>0 and
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a (3<a<1) independent of x,, x such that for all x, ,xe N, x, #x,
1B, — Al A <[V1—ab’+ a0 (x,, )]|B— Al s+ az0(x., X) (3.8)
where 0= ||A™*(B— A)o||/ (|| B— A|Al|AV?5[)<1 if B# A and 6 :=0 otherwise.

Proof. For x,, xe N, x, #x we have ©# 0. Now consider the case where B # A.
Then (3.8) follows from [3, Lemma 5.2] (with y, ¢, s and M in that lemma substituted
by r, r, & and A™"? respectively) if |4 r—A"Y?5||/| AV ?5|| <1, since ||r— A7)
/14735 < | A7 [Ir— A/ 5] S VE Ko(x,,x) by (3.5). But A 2r—A"]
/A 8] < A7 |r = AD]/[5] <3 by (3.5) and (3.7).

Now consider the case B=A. By the discussion in [3] preceding Lemma 5.2 it
follows that when B= A we can neglect the first term on the right-hand side of
(3.8). (See also [6, Lemma 3.1].) Therefore, we can simply let 6:=0when B=A.

We are now going to present a result which we shall use to measure the closeness
of the quantity A, of Iteration 3.1 to unity. Our result is very much motivated by
Lemma 4.7 of Sorensen [11] for his collinear scaling algorithm related to the BFGS
method. However, we obtain it in a form for {A,} of Iteration 3.1 (which is related
to the DFP method) so that a similar result could be established for {A,} of Iteration
3.2 (which is related to the BFGS method).

Lemma 3.8. Letx €R", h € R" and positive definite BE R™"", Putf = f(x) andf" = f'(x)
and suppose that f'#0 and that 1—h"B™'f'# 0. Define A:=1/(1—h"B"'f"), x, =
Xx—AB7'f and s:=x,—x. Put f,=f(x,), f.'=f"(x.) and suppose that f—f,>0
and__that  (f—f)’~(f4)"'s(f)'s>0. Let y=—s"f'/(f—f.+p) where p:=
V=17 =(f07s(f)Ts and define h,:=[(1=v)/(ys"f)]f and B, as in Lemma
3.7. Then whenever |1 — y|k <1 where k = [{||B"||+ | B:'[}| B +|v’A — 1]1(1/|y’A),
we have that 1—hLB;'f, >0 and that A, = 1/(1—hLB'f.) satisfies

[1— vyl

1-A4= .
I +, 1‘[1_')/'K

(3.9)
Proof. hB:'f,=(1~1vy)B where 8= (1/y)[(f)"B;'f".1/(s"f). Using the fact that
B0 =rwhere 0= vys and r=f, —(1/y")f it is easy to verify that 8 can be expressed
as

1 (MBI -B) yA-d

YA (f)Y'BYS YA

B=

Hence

(B =B
[(CAR:A

<[IB' = BI Bl +]v’A =1]1(1/]¥°A])

<[{IB~ I +IB MBI+’ A =111/ |¥*A].

The conclusions of the lemma follow. O

IB]=(1/]¥’A]) +1v’ A =1/]¥’A|
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In Theorem 3.9 below we establish the local and g-linear convergence of Iteration
3.1. Before proceeding however, we remark that the hypotheses of Lemma 3.8 (which
may seem restrictive) and (3.9) are really motivated by the proof of Theorem 3.9.

Theorem 3.9. Let f: X - R satisfy Assumption 3.4 and let x,, be a strong local minimizer
of f. Put A= f"(x,). Suppose that the sequence {x,} is generated by Iteration 3.1 from
initial quantities x,, h, and symmetric, positive definite B,. Then given any u € (0, 1),
there are positive constants € = e(u) and 6 = 6(u) such that if

|xo— x4l <&, |Bo—Ala<8 and |1—Ag <3,

the sequence {x,} is well-defined and converges to x,.. Furthermore
ks =Xl <l —x4ll, k=0,1,...,

and {||B:|}, {I|Bx'|l} are uniformly bounded.

Proof. Put {:=||A|| and ¢:=|A7"|]. Choose any /€ (0, 1) and then choose &, § >0
such that the following inequalities are satisfied.

2ndé<p/(A+p), (3.10a)
E(1+u)[L(e+8)+2n0]<p, (3.10b)
QRad+az)e/(1—p) =<8, (3.10¢)

2MEe[26(1+ )28+ ) +8(1+2Me)*+2Me(3+6Me +4M?e?)],
<I8[1-{8(1+2Me)*+2Me(3+6Me +4M*e*)}], (3.10d)
s=(1-D/1 (3.10¢)

In (3.10a,b,c,d,e) m, L, a;, @, and M are as in (3.1), (3.2a,b), (3.8), (3.8), and
(3.4b) respectively. A moment’s reflection would indicate that given & ¢, L, M, «,,
a- all positive and u, [ € (0, 1), selecting &, 6 > 0 to satisfy (3.10a, b, ¢, d, €) is possible.

Let N be the neighborhood of x, where the hypotheses of Lemma 3.7 are satisfied
for all x,, xe N. If necessary further restrict & so that |x —x,|| <& implies x & N.
Suppose that ||x,—x,|| <&, |Bo—A]4<8 and |1 —Ay| < 8.

Now by (3.1), |By— Al <n]||By— A|l4s <78 <2né and the Banach Perturbation
Lemma [10, p. 45] and (3.10a) give ||B,'[| < &(1+ u). We have

Xy =Xy = Xo— Xy — )\oBglf,(xo)
= By ' [—{(f"(x0) = f'(x4) — A(xo—x,)}

+(1=20)(f (x0) = f'(x)) + (Bo— A) (x0— x)].
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Therefore
e —xll < 1 Bo ILILF (3x0) =" () — Ao = x|
1= Al [Lf(x0) =f (x| + [ Bo = Al [| X0 = x,]]]
which together with (3.3) implies
561 = x4l < £+ UL 042+ SLIx0— |+ 218 50— ]
<&+ p)[L(e +8)+218]||x0— x|
<pllxo—x4]l  (by (3.10b)).

The proof is completed with an induction argument. Suppose that || B, — A| 4 <28,
|36y = xgf < pllxi —x4]] and [1—A,/<8& for k=0,1,...,m—1 where m=2.
Let o.=0(x;11,%). Then Lemma 3.7 implies that |Bi,—Alsa<
[1+ a,0:]|| By — Al s+ az0y for k=0,1,..., m—1. Hence for k=0,1,...,m—1,

| Biii=Alla= | B~ Alla<2a,ep"8 + asep”.
Summing both sides from k=0 to k=(m—1) we have
IBr— Alla<||Bo— Al a+ Qa8+ az)e/(1—p)
<8+5=26 (by (3.100)). (3.11)
Also
IBill< | B — Al + | Al
s 7| B —Alat Al <296+¢ k=0,1,...,m, (3.12)
and by the Banach Perturbation Lemma and (3.10a),
IBil<é1+u), k=0,1,...,m. (3.13)
Now by Lemma 3.8 we have |1 —A,|< (|1 = vm_1lrm_1)/ (1 —=]|1—¥p_1|Km_1) when-
ever [1=ym lkm <1 where &p_=[{||Bnli]+|Bu 1M Bull+1¥m-1dm1—1]
X (1/ Vo1 Am—i])-But|1 = ¥ | < M| % — Xy | S2M || X, — X, | <2Mep™ ' <2Me
by Lemma 3.5 and the induction hypothesis. Therefore
1= Y 1Al ST = A ) Vi) Yoo+ (1= ¥
<[1=An ")’fn—ll'*"l = Ymal 1+ Yoo+ anfll
<8(1+2Me)*+2Me(3+6Me +4M?e?).
Consequently, vy, Am_y|>1-[8(14+2Me)*+2Me(3+6Me+4M?£?)]> 0 and

261+ )28+ )+ 8(1+2Me)*+2Me(3+6Ms +4M%e?)
Ky—
mt 1—{8(1+2Me)’>+2Me(2+6Me +4M>c?)}

Hence by (3.10d, €), |1 — ¥,,—1| k-1 < I8 <1 which implies
11— An|<I8/(1—18) <. (3.14)
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To complete the proof we must show that || x,,.; — x,|| < | x,, — x,||- Since we have
established || B,, — A]| 4 <28 and |1 —A,,| < § it follows that

[ %m1 = x| < EQ+ ) L&+ 8) + 208113 — x| < ]| — 2| (3.15)
by (3.10b) as in the case of k=0.

With (3.11), (3.12), (3.13), (3.14) and (3.15) established the induction argument
is complete and the conclusions of the theorem follow. O

Theorem 3.9 establishes the local and g-linear [10, Chapter 9] convergence of
Iteration 3.1. In the rest of this section we shall concentrate on Iteration 3.2. We
shall end this section with a theorem for Iteration 3.2 analogous to Theorem 3.9 for
Iteration 3.1.

We begin with the following lemma analogous to Lemma 3.7. Here and in the
rest of the paper whenever used with respect to Iteration 3.2 || ||, will have the
following meaning. Given positive definite AeR""", | Q| 1= || A"*QA"?|| for any
Q c Rnxn.

Lemma 3.10. Let f: X >R satisfy Assumption 3.4 and put A= f"(x,), = || Al and
¢&=||A7Y. Let N be the neighborhood of x, in Lemma 3.6, further restricted if
necessary, so that

o(x,, x)<8J/7/(2QT1KV¢) (3.16)
forall x,,xc N where 7is as in (3.4a) and K is as in Lemma 3.6. Let HecR""" and
define H, =[I—0r"/(r¥"O)IH[I—rd"/(r"d)]+ 87/ (r"D) for x., x€ N, x,#x
Then there exist constants a; (a;>0), a, (a,>0)and a 3<a<1) independent of
X, X such that for all x, ,x€ N, x, # X,

IH, — A as[VA—ab®)+aio(x,, )| H—A 4+ aro(x, x) (3.17)

where 0= ||AY(H-A")r|/(|H-ATAA™?r)<1 if H#A ' and 6:=0
otherwise.

Proof. Note that #'r=2p by (2.7b). Therefore (3.4a) and Cauchy-Schwarz
inequality gives ||5]| ||r]|= 6"r=2v7||s|*. Since x, # x, using (3.4c) we get
Irll=2v7|s|?/ 18] =57 5]l. (3.18)

We therefore have that ||r|| # 0. The proof now proceeds as the proof of Lemma 3.7
using [3, Lemma 5.2]. Consider the case H # A '. We first note that ||A"?5—
A72r||/| ATV || < VZE| r— A)/||r|. Therefore when (3.16) holds, by (3.18) and
Lemma 3.6 we have that |A"?6—A""r|/|A7"r|| <}. (3.17) now follows from [3,
Lemma 5.2] with &, &, r and A"? in place of y, ¢, s and M respectively in that
lemma, since ||5— A 'r||/||AV?r| < (3VEETK )0 (x,, x) by (3.18) and (3.5).

Now consider the case where H=A"". By the discussion in [3] prior to Lemma
5.2 we can neglect the first term on the right-hand side of (3.17) when H=A"". It
follows that we can let #:=0 when H=A"". [
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Before we present the result on the local and g-linear convergence of Iteration
3.2 we need the analogue of Lemma 3.8.

Lemma 3.11. Let x<R", heR" and positive definite HcR""". Put f:=f(x) and
f=f"(x) and suppose that f'#0 and that 1—h"Hf' #0. Define A =1/(1—h"Hf"),
x,=x—AHf and s:=x, —x. Put f, = f(x,), fi=f"(x,) and suppose that f —f,>0
and__that  (f—f)*=(f)'s(f)'s>0. Let yi=—s"f/(f—fi+p) where p=
V=1 =(f)"s(f)7s and define h,:=[(1—y)/(ys"f)1f" and H. as in Lemma
3.10. Then whenever |1—y|k <1 where w:=[{|H|+|H.|}H"|+]y’r—1]]1x
(1/]¥°A]), we have that 1—h i H, f\.> 0 and that A, :=1/(1—hYXH, f,) satisfies

I1—vl«
11— s /25
i +l 1_'1"y|K
Proof. h1H f=(1—v)B where B:=(1/y)[(f)"H,f.]/(s"f). Using the fact
H,r=0,where ¢ =ys and r = f, — (1/y)*f" itis easy to verify that 8 can be expressed
as

1 z(H - H+)z+ |
YA z Hz YA

where z:= H 's. Hence

=L FH=H)z a1
lv’Al  |zTHe| [v’Al

<[||H - HJ[[|H '[+]y’A = 1]1(1/]y’A])
<[{IIHI+IHMH [ +1v’A = 11(1/]¥’Al).

The conclusions of the lemma follow. [

We now state the following theorem on the local and g-linear convergence of
Iteration 3.2. Its proof uses Lemmas 3.10 and 3.11 in a manner analogous to the
way Lemmas 3.7 and 3.8 were used in the proof of Theorem 3.9. We omit its proof
and refer the reader to [2] where a complete proof is given. It should be noted
however, that its proof is independent of the proof of Theorem 3.9 just as much as
the proofs of Theorems 3.2 and 3.4 of [3] are independent of each other.

Theorem 3.12. Let f: X - R satisfy Assumption 3.4 and let x, be a strong local
minimizer of f. Put A= f"(x,.). Suppose that the sequence {x,} is generated by Iteration
3.2 from initial quantities x,, h, and symmetric, positive definite H,. Then given any
w1 €(0, 1), there are positive constants € = £(u) and 8 =8(u) such that if

llxo— x| <, [Ho=A'a<& and [1-X<3,
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the sequence {x,} is well-defined and converges to x, . Furthermore
[er = x4l <l = x4 ll, k=0,1,...,

and {|H.|},{|H:||} are uniformly bounded. O

4. Q-superlinear convergence of two members of Algorithmic Schema 2.1 that extend
the DFP and BFGS methods

The purpose of this section is to demonstrate that Iterations 3.1 and 3.2 discussed
in Section 3 are g-superlinearly convergent. We refer the reader to [10, Chapter 9]
for definitions on rates of convergence of convergent sequences. For our purposes
here it suffices to note that if {x,} =R" converges to x,, and if

lljg (p _x*“/ [ % = X4[[)=0
then the rate of convergence of the sequence {x;} is g-superlinear.

We can proceed to obtain results on rate of convergence of Iterations 3.1 and 3.2
assuming that “‘starting quantities” are ‘“close” to given quantities that depend on
Xy, as in [3, 9] with respect to quasi-Newton methods. However, following Dennis
and Moré [6] with respect to quasi-Newton methods and Sorensen [11] with respect
to his collinear scaling algorithm related to the BFGS method we shall demonstrate

g-superlinear convergence of Iterations 3.1 and 3.2 assuming that {x,} generated by
the iterations converge to x, satisfying

Y x—xyll < 0. (4.1)

k=0
In our analysis, we shall need to show uniform boundedness of {|| B ||} and {|| Bx ||}
in the case of Iteration 3.1 and of {||H, ||} and {|H'||} in the case of Iteration 3.2.

We shall need the following two lemmas to do so.

Lemma 4.1. Let {¢,} and {8,} be sequences of nonnegative numbers such that

Drr1=(1+8;) Py + 8

and that
Y 8 <00,
k=1
Then {¢,} converges.
Proof. See [6, pp. 555-556]. O

The following lemma is Lemma 5.5 of Sorensen [11], where we have corrected
a few typographical errors in the original statement in [11].
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Lemma 4.2. Let EcR""" be positive definite. Let u, v€R" be such that u, v#0 and
uTv #0. Define
vw' Euu'E

E.=FE+—— .
* u'v  uTEu

If M eR™" is nonsingular, then
I E || asrz=<max{1, | E || sz} +(1/ oa)[| Mo =M "ull/| M~ ul +V1- 03]
where wyy = |u"v|/(|Mo|| |M " ull) and ||Q||sm2= || MOM|| for any QeR"*".

Proof. See [11, pp. 107-108]. O

With these preliminaries out of our way we are now ready to estimate the rates
of convergence of Iterations 3.1 and 3.2. We shall first consider Iteration 3.1. The
following theorem brings us almost to our objective of establishing the g-superlinear
convergence of Iteration 3.1.

Theorem 4.3. Let f: X - R satisfy Assumption 3.4 and put A= f"(x,). In addition
assume that {x,} © X is a sequence that satisfies (4.1). Then there is a positive integer
ko such that for any positive definite B, € R""" the following statements are true for
quantities defined by formulae in Iteration 3.1.

(i) py is real; yi, Oy, yi and r, are well-defined ; and B, is positive definite; for all
k=k,.

(i) {||AY*Bg A2} is uniformly bounded.

(iii) limy.o |A™Y2BAT?| exists.

(iv) limg,o|1— 9| =0.

(v) lim;q |1 —A,=0.

(vi) limyoo (| B =", )18k )1/ | Bc]l) = 0.

Proof. (4.1) implies convergence of {x.} to x,. Hence it is possible to choose a k,
such that for k= k,, x, is in the neighborhood N mentioned in the hypotheses of
Lemma 3.7, further restricted if necessary so that

Or = 0 (%er, Xe) <min{1/ (3¢K), 4/7/ (OVTE K)} (42)

where {=| Al and ¢:=||A7"||. Conclusion (i) immediately follows. Furthermore,
since then (3.8) holds for k= k,, Lemma 4.1 immediately leads to conclusion (iii).

To establish conclusion (ii) we need to appeal to Lemma 4.2. We note that when
By, is as in Iteration 3.1, Byt = B '+ 004/ 04t — B 'reri Bi'/ ri By ' ri and apply
Lemma 4.2 for k=k, with M:=A"? v=1¢,, u=r, E=B;', E..=Bi}, and
a2 = wy = Opre/ (| A0 || | A7V 1e]]). We get

||B;4lr1|lA‘/2,2s max{l, ||B;1”A1/2)2}

+(1/ o)A 5 — Al |AT P r |+ V1 = 07]. (4.3)
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To estimate the second term on the right-hand side of (4.3) we apply [7, Lemma
3.2]. To that end we note, by (3.18), that

A 25 || = |7l /YT = 87/ (VD) | el

Therefore
|AY?6 =A™ 2re]l | r — AGi |
/ < (OVTE/ (8/r)) L0l
”A~1/ rk” ( {f/( T)) “vk“
< (WEE/(8VT)) Ko <3 (4.4)

where the second and third inequalities follow from Lemma 3.6 and (4.2) respec-
tively. When (4.4) holds, [7, Lemma 3.2] gives

A28, — A7 2r ||/ | A7 2r | < (9VEE/ (8V7)) Ko
and
1-wi<[9{E/ (8VT)Ko ] <i.
With these estimates (4.3) gives
max{1, ||B;i1||A”2,2}$maX{1, “BZIHA‘/Z,z}*‘(36K\/E/(8‘/§;))0'k-

Lemma 4.1 with ¢, :=|B¢'|4av2» and 8, = (36KV(€/(8V/37))o, now yields the
desired conclusion (ii).

Conclusion (iv) is almost trivial since |1 — y,|< M| s|| <2Moy, and oy tends to
zero since {x,} converges to x, by (4.1).

To establish conclusion (v) note that

M —1=[(1 = y)Be1/[1— (1 = 1) Bi]

where
Br=1-(1/vix)[((f (%)) Biiaf (x))/ ((f (x)) " Bi ' f'(x:))]

as in the proof of Lemma 3.8. Hence |8,/ <1+ (1/|yiAu])|| By | Bx|l- Now since
sk =—AeBi'f'(x) implying that [A|= [[sill/ (I Bi' [ [l f(x)]), by (3.4b, ¢) we get

(1= 78 < M|l +8M| B | Bell | Bickill £ (x| for all k= k.

(ii), (iii) and the convergence of {x,} to x, now lead to conclusion (v).

Once we have established part (ii) and (3.8) the proof of (vi) proceeds as the
proof of Dennis and Moré [6] of part (ii) of their Theorem 3.4: We observe that if
{B.} does not converge to A (otherwise (vi) trivially holds) then {6,} converges to
0 (where 6, :=||A™*(B, — A) ||/ (|| B = Al| 4| A" *Ti||)) which leads to conclusion
(vi) O

We invite the reader to compare Theorem 4.3 above with [6, Theorem 3.4]. As
in the latter theorem, {x,} is any sequence converging to x,, satisfying (4.1). Suppose
now that {x,} converges to x,, satisfying (4.1), say due to criteria in the line search
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procedure LSP. Theorem 4.3 implies that then operations in Iteration 3.1 eventually
become well-defined. Therefore if the direct iterate it specifies does not violate the
criteria in LSP that force {x,} to converge to x,., then the direct iterate may be used
as the next point. Theorem 4.4 below implies g-superlinear convergence of {x;} to
x, under these circumstances.

Of course the comments in the previous paragraph apply to the DFP generalizer
direct iterates in Iteration 3.1 and to the BFGS generalizer direct iterates in Iteration
3.2 (after we have indicated pertinent results for Iteration 3.2). Nonetheless they
form the basis for our comments in Step 2 of Algorithmic Schemata 2.1 and 2.3 on
the use of direct iterates as the beginning trial point in LSP.

Theorem 4.4. Let f: X - R satisfy Assumption 3.4. Let {x;} be defined by Iteration
3.1 and suppose that {x;} converges to x, satisfying (4.1). Then {x,} converges
q-superlinearly to x,, .

Proof. Note that x,.,=x, —ABy'f(x:), and that by part (vi) of Theorem 4.3,
Titmmo (| Be = 1" (x) 1% = %) [/ [ %51 — X [) = 0. Part (v) of Theorem 4.3 and [6,
Corollary 2.3] now yield the desired result. []

We shall now concentrate on Iteration 3.2. The proof of g-superlinear convergence
proceeds in a very similar manner to that of Iteration 3.1. First Lemma 3.10—the
analogue of Lemma 3.7—and Lemmas 4.1 and 4.2 are used to prove the analogue
of Theorem 4.3. This theorem provides us with all the results necessary to prove
the g-superlinear convergence of Iteration 3.2 leading to a theorem analogous to
Theorem 4.4. The proofs of these results are independent of the proofs of Theorems
4.3 and 4.4. The methods of proof though are similar to those of Theorems 4.3 and
4.4. In view of this and limitations of space we first state the analogue of Theorem
4.3 for Iteration 3.2 without proof.

Theorem 4.5. Let f: X >R satisfy Assumption 3.4 and put A= f"(x,). In addition
assume that {x, } = X is a sequence that satisfies (4.1). Then there is a positive integer
ko such that for any positive definite H, e R""" the following statements are true for
quantities defined by formulae in Iteration 3.2.
(i) px is real, vy, Oy, yi and r, are well-defined, and H, is positive definite, for all

k=ky.

(i) {|A7*H'A""?|}} is uniformly bounded.

(iii) limy. |AY>HA"?|| exists.

(iv) Hmy o |1— 9 =0.

(v) limy o0 |1 = Ag] =0.

(V) Time (IHE = (PGe ) Tl Imd) =0, O

Once Theorem 4.5 is established the proof of g-superlinear convergence of
Iteration 3.2 proceeds in a very similar manner to that of Dennis and Moré
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[6, p. 559] of the g-superlinear convergence of the BFGS method and to that of
Sorensen [11, pp. 109-110] of his BFGS-related collinear scaling algorithm.

Theorem 4.6. Let f: X - R satisfy Assumption 3.4. Let {x,} be defined by Iteration
3.2 and suppose that {x.} converges to x, satisfying (4.1). Then {x} converges
g-superlinearly to x,, .

Proof. Consider iterates k= k, where k, is the positive integer mentioned in the
hypotheses of Theorem 4.5. Put A= f"(x,,). Now

[H, _Ail]"k = Hf'(x1) — (1/7i)ka’(xk) _Ailrk
= Hf' (Xy1) — Ail("k — ADy)
(At (v + 1)/’)’%)(’)% =1+ (A = DIH S (x).

Therefore by parts (ii), (iv), (v) and (vi) of Theorem 4.5, (3.4b) and (3.18), it follows
that

lchr?o If i) I/ 1| i) = 0. (4.5)

Dennis and Moré [6, pp. 551-552] show that (4.5) implies g-superlinear convergence
of {x,}to x,. O
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