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This paper is concerned with collinear scaling algorithms for unconstrained minimization where the 
underlying local approximants are forced to interpolate the objective function value and gradient at only 
the two most recent iterates. By suitably modifying the procedure of Sorensen (1980) for deriving such 
algorithms, we show that two members of the algorithm class derived related to the DFP and BFGS 
methods respectively are locally and q-superlinearly convergent. This local analysis as well as the results 
they yield exhibit the same sort of "duality" exhibited by those of Broyden, Dennis and Mor6 (1973) 
and Dennis and Mor6 (1974) for the DFP and BFGS methods. The results in this paper also imply the 
local and q-superlinear convergence of collinear scaling algorithms of Sorensen (1982, pp. 154-156) 
related to the DFP and BFGS methods. 
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I. Introduction 

Cons ider  the min imiza t ion  problem: 

Given  f :  X ~ E, X _~ E ' ,  f ~  C I ( X )  produce  a sequence {xk} c X 

that  converges to a local min imizer  of  x ,  c X o f f  (1.1) 

In  this paper  we shall be concerned  with the uncons t r a ined  case of  (1.1) where 

X : =  R' .  

The sequence {xk} is usual ly  generated by iterative algori thms starting with a 

given est imate xo of x , .  In  most  of these algori thms it is possible to interpret  the 

computa t ions  in the kth step which produces  xk+l as being based on an appropr ia te  

local scaling of  X a n d / o r  an appropr ia te  local approx imat ion  of f .  We use the word 

" loca l"  to indicate  that  these scalings and  approx imat ions  are defined in terms of 

quant i t ies  known  after xk has been  obta ined  and  to indicate  that they are in tended  

to be used in appropr ia te  ne ighborhoods  of  xk. The quas i -Newton  methods  [7], for 

example,  are based on local affine scalings of  X and  local quadra t ic  approx imat ions  

off. 
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In [4, 5], Davidon proposed generalizations of local affine scalings (1.a.s.'s) and 
local quadratic approximations (1.q.a.'s) termed local collinear scalings (1.c.s.'s) and 
local conic approximations (1.c.a.'s) respectively. We refer the reader to [5] for a 
detailed discussion of 1.c.s.'s and 1.c.a.'s. In the rest of the paper an l.c.s, and an 
l.c.a, shall have the following meaning. 

A 1.c.s. (with reference point xk) is a mapping Sk : w ~ x  of the form 

x=xk+Jkw/( l+h~w) ,  we Wk, (1.2) 

depending on the parameters Jk e R "×" (Jk nonsingular) and hk e N". In (1.2) Wk :=- 
{w: w e R", 1 + hTw # 0} is the domain of the 1.c.s. For use in the rest of the paper 

+ .  we let Wk.={w: w e n  n, l + h ~ w > 0 } .  Note that 0e  W{ maps to xk. 
A 1.c.a. (with reference point xk) is a function qtk : Xk ~ N of the form 

g[(X--Xk) 1 (X--xk)TAk(x--xk) 
~k(X):=Ck+ 1 - a ~ ( x - x k )  ~2 [l--aVk(X--Xk)] 2 ' x e X k ,  (1.3) 

with value ~k(Xk)= Ck and gradient ~ ( x k ) =  gk, depending on the parameters 
Ak c R " ~  (where ~"~" is the subspace of symmetric matrices in R "×") and ak e ~. 
In (1.3) Xk:={x: x c R  ", 1 - a [ ( x - x k ) # 0 } .  Let X~:={x:  x e ~  ", 1 - a ~ ( x - x k ) > 0 }  
and note that xk e X~. If we decide to approximate f by ~k "near"  xk, then, since 
f e  C1(X) and qtk is discontinuous on its horizon X°k := {x: x e R ", 1 - aVk(x - xk) = 0}, 
we may do so on a neighborhood Nx+~(xk) c_ X~ of xk. 

Since (1.2) and (1.3) generalize 1.a.s.'s and l.q.a.'s respectively we may expect to 
be able to develop algorithms extending quasi-Newton methods based on (1.2) and 
(1.3). Although algorithms based on (1.2) and (1.3) were given by Davidon in [4, 5], 
it was Sorensen [11] who first derived a class of algorithms using (1.2), explicitly 
indicating the relationships to quasi-Newton methods. He referred to his algorithms 
as collinear scaling algorithms since his derivation uses (1.2) explicitly while the 
underlying 1.c.a.'s are implicit. We shall also use the term in the same sense. 

The class of collinear scaling algorithms that Sorensen presents [11, Algorithm 
3.1] is derived as follows. At xk (k~> 1), 1.c.s. (1.2) is used to scale X and a 1.q.a. 
Ok is used to approximate q~ := fo  Sk: 

f(xk + Jkw/(1 + h T w)) 

= ¢Pk(W) ~ Ok(W):=f (Xk)  + [ J ~ f ' ( x k ) ] T w  + l w T B k w  (1.4) 

where Bk e ~ .  If in (1.4) w e Nw~(0)--a neighborhood of 0 6 W~--then 1.q.a. in 
(1.4) and the 1.c.s. (1.2) yield the 1.c.a. 

[f'(xk)]T(x--xk) 1 ( X - - x k ) T j - £ T B k J k l ( x - - x k )  
f ( x )  ~ q'k(x) := f ( x k )  + ~--- 

1--h~Jk'(X--Xk) 2 [ 1 - - h T J k l ( X - - X k ) ]  2 ' 

x c Nx~(Xk), (1.5) 

where +" X k .= {x: x e ~n, 1 - h~Jkl(X - xk) > 0}. Sorensen [ 11 ] chooses Jk, hk and Bk 
by means of appropriate updating formulae so that the l.c.a, in (1.5) 
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interpolates the value and gradient o f f  at Xk and Xk-1 and at several additionalpast 

iterates. 
Most of Sorensen's paper [11] however, is concerned with a specific member of  

the above algorithm class. This specific member, stated in [11, Algorithm 6.1], is 
related to the BFGS algorithm [7] because of the formula Sorensen uses for updating 
Hk := B{ 1. The 1.c.a. (1.5) it uses at Xk ( k ~  1) interpolates the value and gradient 
of f only at Xk and Xk 1 and the update formulae used for Jk and hk [11, equations 
(4.1a, b)] are (specializations of) those given in [11, Algorithm 3.1]. Sorensen 
analyzes the direct iterates [11, equations 4.5, 4.6] of his algorithm [11, Algorithm 
6.1] and shows that it is locally and q-superlinearly convergent. This analysis very 
critically depends on the specific formulae used for updating Hk, Jk and hk. In 
particular, Sorensen implies [11, p. 95] that the member of his Algorithm 3.1 related 
to the DFP method in analogy with his Algorithm 6.1 could not be analyzed. This 
is because it seems impossible to obtain the analogue of [11, Lemma 4.1] to provide 
a closed-form update formula for Ck:= JkHkJ~ in the case of the appropriate 
DFP-related member of [11, Algorithm 3.1]. This last observation also implies that 
such a method may not be implemented without having to maintain and update 
two matrices (Jk and Hk or equivalently Lk := Jk T and Bk := Hka). 

The work of Sorensen [11] indicates how collinear scaling algorithms may be 
derived as very natural generalizations of quasi-Newton methods. It is therefore of 
interest to ask whether local and global convergence results similar to those known 
for quasi-Newton methods hold for collinear scaling algorithms. The analysis of  
Sorensen [11] of his Algorithm 6.1 is a positive step in this direction. The difficulties 
in using the same methods to analyze the analogous member of his Algorithm 3.1 
related to the DFP method seems however to be a stumbling block in attempting 
to respond to such questions on convergence. 

This paper, based on the two earlier reports [1, 2], is an attempt to continue the 
theme of the work of Sorensen [11]: Collinear scaling algorithms may be derived 
extending the quasi-Newton methods very naturally so that the relationships between 
the two classes of algorithms extend to convergence analyses and results as well. 

In Section 2 of the paper we derive collinear scaling algorithms whose underlying 
l.c.a.'s at Xk (k >~ 1) are forced to interpolate the function value and gradient o f f  
at Xk and Xk-1. We emphasize that throughout the rest of the paper we are concerned 
with collinear scaling algorithms whose underlying l.c.a's interpolate function values 
and gradients at the current and previous points only. The purpose of Section 2 is 
to modify the derivation of Sorensen [11] so that the "duali ty" that exists between 
the local convergence results for the DFP and BFGS methods extends to the resulting 
collinear scaling algorithms related to these two methods. In particular, we use the 
1.c.s. (1.2) with Jk := I for all k and replace Sorensen's consistency condition [11, 

equation (2.7)], X k _  1 = S k ( - - V k _ l )  where Vk_ 1 is such that X k = S k _ I ( V  k 1), with the 
condition Xk ~ = Sk(--Vk-~) where Vk 1 is chosen appropriately. Note that since Jk := I 
for all k we do not need (the analogue of) [11, Lemma 4.1] for local analysis and 
that the issue of having to maintain and update two matrices in implementations 
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does not arise. Section 2 simply demonstrates that Jk := I for all k can indeed be 
used and yet have the underlying 1.c.a.'s interpolate function values and gradients 

at the two most recent iterates by relaxing [11, equation (2.7)]. 
Algorithmic Schema 2.1 in Section 2 is the class of collinear scaling algorithms 

that results from our derivation. It maintains and updates hk and Bk or equivalently 
hk and Hk. Despite the simple way our derivation differs from that of  Sorensen 

[11], members  of  Algorithmic Schema 2.1 and the appropriate special cases of  [11, 
Algorithm 3.1] (to enforce interpolation of function values and gradients at the two 
most recent iterates only) are in general different. The following simple relation 

exists between a member  of  our Algorithmic Schema 2.1 related to the BFGS method 
and [11, Algorithm 6.1]. I f  in our algorithm we update  y2Hk (where Yk > 0 would 
be available when we are about  to update Hk) instead of Ilk to get Hk+l we get 
[11, Algorithm 6.1] provided certain conditions are satisfied by the inputs to and 
the line searches of  the two algorithms. However,  we have not been able to find 
similar relations between other appropriate members  of  the two algorithm classes. 
In particular, this is true of appropriate DFP-related members of the two algorithm 

classes. 
In [12, pp. 154-156] Sorensen provides another  derivation of collinear scaling 

algorithms in which underlying 1.c.a.'s interpolate function values and gradients 
only at the two most recent iterates. In this derivation he uses the l.c.s. Sk of (1.2) 
at Xk (k >~ 1) to scale X, and the l.q.a. ~k of (1.4) with Bk := l for all k to approximate 
~k := f ° Sk. Moreover, in the process of forcing the 1.c.a. at Xk to interpolate function 
values and gradients at xk and xk 1 he does not use the consistency condition ]11, 
equation (2.7)] but rather uses the condition xk i = Sk(--~Sk 1) for an appropriately 

chosen ~5k-1 [ 12, equation (6.4)]. At the end of Section 2 we show that if the parameter  
bk in Algorithmica Schema 2.1 is chosen so that bk :=f ' (xk)  for all k (and if certain 
conditions are satisfied by inputs to algorithms) then this special case of  Algorithmic 
Schema 2.1 and the class of algorithms implicit in [12, pp. 154-156] are equivalent. 
Indeed this class of algorithms of Sorensen may be treated as a "factored" version 
of that portion of our Algorithmic Schema 2.1 specified by the choice bk :=f'(xk) 
for all k. 

As mentioned earlier, since we maintain Jk := I for all k, we may expect that the 
methods of  [11] may be used to show local and q-superlinear convergence of both 
the (appropriate)  DFP- and BFGS-related members  of  Algorithmic Schema 2.1. 
Sections 3 and 4 are devoted to verifying that indeed this expectation is true for 
the DFP- and BFGS-related members of  Algorithmic Schema 2.1 with bk :=f'(xk) 
for all k. We hasten to add that because of the relationship we mentioned above 
between this BFGS-related member  of  Algorithmic Schema 2.1 and [11, Algorithm 
6.1] the local and q-superlinear convergence of the former essentially follows from 

the results of  [11] (after some technical estimates to allow for updating Hk rather 
than "yZkHk). However,  the local and q-superlinear convergence of the DFP-related 

members of  Algorithmic Schema 2.1 do not follow from the results in [ 11 ]. Of  course 
due to the (essential) equivalence of collinear scaling algorithms implicit in [12, pp. 
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154-156] and those of Algorithmic Schema 2.1 with bk :=f ' (xk)  for all k, the results 
in Sections 3 and 4 readily imply the local and q-superlinear convergence of DFP- 
and BFGS-related members  of  algorithms in [12, pp. 154-156]. 

2. Derivation of the class of algorithms 

The main purpose of this section is to demonstrate that by setting Jk := I for all k 
and relaxing the consistency condition [11, equation (2.7)] in the derivation of  

Sorensen [11], collinear scaling algorithms in which the underlying 1.c.a's interpolate 
function values and gradients at the two most recent iterates only can be derived 
to extend quasi-Newton methods very naturally. As we shall see in Sections 3 and 
4 the resulting algorithms are related to quasi-Newton methods naturally in the 
sense that local analyses of certain DFP- and BFGS-related methods exhibit the 
same sort of  "dual i ty"  that is well known with respect to the DFP and BFGS 
methods. In this section we shall also indicate certain relationships between the 
class of  algorithms derived here and those given in [11, 12]. 

Suppose that the current point is Xk and that we apply the current 1.c.s. Sk : w~--~x 
(setting Jk := I in (1.2)) so that 

X=Xk+W/(I+hTw),  weWk,  hkcR". (2.1) 

I f  we now let ~Pk : = f °  Sk then 

q~k ( W) = f(Xk + W~ (1 + h~w) ) (2.2a) 
and 

~'k(W)=[1/(l+h~w)][I--hkwT/(l+h~w)]f ' (Xk+W/(l+h{w)) (2.2b) 

for w c Wk. We now approximate  ~k by the 1.q.a. 0k in Nw;(O) as follows. 

~k(W) ~ Ok(W):= ~k(0) + [ ~ ( 0 ) ] T w  +½wTBkw, W ~ Nw~(O). (2.3) 

In (2.3) Bk C ~ , v ,  is supposed to approximate ¢~(0). The aim now is to use the 
1.q.a. (2.3) and the 1.c.s. (2.1) to compute the next point xk+l. Several issues (including 

those that depend on the updating procedure we are about to describe) need to be 
considered when computing xk+l. We shall therefore comment  on the computat ion 
of  xk+~ while we describe the updating procedure. Suppose then for the moment  
that we have computed xk+~, and let sk = xk+l -xk .  

We now wish to move to Xk+~, update hk to hk+l and Bk to Bk+~ SO that we have 
the updated 1.c.s. Sk+l and the 1.q.a. Ok+~ to ~k+~ : = f °  Sk+~ as follows. 

f(xk+, + w/(1 + hT+lw)) 

= ~ k + l ( W )  ~ 0 k + l ( W )  

:= ~Ok+,(O)+[q~'k+,(o)]TW+ awTBk+,W, We N~vk+,(0). 

We shall then repeat the above procedure at xk+~ to get xk+2. 
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We update  Bk and hk to Bk+l and hk+~ respectively by requiring 

qJk+a(0) = q~k+l(0), (2.4a) 

0~,+1(0) = q~+~(0), (2.4b) 

I / tk+ l ( - -~k)  = @ k + l ( - - ~ k ) ,  (2 .4C)  

I~k+ l ( - -Vk)  = ~ c + l ( - - ~ k ) ,  ( 2 . 4 d )  

where 15k C N" is chosen such that  --Vk C W~+1 and Xk = S k + l ( - - ~ k ) ,  Note that  (2.4a) 
th rough  (2.4d) require that  qrk+l, the underlying 1.c.a. at Xk+~, interpolates the 

funct ion value and gradient  o f f  at Xk+~ and Xk. 
+ 

It is easy to show that  the requirements Xk = Sk+l(--Vk) and -vk  c Wk+l, and 

(2.4a) th rough  (2.4d) are satisfied by choosing yk > O, Vk, hk+~ and Bk+~ to satisfy 

h[+lV~ = 1 - Yk, (2.5a) 

Vk = ykSk, (2.5b) 

Bk+l~k=rk,  r k := f , (Xk+l )_ (1 / , gk ) [ i  + T , hk+lSk]f  (Xk), (2.5C) 

and 

t T 2 
[{/(Xk+l)} &] Yk + 2[f(Xk)  --f(Xk+I)] Yk + {f'(Xk)}VSk = 0. (2.5d) 

The discriminant  Dk of  the quadrat ic  equat ion in Yk of  (2.5d) is given by Dk := 
4[{f(Xk)-- f(Xk+I)}2--{f ' (Xk+I)}Tsk{f ' (Xk)}VSk].  I f  we compute  xk+l so that Dk > 0 

± ±,  
then it can be shown that the roots Yk of  (2.5d) are given by yk .= 

- - { f ' ( xk ) }vSk / [ { f ( xk )  --f(Xk+O} + Pk] where Pk := ½X/~k • For  future reference we also 

note that  V[Bk+lVk = F[rk = S[yk = + 2pk where Yk := Yk~f'(Xk+O -- (1 /  Y~)f ' (Xk) .  In 
order  to achieve Yk > 0 therefore,  we shall require that Xk+l be computed  so that 

{f ' (Xk)}Tsk < O, 

and 

Dk>0, 

(2.6a) 

(2.6b) 

f (Xk)  - - f (xk+O > 0. (2.6C) 

We can then let 

yk := y2 = - -{ f ' (Xk)}Tsk /[{ f (Xk)  --f(xk+l)} + Pk] > 0 (2.7a) 

which leads to 

v~Bk+,  vk = -T " " Vkr~=s~yk=Zpk ,  yk: = yk f ' (Xk+l ) - - (1 / yk ) f ' (Xk ) .  (2.7b) 

We shall now comment  on the computa t ion  o f  Xk+l based on (2.3) and (2.1). Let 

us assume that the level set {x: f ( x )  <~f(xo)} is bounded ,  so that  in view of  (2.6c) 

we can without  loss o f  generali ty assume that {x: f ( x )<~ f (Xk ) }  is bounded.  As in 

[5, 11] we propose  to choose  Bk positive definite and to compute  Xk+I based on a 
l inesearch strategy. One possibility that comes to mind is as follows. Compute  the 
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minimizer vk := --Bkl~P~(0) of  6k, let 3k := hTkvk and search ¢k(aVk) over a c [0, co) u 

( - -~ , - -1 /6k )  if 6k > 0 or over a ~ [0,--1/3k) if 3k <~ 0 until an a := ak is found so 
that Xk+l := Sk(OlkVk) with (Sk := Xk+l --Xk) satisfies (2.6a, b, c). In view of the assump- 
tions that {x: f ( x ) ~ f ( x k ) }  is bounded and that B k is positive definite such an ak 

always exists unless f ' ( X k ) =  O. Note however, that if we choose a k C (--o0,-- l / t~k)  

(when 6k > 0) then Xk and Xk+I, or if 1 + ~k ( 0 then Xk and Sk(Vk), are on opposite 
sides of  the horizon X ° of  the underlying 1.c.a. aF k. The neighborhood of Xk on 
which ~g is really used under these conditions therefore includes (part of) the 
horizon X °. Since ~k is discontinuous on X ° and f is smooth, under these 
conditions, some readers may question the validity of  using ~Fk to approximate  f 

Another possibility (also implicit in [5, p. 279]) is to note that [f '(Xk)]Tvk ~ 0 
(unless  f ' ( X k ) =  0) SO that v k may be treated as defining a descent direction for f at 
Xk in the original variable space X. We may therefore search f (  Xk + AVk ) over h a (0, ~ )  

until a h : = h k  is found so that Xk+l]~Xk'JV~kVk (with Sk'~Xk+l--Xk) satisfies 
(2.6a, b. c). Again under the assumptions that {x: f ( x )  ~f(xk)}  is bounded and Bg 
is positive definite such a hk always exists unless f ' (Xk)= 0. One may however 
question this approach since the 1.c.s. (2.1) is not fully utilized in computing xk+~. 

In addition to satisfying (2.6a, b, c) it is also desirable that the linesearch yields 
xk+l to provide a "sufficient decrease" in the sense of Ortega and Rheinboldt [10]. 

Comput ing Xk+~ SO that all the above issues are properly addressed is very much 
an open question. Since we are concerned with local convergence of direct iterates, 
when stating algorithmic schemata in the rest of  the paper,  we shall assume that 
we have a line search procedure LSP: C~(X) x R "  x R  ~ x l ~ - ~ R "  which takes f, Xk, 
Vk and 6k as input and produces a point LSP(f,  Xk, Vk, 6k) that satisfies (2.6a, b, c) 
and other desirable criteria. We can then let Xk+a := LSP(f, Xk, Vk, Sk). The reader 
may agree after reading Sections 3 and 4 of  the paper  that LSP should begin by 

considering the trial point Sk(Vk) as a candidate for Xk+~ if 1 + S~ > 0. 

Once 7k is determined by (2.7a), note that 

(1 - 7k)bk 
hk+ , .-- ,yk(sTbk ) (2.8a) 

for any bk C R" such that sTbk ~ 0 will satisfy (2.5a). In particular, by (2.6a), we can 

use bk :=f'(Xk) SO that 

(1 - 7k)f'(Xk) 
hk+ 1 -- (2.8b) 

yk[S~f'(xk)]" 

Note that (2.8a) and (2.5c) readily imply that 

~ [  sT f '(Xk) b ] (2.9a) 
rk -= Yk + 72 f'(Xk+l) sTbk k J 

and if we select bk :=f'(Xk) leading to (2.8b) then 

rk -= Yk/ 7k (2.9b) 

where Yk is as defined in (2.7b). 
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The choice for hk+~ in (2.8a) is as in [11, 12]. We use it here since our aim is to 

modify only those aspects of  the derivation of Sorensen [11] that, in our opinion, 
prevented him from obtaining local convergence results for DFP-related collinear 
scaling algorithms. 

Let us now consider updating Bk to Bk+l to satisfy (2.5c). In view of  (2.7b) and 
the need to have positive definite Bk for all k, we propose using an updating formula 
UI: R n x ~" x R nv"--> Nnv. which takes Vk, r~ and B k as input and produces Bk+~ 
that satisfies (2.5c) and is positive definite whenever ~7[rk > 0. We write 

Bk+, := U~(t~k, rk, Bk). 

I f  we started off with an approximation Hk c R nv" to [ ~ ( 0 ) ]  -1 in (2.3) then we 

would have ended up with 

. t T t 
-= d- hk+lSk] f (Xk)  , ( 2 . 1 0 )  Hk+lrk  ~k, r k . - - f  ( X k + l ) - - ( 1 / T k ) [ I  

instead of (2.5c). So supposing U~ :l~" x ~" x R "v" ~ R "v" to be an updating formula 

which takes rk, t~k and Hk as input and produces H~+l that satisfies (2.10) and is 
T ~ positive definite whenever rkvk > 0, we have 

Hk+, := U2(rk, vk, Hk).  

In particular, the DFP formula, the BFGS formula and indeed the formulae for the 
Broyden family of  updates indicated in Algorithmic Schema 2.1 below, represent 
such update formulae U~ and U~. 

Our discussion so far leads to the following algorithmic schema. 

Algorithmic Schema 2.1. 
Step 0 (Initialization). 

Initialize Xo, ho, symmetric and positive definite Bo (or Ho); k:= 0. 
Step 1 (Search Direction). 

Set 

Vk = - - B k l f ' ( X k )  (or Vk = - - H k f ' ( x k ) ) ,  

6k = h Vk Vk. 
Step 2 ( Linesearch ). 

Set Xk+I = L S P ( f  Xk, vg, ~k). 
/ * L S P ( ' ,  ", ", ") is as described above in Section 2. I f  l q - t~k>0  it begins by 

attempting the trial point X k - ~ - l ) k / ( l d - ~ k )  for xk+ 1 . Xk+ 1 it generates satisfies 
(2.6a, b, c) and any other desirable criteria.*/ 

Step 3 (Stopping Criterion). 

I f  stopping criteria are satisfied return with Xk+l as an estimate of  x , .  
Otherwise go to Step 4. 
Step 4 (Updates) .  

Set 

S k ~- Xk+ 1 -- Xk, 

Pk = ~/{f(Xk) -- f (Xk+O} 2 -- {f ' (Xk+l)} Tsk{f '(Xk)}Vsk, 
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Yk = --{f'(Xk)}T sk/[f(xk)  -- f(xk+l) + Pk], 
Yk = Ykf'(xk+,) -- (1/yk)f '(Xk), 
~k = "YkSk, 

Yk][Vkf (Xk+O -- (SVkf'(Xk)/ ffgbk)bk]. r k = y k + [ ( l _ Y k )  / 2 2 , 
/*bk is such that sTkb~ # 0. A possible choice is bk :=f'(Xk). Then rk =Yk/Yk.*/ 

Bk+l = U I ( v k ,  rk, Bk) (or Hk+ 1 = U2k(rk, Vk, Ilk)). 
/ *Upda te  formulae U~ and U~ are as described in Section 2. Some possible 

choices are 

rk 2, / r,,r: 
Bk+l ~- I--~krk)Bk~I--eTkr~k] 2r-e~r~ 

{ rk •T 

\ 
__(l__45k)(VkBkVk)( +_= Bkgk "] rk Bkgk )T 

where Bk~ k 7 tz r k and Ck > 1/[1 - T 1 -T ~ -T 2 (rkBk rk)(VkBkVk)/(Vkrk) ] or 

(. = l - T T -  " Hk+l I r~,gklHk rkVk ~ q - - -  

~ 

_ T U k  -(1 

T ~ 
rkVk 

Hkrk ~(  Vk Hkrk ~ T 

rkHkrk/ l~  Vkrk r {Hkrk]  

where Hkr k # ~)k and &k > 1/[1--(rTHkrk)(~)TkH{l~k)/(~Trk)2].*/ 

hk+ 1 = [(1 - 7k)/(yksTbk)]bk. 
Set k := k + 1 and return to Step 1. 

Note that Algorithmic schema 2.1 has two degrees of  freedom in the following 
sense. The choice of update functions { U~} (or { U~}) and the choice of {bk} would 
generate different members  of  the algorithmic schema. In particular, with the choice 

of update  functions indicated in the comment  on Step 4, Algorithmic Schema 2.1 
represents generalizations of the quasi-Newton methods with the Broyden family 
[7, pp. 76-77] of  updates for the Hessian or inverse Hessian approximants.  The 
cases Ok:----1 (or Ck:=0) and (/)k : ~ - 0  (or &k: = 1) for all k are of  special interest. 
The former represents algorithms that extend the DFP methods while the latter 
represents algorithms that extend the BFGS method. With different choices of {bk} 
we get different generalizers of  the Broyden family, and in particular, different DFP 
generalizers and BFGS generalizers. 

We now compare the BFGS generalizer of  Algorithmic Schema 2.1 with bk :=f'(Xk) 
for all k with Algorithm 6.1 of  Sorensen [11]. In order to be specific we use a 
superscript S on symbols in [11, Algorithm 6.1] whenever the same symbols is used 
in Algorithmic Schema 2.1. We have: 

Lemma 2.2. Suppose that Algorithm 6.1 of [11] is modified by removing Step 1 s and 
using Step 2 of  Algorithmic Schema 2.1 instead and that Algorithmic Schema 2.1 is 
modified in Step 4 so that Bk+1 := U~( ~g, rk, (1/y2)Bk) (or Hk+I := U~(rk, ~)k, T~Hk)). 
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Let the inputs to these modified Algorithm 6.1 of  [11] and Algorithmic Schema 2.1 
be such that xSo : Xo, v s = -Co f ' ( xS ) ,  6 s = v S = ho Vo and Co Ho and suppose that stopping 
criteria in Step 2 s and Step 3 are identical. Then, when applied to (1.1) satisfying the 

condition that the set {x: f(x)<~f(xo)} is bounded, this modified Algorithm 6.1 of 
Sorensen [ 11 ] and the BFGS generalizer of  this modified Algorithmic Schema 2.1 with 

bk :=f ' (xk)  for all k generate identical sequences of  points so that xsk = Xk for all k. 

Proof. We have x I : X l  S. Therefore note that in view of the formulae specifying the 
computations in [11, Algorithm 6.1] and Algorithmic Schema 2.1 with bk :=f'(Xk) 
for all k, the conclusion follows by an induction argument if we could show that if 
Xk = XSk and Xk÷~ = xSk÷~ then Hk+l = G÷I .  It is easy to verify this latter fact since 

~k=ykSk and when bk=f '(Xk) ,  by (2.9b), r~=yk/Yk where yk=ykf'(Xk+l) 
--(1/Tk)f '(Xk). [] 

We note in passing that Lemma 2.2 depends on [11, Lemma 4.1] since the update 
formula for Ck in Algorithm 6.1 of [11] depends on the latter. Since we do not have 
the analogue of [11, Lemma 4.1] for the DFP formula, we do not have a relation 
like the one in Lemma 2.2 for DFP generalizers of Algorithmic Schema 2.1 and [11, 
Algorithm 3.1]. 

In [12, pp. 154-156] Sorensen presented another derivation of collinear scaling 
algorithms for (1.1). We refer the reader to Section 1 for a brief description of the 
forms of 1.c.s.'s and 1.c.a.'s used in that derivation and of  course to [12] for details. 
We shall show that Algorithmic Schema 2.1 with bk:=f'(Xk) for all k and the 
algorithmic schema implicit in [12, pp. 154-156] are equivalent (under certain mild 
conditions). Since we believe that the algorithmic schema implicit in [12, pp. 
154-156] is useful in implementing Algorithmic Schema 2.1 (when bk :=f'(Xk) for 
all k) we record the former in the following format for convenient reference. 

Algorithmic Schema 2.3. 
Step 0 (Initialization). 

Initialize Xo, ho, nonsingular Lo (or Jo); k :-- 0. 
Step 1 (Search Direction). 
Set 

vk =--Lkaf'(Xk) (or Vk = - - J [ f ' ( x k ) ) ,  
~k = h[vk. 

Step 2 ( Linesearch ). 
Set Xk+l = L S P ( f  xk, LZTvk, 6k) (or xk+l = L S P ( f  xk, Jkvk, 6k)). 
/*LSP(', ", ", ") is as described above in Section 2. If  1 +~k > 0 it begins by 

attempting the trial point xk + L{T vk/(1 + 8k) (or xk + JkVk/(l + 6k)) for Xk+l. Xk+~ it 
generates satisfies (2.6a, b, c) and any other desirable criteria.*/ 

Step 3 (Stopping Criterion). 
If  stopping criteria are satisfied return with Xk+l as an estimate of x . .  
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Otherwise go to Step 4. 
Step 4 (Updates) .  

Set 

S k ~ Xk+ 1 -- Xk,  

Pk = x / { f ( X k )  -- f ( X k + l ) }  z -- { f ' ( X k + l ) }  X s k { f ' ( X k ) }  T s k ,  

Yk = { f ' ( xk ) }T  sk / [ f (Xk )  --f(Xk+,) + Pk], 

Yk = yk f ' (xg+,)  -- (a/  yk) f ' (Xk) ,  
G = 7kSk, 
rk = Yk/  ~'k. 
Choose G such that 0[0k ~T = v k r k ( > 0 ) .  

Choose Lk+l (or Jk+l) such that Lk+~G rk and T - = Lk+lVk = Ok (or Jk+lG = Vk and 
J T + l r  k =- Ok). 

/ *A  possible choice of  ~k and Lk+ 1 (or ~k and Jk+~) is: Choose ~Sk such that 
~TOk = ~[rk with (LT~k-- G)T~k # 0 and set Lk+~ = Lk + (rk-- LkG)(LT~k- -  G)T /  
( L T ~ k - - G ) T G  (or choose G such that 0T0k = t3~rk with (JTkrk- G ) T G  ~ 0 and set 

Jk+, = Jk + (Vk -- JkVk)(JTrk - O k ) T / ( J T r k  -- vk)T~k)-*/ 
h k + l = [ ( 1 -  T , 1 , Y k ) / ( y k S k f  (Xk))]Lk+, f  (Xk) 
(or hk+, = [(1 T , T t - Y k ) / ( Y k s k f  (Xk) )]Jk+l f  (Xk)). 
Set k := k + 1 and return to Step 1. 

We have the following lemma which spells out the relationship between Algorith- 
mic Schemata 2.1 and 2.3. In the statement of  the lemma and its p roof  whenever 
the same symbol is used in Algorithmic Schemata 2.1 and 2.3 we use the superscript 
S to denote symbols pertinent to Algorithmic Schema 2.3. We hope that this use 

and the use of  superscript S earlier in relation to Lemma 2.2 would not lead to 
confusion, since we do not intend to refer to both groups of symbols in the same 
context. 

Lemma 2.4. Let  the inputs to Algorithmic Schemata 2.1 and 2.3 be such that Xo = x s, 
B o= Lo LT (or Ho=- JoJ T) and h o= LohSo (or -T s ho= Jo ho) and suppose that stopping 
criteria in Step 3 and Step 3 s are the same. Then Algorithmic Schema 2.1 with 

bk := f ' ( X k )  f o r  all k and Algorithmic Schema 2.3 are equivalent in the following sense 

when applied to (1.1) where {x: f ( x ) ~<f(xo)} is bounded. There is a sequence o f  update 

funct ions {U 1} (or {U~}) o f  Algorithmic Schema 2.1 specifying {Bk: k>~l} (or 

{Hk: k >1 1}) i f  and only i f  there exists a sequence o f  vectors {15k} in Algorithmic Schema 
2.3 specifying a sequence {Lk: k >~ 1} (or {Jk: k >~ 1}) so that Xk = XSk for  all k. 

Proof. We have xl = x s. Therefore note that in view of the formulae specifying the 
computat ions in the two algorithmic schemata,  the result follows from an induction 
argument provided we could show that given Xk = X s and Xk+l = xS+~ there exists 

symmetric and positive definite Bk+a (or Hk+~) satisfying Bk+~Vk = rk (or Hk+lrk = Vk) 
where -T Vkrk > 0 if and only if there exists G and nonsingular Lk+l (or Jk+l) satisfying 
fi{0k = (vS)XrS > 0, Lk+~Ok = rSk and LkX+d3 s = ~Sk (or Jk+iVk = vSk and JTk+arSk = Ok). This 
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latter fact follows from [8, Lemma 2.1] since when xk = x s and xk+l = xS+l we have 
~ = ~ S a n d  rk= r s. [] 

Using arguments similar to those in the proof  of  Lemma 2.4 and [8, Theorems 

2.2, 2.3] it can easily be verified that under the same hypotheses of  Lemma 2.4, the 
BFGS generalizer (or DFP generalizer) of Algorithmic Schema 2.1 with bk :=f ' (xk)  
for all k and the member  of  Algorithmic Schema 2.3 specified by vk := 
~/2pk/(~TLkLT~k) LT~k (or 15k :=' /~pk/(rkJkJTrk) T Jkrk) for all k are equivalent. 

In view of  Lemma 2.4 we may think of Algorithmic Schema 2.3 as a "factored" 

version of Algorithmic Schema 2.1 with bk :=f ' (xk)  for all k. We also remark that 
readers familiar with quasi-Newton methods may recall that convergence analyses 
are usually performed using unfactored forms of updates while a popular  way of 
implementing them is based on factored forms of updates (whenever they exist). 
In view of the results in Sections 3 and 4 and in [2] it seems that the form of updates 
in Algorithmic Schema 2.1 is more suitable for convergence analyses. On the other 

hand, we believe that for purposes of  implementation of those members of  Algorith- 
mic Schema 2.1 with equivalent members in Algorithmic Schema 2.3, the latter form 
of updates may be more suitable. 

3. Local and q-linear convergence of two members of Algorithmic Schema 2.1 that 
extend the DFP and BFGS methods 

The purpose of this section is to analyze locally the two members of  Algorithmic 
Schema 2.1 that extend the DFP and BFGS methods when bk :=f ' (xk)  for all k. 

We will first specify the two iterations that we wish to analyze. They are Iterations 

3.1 and 3.2 below which state the direct iterations corresponding to the DFP 
generalizer and the BFGS generalizer respectively of  Algorithmic Schema 2.1 when 
bk :=f '(Xk) for all k. We refer the readers to [3, pp. 224-225] for motivation for 
undertaking analyses of  direct iterations. 

Iteration 3.1. 

Initialize xo, ho, and symmetric and positive definite Bo. 
F o r k = 0 , 1 , . . . d o  

v~ = - B ; ' f ' ( x ~ ) ,  

,~ = 1 / ( 1  + h~v~), 
Xk+ 1 = X k ~- Akl.)k,  

S k = X k +  1 - -  X k ,  

--f(Xk+l)} - - { f  (Xk+,)} sk{ f  (Xk)} Sk, 
Tk = - -{ f ' (xk)}Tsk/[ f (xk)  --f(Xk+,) + Pk], 
gk = ~kSk, 

Y k  = " Y k f ' ( X k + l )  - -  (1/ Tk)f '(Xk), 
rk = Yk/ Tk, 
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B k + l  "= [ I  ~T -T ~ V -T T -T -- rkV k/  ( V k rg ) ]Bk [ I -- Vkr k /  ( Vk rk ) ] + rkr k /  ( V k rk ) , 

- Y k ) / ( y k S k f  ( X k ) ) ] f  (Xk),  hk+l = [(1 T , , 

end do. 
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Iteration 3.2. 
Initialize Xo, ho, and symmetr ic  and positive definite /40. 

For k = O ,  1 , . . . d o  
vk = - - H k f ' ( X k ) ,  

Ak = 1/(1 + hTkVk), 

X k +  1 = X k -~- i~kl.)k, 

S k ~ X k +  1 - -  X k ,  

Ok = x / { f ( x k )  - - f ( x k + l  )}2 _ {f,(xk+l)}Tsk {f'(xk)}Tsk, 

Yk = - - { f ' ( X k ) } T S g / [ f ( x k )  - - f ( x k + l )  + Pk], 

~k  ~" " fkSk ,  

Yk = v k f ' ( X k + l )  -- (1/Vk)f'(Xg), 
rk = Yk /  Vk, 
I l k +  1 = [ I  - ~ k r ~ / ( r ~ ) k ) ] H k [ l  ~T T ~ ~ ~T - r k V k / ( r k V k ) ] +  VkVk / ( r~vk ) ,  

hk+ 1 ----- [(1 - T , , y k ) / ( y k S k f  (Xk))]f  (Xk), 
end do. 

The operat ions  in I terat ions 3.1 and 3.2 may not be well-defined in general. 
However ,  in the results o f  this and the next sections we shall refer to them under  

condit ions which will ensure that they are well-defined. In the rest o f  the paper  

when we refer to I terations 3.1 and 3.2 we shall also tacitly assume that they generate 

infinite sequences o f  {Xk} with f ' ( X k ) #  0 for any k. Since in practice we would  

terminate the iterations if we have f ' ( X k )  = 0 for some k we do not lose generality. 

Moreover ,  this assumpt ion  facilitates stating our  results. 

Before proceeding with the analysis we remark that  in view of  Lemma 2.2 it is 
possible to establish local and q-superl inear convergence o f  I teration 3.2 using 

appropr ia te  estimates involving Yk s tar t ing  with the local and q-superl inear  conver- 

gence of  [ 11, equat ions (4.5), (4.6)] established by Sorensen [11]. However ,  it does 

not seem possible to establish the local and q-superl inear  convergence  of  iteration 

3.1 using a scheme parallel ing such an approach.  The results we state in this and 

the fol lowing sections with respect to I terat ions 3.1 and 3.2 on the other  hand  exhibit 

the same sort of  "dua l i ty"  that  one observes in the local convergence  results for the 
direct iterations o f  the D F P  and BFGS methods.  These results, in view of  Lemma 

2.3 readily imply the local and q-superl inear convergence  o f  both the DFP-  and 

BFGS-related algorithms of  Sorensen [12, pp. 154-156]. 

In our  analyses we shall have occasion to use norms on R" and R "×n. [[. II shall 
represent the 12 vector no rm on R n and the induced opera tor  norm on R n×n. We 

shall also have occas ion to use the Frobenius  norm on ~"×n which we denote by 

I1" ]IF- In our  analyses, as in those of  [3, 6] o f  quas i -Newton  methods,  it becomes  
necessary to use a matrix norm I1" IIa on En×,, that  is not  induced by a norm on •". 
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However ,  the equivalence of  norms  on f ini te-dimensional  vector  spaces implies that  

there is ~7 > 0 such that  

IlOll<  nllQIla, (3.1) 
We shall have occas ion to use (3.1). 

As in [11] we shall now state the fol lowing definit ion and assumpt ions  regarding 

f : X + R .  

Definition 3.3. Given  f : X ~ R , f c  C2(D) where  D c _ X  is an open  convex set, a 
point  x , c  D is said to be  a strong local min imizer  o f f  i f f ' ( x , ) = 0  and f ' ( x , )  is 
posit ive definite. 

Assumption 3.4. f e C 2 ( D )  where D c _ X  is an open  convex set and x ,  c D  is a 
s trong local minimizer  o f f .  Fur thermore ,  there is a ne ighborhood  N c__ D of  x ,  and 

a constant  L > 0 such that  

11 f ' ( x + )  - f ' ( x ) [ ]  <~ LI] x+ - x 1[ (3.2a) 

and  

IIf '(x+) - f ' ( x ) I I  <~ t l lx+ - x II (3.2b) 

for  all x+, x ~ N. 

Note  that  by [3, L e m m a  3.1], (3.2a, b) are not  inconsistent.  An immedia te  con- 
sequence of  Assumpt ion  3.4 and  [3, L e m m a  3.1] is that  for  all x+, x c N, 

IIf ' (x+) - f ' ( x )  - f " ( x , ) ( x +  - x)ll 

~< L max{ [Ix+ - x , l [ ,  I I x -  x ,  II}llx+-xlf.  (3.3) 

We shall begin by stating the following l e m m a  due  to Sorensen [11]. It will ensure 
that  there is a ne ighborhood  o f  x ,  where  I tera t ions  3.1 and 3.2 are well-defined. 

Lemma 3.5. Let  f :  X ~ • satisfy Assumption 3.4. Then there is a neighborhood N o f  
the strong local minimizer x ,  so that f " ( x )  

(3.2a, b), (3.3) are satisfied, 

( f  _ f+ ) z _  (f,+ )V s ( f , )  v s >~ rllsU4, 

y = y(x+,  X) := - - ( f ' ) ~ s / ( f - - f +  + p) satisfies 

II-rl/llsll-<M 
and 

1 .<5 
2 ~ T ~ 2  

is positive definite for  all x c N ;  and 

(3.4a) 

(3.4b) 

(3.4c) 

for  all x+, x ~ N,  x+ # x, where s := x+ - x , f  := f ( x ) , f +  := f ( x + ) , f '  := f ' (x) , f~+ := f ' (x+) ,  
P := ~ / ( f _ f + ) 2 _  ( f+)Ts( f , )T  s and r > 0 and M > 0 are constants. 

Proof.  See [11, L e m m a s  4.2, 4.3 and Corol la ry  4.4] and their  proofs .  [] 
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We shall now state a result that plays a role in our  analyses similar to the one 
played by equat ion (3.2) of  Broyden,  Dennis  and Mor6 [3] in their analyses of  
quas i -Newton methods.  

Lemma 3.6. Let f :  X ~ ~ satisfy Assumption 3.4. Suppose that N is the neighborhood 
of  the strong local minimizer x ,  indicated in Lemma 3.5. Then there is a positive 
constant K such that for all x+, x c N, 

I lr-  f"(x,)~ll  < go'(x+, x)ll~ll (3.5) 

where g:= 3's, r:=y/3", y : =  3"f'+-(1/3")f' and ~(x+,x):--max{llx~-x, ll, IIx-x, ll}. 

Proof. 

I[ r - f " ( x , )  ~][ = ][f~_ - (1 /y)2f ,  - i f ( x , ) y s  l[ 

= [[ 3 ` { f ~ - f ' - f ' ( x , ) s }  + (1 - y)f!~ -{ (1  - y3)/y2} IIf'][ 

<--]3'111f~ - f '  - f " ( x , ) s l l  + l1 - 3"111f~- - f ' ( x , )  ][ 

+ l1 - 3'1 I1 + (1 + 3 ' ) / 3 ' 2 1 1 1 f ' - f ' ( x , )  II. 

Now using (3.3), (3.2b), (3.4b) and (3.4c) to estimate terms on the last r ight-hand 
side we get 

Ilr- f"(x,)~ll <~ (3 + 8M)Lo-(x+, x)l]sl] ~< 2(~+ 8M)  Lo-(x+, x)ll ~ll 

so that (3.5) holds with K := 2(3+ 8 M ) L  for  all x+, x c N. [] 

We shall now focus our  at tention on I terat ion 3.1. A key prel iminary result used 
in the local analysis of  quas i -Newton methods  is the so called " b o u n d e d  deter iorat ion 
condi t ion"  for Hessian or inverse Hessian approximat ions .  In the following lemma 
we give such a result for  use in analyzing I terat ion 3.1. In order  to do that we need 
to define a weighted Frobenius  norm IIQIIA for  any Q ~ N  "×" and given positive 
A c N  "vn by 

IIQIIA := IIA-1/2QA-1/2]IF (3.6) 

where A 1/2 is the symmetric,  positive definite square root  of  A i. In the rest of  the 
paper ,  whenever  used with respect to I terat ion 3.1, ]]. ]]A will have the meaning 
indicated by (3.6). 

Lemma 3.7. Let f :  X ~ R satisfy Assumption 3.4 and put A : = i f ( x , )  and ~ := [[a -1 ]1. 
Let N be the neighborhood of  x ,  in Lemma 3.6. Suppose that N is further restricted, 
if  necessary, so that 

~r(x+, x)<~ 1/(3sCK) (3.7) 

for all x+, x ~ N. Let B ~ g~"v" and define B+:= [ I -  r~V/(~Vr)]B[I-- ~rV/(~Vr)] 

+ rrV/(~Vr) for x+, x c N where x+ ~ x. Then there are constants al  > 0, a 2 >  0 and 
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a (~< c~ <~ 1) independent o f  x+, x such that for  all x+, x e  N,  x+ # x, 

lIB+ - - a l i a  <~ [ 1 ~  ~02"1- OglO'(X+, x ) ] l l u  - -a l ia+ o ~ 2 o ( x + ,  x )  ( 3 . 8 )  

where 0 := HA-!/Z(B - A)~H/([[B-A]]AIIA'/2011) <~ 1 i f  B ~ a and 0 := 0 otherwise. 

Proof.  For  x+, x c N, x+ ~ x we have g # 0. N o w  consider  the case where B # A. 

Then (3.8) follows f rom [3, Lemma 5.2] (with y, e, s and M in that  lemma substituted 
by r, r, 17 and a -1/2 respectively) if ]la ' /2r--al/=o[I/]lal/2v]] <~,  since I I r -ag l[  

/lla,/z~ll< HA , / 2 ] ] l l r _ A ~ l l / l l g l l < , / ~ g ~ ( x + , x )  by (3.5). But Ha 1/2F--AI/2vll 

/IIA1/~I[ ~ IIA '11 IIr-A~ll/ll~ll <-~ by (3.5) and (3.7). 
Now consider  the case B = A. By the discussion in [3] preceding Lemma 5.2 it 

follows that when B = A we can neglect the first term on the r ight-hand side o f  

(3.8). (See also [6, Lemma 3.1].) Therefore,  we can simply let 0 := 0 when B = A. [] 

We are now going to present a result which we shall use to measure the closeness 
o f  the quanti ty Ak of  I teration 3.1 to unity. Our  result is very much motivated by 

Lemma 4.7 o f  Sorensen [11] for his coll inear scaling algori thm related to the BFGS 

method.  However ,  we obtain it in a form for {Ak} of  Iteration 3.l (which is related 

to the D F P  method)  so that a similar result could be established for {Ak} of  Iteration 

3.2 (which is related to the BFGS method) .  

Lemma 3.8. Let  x c ~", h ~ R n and positive definite B ~ R nv n. Put f := f ( x ) and f '  := i f ( x )  
and suppose that f '  ¢O and that 1 - h T B - ' f ' ~ O .  Define A := 1 / ( 1 - h T B  ~f'), x+:= 

x - A B - ' f '  and s := x + -  x. Put f+ := f (x+) ,  f "  :=if(x+) and suppose that f - f ~  > 0 
and that ( f - - f+)2 - - ( f '+ )Ts ( f ' )Ts>O.  Let  y : = - - s T f ' / ( f - - f + + p )  where p : =  

~/( f - - f+)2-- ( f '+)Ts( f ' )Ts  and define h+ := [ ( 1 -  y ) / ( y s T f ' ) ] f  ' and B+ as in Lemma 

3.7. Then whenever [1 - y]K < 1 where K := [{llB-'ll + IIB+'II}[[B[[ + 13 '3A --  ll](1/l~al), 
T --1 ,' we have that 1 - h+B+ f'+ >O and that A+ := l / (1  - h+B+T -'f+)' satisfies 

II-rl~ 
l1 -a+l<~ (3.9) 

1 - l l - r l ~ "  

Proof.  hTB+'f'+ = (1 - y)fi  where fl := (1 /y ) [ ( f ' )TB~] f '+] / ( sT f ' ) .  Using the fact that  

B+B = r where g = ys and r = f ;  - ( 1 / y 2 ) f  ' it is easy to verify that fl can be expressed 

a s  

1 ( f t ) T ( e - '  --  B + ' ) / '  , 3/~ _ 1 

- ~/31~ ( f t )To  ' f '  ~----,v3t ~ 

Hence 

The conclusions o f  the lemma follow. 

I~l < (1/I ~3a I)I(f)T(B-1 -- BT') f ' l  ~-[~/3A - ll/]T3AI 
I ( f ' ) T B - l f  '] 

[ll B - l -  B+'OJ IIBII +l~/~a - I[](1/ly3A]) 

< [{11B-'I[ ÷ liB+ill} Ilgll + 1~'3a - 11](1/I ~'~a I). 
[] 
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In Theorem 3.9 below we establish the local and q-linear convergence of Iteration 
3.1. Before proceeding however, we remark that the hypotheses of Lemma 3.8 (which 
may seem restrictive) and (3.9) are really motivated by the proof  of Theorem 3.9. 

Theorem 3.9. Let f :  X -~ R satisfy Assumpt ion 3.4 and let x ,  be a strong local minimizer 

o f f  Put A :=f" (x , ) .  Suppose that the sequence {Xk} is generated by Iteration 3.1 f rom 

initial quantities Xo, ho and symmetric, positive definite Bo. Then given any I~ e (0, 1), 
there are positive constants e = e(l~ ) and 8 = 8(i  x)  such that i f  

IlXo-x, ll<~, IIBo-AIIA<8 and I1-Ao1<8, 

the sequence {xk} is well-defined and converges to x , .  Furthermore 

IlXk+l- X:~Jl < [&llx!~- x,]], k = O ,  1 , . . . ,  

and {[JBkll}, {IJBkl[[} are uniformly bounded. 

Put if:= IIAII and ~:= IIA-'II. Choose any l c (0 ,  1) and then choose e, 8 > 0  Proof. 

such that the following inequalities are satisfied. 

278~ ~ ix/(1 + ~),  (3.10a) 

~(1 +/~)[L(e + 8) + 278] ~< t x, (3.10b) 

(2a,8 + ol2)8/(1 - /~ )  ~ 8, (3.10c) 

2me  [2~:(1 + ~) (276  + if) + 8(1 + 2me)  3 + 2 M e  (3 + 6 m e  + 4M2e2)], 

<~ 16[1 - {6(1 + 2Me) 3 + 2 M e  (3 + 6 M e  + 4M2e2)}], (3.10d) 

8 <~ (1 - I)/l. (3.10e) 

In (3.10a, b, c, d, e) 7, L, ~1, a2 and M are as in (3.1), (3.2a, b), (3.8), (3.8), and 
(3.4b) respectively. A moment's reflection would indicate that given ~:, ~, L, M, c~, 
OL 2 all positive and/x, 1 c (0, 1), selecting e, 6 > 0to satisfy (3.10a, b, c, d, e) is possible. 

Let N be the neighborhood of x ,  where the hypotheses of Lemma 3.7 are satisfied 
for all x÷, x e  N. If  necessary further restrict e so that I I x - x ,  II < e implies x c  N. 
Suppose that [[ x0 - x ,  I] < e, [[ B0 - A ]1A < 6 and 11 - Ao] < 6. 

Now by (3.1), IIBo-aJ] ~< nllBo-Alla < 76 < 2 7 8  and the Banach Perturbation 
Lemma [ 10, p. 45] and (3.10a) give 1] Boll[ <~ ¢(1 + tx). We have 

x~ - x ,  = Xo-  x ,  - ;toBo~ f ' (  xo) 

= B o ' [ - { ( f ' ( x o )  - f ' ( x , )  - A ( x o -  x,)} 

+ (1 - Ao)(f'(xo) - f ' ( x , ) )  + ( B o -  A ) ( x o -  x,)] .  
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Therefore 

II xl - x ,  I[ <~ II Bo'[[[llf'(xo) - f ' ( x , )  - A ( x o -  x,)[[ 

+11 -,~ol Ilf'(xo)-f'(x,)[[ + II Bo-All Ilxo- x,  ll] 

which together with (3.3) implies 

I Ix , -x , [ I  < g(1 + ~ )[ t I lxo-  x ,  ll= + S t l lxo-  x ,  ll + 2nS[[Xo- X.[ I] 

< ~(1 + Ix)[ t (e  + 8)+2ns]llXo-X,[I 

< ~ l l x o - x ,  II (by (3.10b)). 

The proof is completed with an induction argument. Suppose that IIBk- A[[a < 28, 
I lx~÷l-x,  l l < ~ l l x ~ - x ,  II and [1--Ak[<8 for k = 0 , 1 , . . . , m - 1  where m~>2. 
Let O'k := o'(Xk+l, xk). Then Lemma 3.7 implies that IIBk+~-- Alia <~ 
[l+alOk]llnk--mlla+o~2o-k for k = 0 ,  1 . . . . .  m - 1 .  Hence for k = 0 ,  1 , . . . ,  m - l ,  

II Bk+l--Alia --IIB~ --Alia < 2aleixg8 + ce2e~ k. 

Summing both sides from k = 0 to k = ( m -  1) we have 

[1 nm - Al ia  ( ]l no - A l ia  + (2a18 + ae)e / (1 - Ix) 

< 6 + 6 = 2 8  (by(3.10c)). (3.11) 

Also 

fIBk II ~ link -Al l  + IIAII 

<~,[[Bk-AllA+[[A[[<2~?8+ff, k = 0 , 1 , . . . , m ,  (3.12) 

and by the Banach Perturbation Lemma and (3.10a), 

lIB;ill ~< ~ (1+~) ,  k = 0 ,  1 , . . . ,  m. (3.13) 

Now by Lemma3.8 we have [1-h. , [~<(l l-y. ,_l lK. ,  ~)/(1--[1--ym-1]Km 1) when- 
ever [1-'Ym_l[/< m 1<1 where Km_~:=[{[IB~1_~I]+[[B.,~I[}[IB., l[[+[')/3_lAm 1--1[] 
×(1/l~m_l;~m_,J).Butll-%. ll<<-ylllx~-x~_,ll<<-2ylllx~ 1 - x ,  ll<=M~ix ~ 1<2M~ 
by Lemma 3.5 and the induction hypothesis. Therefore 

[1 3 -- A,n-1) Y,n-D T i n - l +  (1 - 'Y~- l ) l  

+ 2 ~<[1-h.,-ll[Y 3 I[+[1-Tm-1][I+T,~ ~ Ym 11 

< 8(1 +2Me)3+2Me(3 +6Me + 4M2e2). 

Consequently, [3/3_1Am_1[~ " 1 - [ 8 ( l + 2 M e ) 3 + 2 M e ( 3 + 6 M e + 4 M 2 e 2 ) ] > O  and 

K.,_I < 2so(1 + IX) (2 ~78 + () + 8 (1 + 2Me)3 + 2Me (3 + 6Me + 4Mee 2) 
1 - { 8 (1 + 2Me)3 + 2Me (2 + 6Me + 4M2e2)} 

Hence by (3.10d, e), [1 - 3%-1[K~-~ < 18 < 1 which implies 

11 -,~,,, [ < 18/(1 -18) < 8. (3.14) 
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To complete the proof  we must show that IlXm+l- x ,  II < /z  Ilxm - x ,  II- Since we have 
established liBra --ALIA<28 and I1 -Aml < 8 it follows that 

IlXm+a-X, l l < ~ ( l + t z ) [ L ( e + 8 ) + 2 ~ a ] [ L x m - x ,  l l < ~ z l [ x ~ - x ,  ll (3.15) 

by (3.10b) as in the case of k = 0. 
With (3.11), (3.12), (3.13), (3.14) and (3.15) established the induction argument 

is complete and the conclusions of the theorem follow. [] 

Theorem 3.9 establishes the local and q-linear [10, Chapter 9] convergence of 
Iteration 3.1. In the rest of this section we shall concentrate on Iteration 3.2. We 
shall end this section with a theorem for Iteration 3.2 analogous to Theorem 3.9 for 
Iteration 3.1. 

We begin with the following lemma analogous to Lemma 3.7. Here and in the 
rest of  the paper whenever used with respect to Iteration 3.2 I1" I1~ will have the 
following meaning. Given positive definite A ~ W 'v", II QIIA : =  I[A'/=QA'/ZlIF for any 
Q c R  "×". 

Lemma 3.10. Let f :  X ~ E satisfy Assumption 3.4 and put A : = i f ( x , ) ,  ~ := NAIl and 

s~: = JJA-111. Let S be the neighborhood o f  x ,  in Lemma 3.6, further restricted i f  
necessary, so that 

tr(x+, x) ~< 8x/~/(27Kv/~) (3.16) 

for  all x+, x e N where r is as in (3.4a) and K is as in Lemma 3.6. Let H ~ R nv" and 
define H+ := [ I -  ~ r T / ( r T ~ ) ] H [ I - -  r~T/(rT~)] + t~/~T/(rT~) for  x+, x ~ N, x+ ~ x. 

Then there exist constants cq (31>0) ,  32 (a2>O)and a (3< a <<- 1) independent of  

x+, x such that for all x+, x c N, x+ ~ x, 

IIH+-A-111a ~< [ 4 0 -  a02) + a, ,r(x+, x ) ] l l H -  A ilIA+ a2o'(x+, x) (3.17) 

where O:=[IA1/2(H-A-1)rH/( I IH-A-I I IAIIA-1/2rI I )~I  if  H # A  ' and 0 :=0  

otherwise. 

Proof. Note that ~Tr=2p  by (2.7b). Therefore (3.4a) and Cauchy-Schwarz 
inequality gives II~ll Ilrll >1 ~Tr~ 2#llsll  2, Since x+ # x, using (3.4c) we get 

Ilrll/--24711s11~/II ~11 ~> ~4TII~II. (3.18) 

We therefore have that II rl[ # o. The proof  now proceeds as the proof  of Lemma 3.7 
using [3, Lemma 5.2]. Consider the case H # A ~. We first note that I I A ' / 2 ~  - 

m-'/2rll/llA-'/~rll ~4-~llr-A~ll/llrll. Therefore when (3.16) holds, by (3.18) and 
Lemma 3.6 we have that IIA'/2~-A-~/~rlI/IIA-'rll <~. (3.17) now follows from [3, 
Lemma 5.2] with z~, ~, r and A ~/2 in place of  y, c, s and M respectively in that 
lemma, since [I v -  A lrll / [IA a/2rll <~ (3v/-~rg)cr(x÷,  x) by (3.18) and (3.5). 

Now consider the case where H = A 1. By the discussion in [3] prior to Lemma 
5.2 we can neglect the first term on the right-hand side of (3.17) when H = A -1. It 
follows that we can let 0 := 0 when H = A 1. [] 
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Before we present the result on the local and q-linear convergence o f  Iteration 

3.2 we need the analogue of  Lemma 3.8. 

Lemma 3.11. Let x c ~  n, h 6 ~ "  and positive definite H c ~  "v'.  Put f : = f ( x )  and 

f ' : = f ' ( x )  and suppose that f '  #O and that 1 - h  THf'  ¢O. Define A := 1/(1 - h  THf'),  
. t . _  t x+ := x - AHf '  and s :--- x+ - x. Put f+ . -  f (x+) ,  f'+ . - f  (x+) and suppose that f - f +  > 0 

and that 2 t T , T T t ( f - f + )  - ( f '+)  s ( f )  s > 0 .  Let y : = - s  f / ( f - f + + p )  where p : =  
x/( f - - f+)2--( f '+)Ts( f ' )Ts  and define h+ := [ ( 1 -  y ) / ( y s T f ' ) ] f  and H+ as in Lemma 

3.10. Then whenever [ 1 - - ' y [ K < I  where K := [ { II H [[ + [[ H+ I[ } [[ H -  a II + I y3 A -1 I  ] x 
T t (1/[y3A[), we have that 1 - h+H+f+ >O and that X+:= 1/(1 - h+H+f+)T ' satisfies 

] l - y l K  I1-A+I  
l - I I - ' y l K "  

T ! Proof.  h+H+f+ = ( 1 -  y)f l  where fl := (1 /y)[ ( f ' )TH~f '+] / (sTf ' ) .  Using the fact 

H+r = t~, where 15 = 7s and r =f% - ( 1 / y ) 2 f  ' it is easy to verify that fl can be expressed 

a s  

1 zT (H- -  H+)z4 , y 3 / ~  - -  1 
[3 = ,y3A zTHz ,y3A 

where z := H is. Hence 

1 I z W ( g - H + ) z l  I'y3A - 1] 

It l lv a I [zTHzl ir Aj 

[ll H - H+[ I [IN-lit-k [T3A - 1 J](1/I~/3A [) 

[{IIH[ r + ilU÷ [i}llg-lll + ]3A _ 1H(1/r 3A[). 

The conclusions o f  the l emma follow. []  

We now state the fol lowing theorem on the local and q-linear convergence o f  

I teration 3.2. Its p roo f  uses Lemmas 3.10 and 3.11 in a manner  analogous to the 

way  Lemmas  3.7 and 3.8 were used in the p r o o f  o f  Theorem 3.9. We omit its p roo f  

and refer the reader to [2] where a complete  p r o o f  is given. It should be noted 

however,  that  its p r o o f  is independent of  the p r o o f  o f  Theorem 3.9 just as much  as 

the proofs  o f  Theorems 3.2 and 3.4 o f  [3] are independent  o f  each other. 

Theorem 3.12. Let f :  X - ~  satisfy Assumption 3.4 and let x ,  be a strong local 
minimizer o f f  Put A : = i f ( x , ) .  Suppose that the sequence {xk} is generated by Iteration 
3.2 f rom initial quantities Xo, ho and symmetric, positive definite Ho. Then given any 
/~ 6 (0, 1), there are positive constants e = e(l~ ) and 6 = 6(i.t ) such that i f  

[IXo-X, l l<e,  [ [Ho-A  '11A<6 and I 1 - A o l < ~ ,  
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the sequence {Xk} is well-defined and converges to x , .  Furthermore 

I lxk+l-x ,  l l < ~ l l x ~ - x ,  ll, k=0, 1 . . . .  , 

and {IIH~II}, {IIH~IlI) are uniformly bounded. [] 
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4. Q-superlinear convergence of two members of Algorithmic Schema 2.1 that extend 
the DFP and BFGS methods 

The purpose of this section is to demonstrate that Iterations 3.1 and 3.2 discussed 
in Section 3 are q-superlinearly convergent. We refer the reader to [10, Chapter  9] 
for definitions on rates of  convergence of convergent sequences. For our purposes 
here it suffices to note that if {Xk} c ~" converges to x , ,  and if 

lim (HXk+l-- X~l]/llXk-- X:~]]) =0 
k~co 

then the rate of  convergence of the sequence {Xk} is q-superlinear. 
We can proceed to obtain results on rate of  convergence of Iterations 3.1 and 3.2 

assuming that "starting quantities" are "close" to given quantities that depend on 
x , ,  as in [3, 9] with respect to quasi-Newton methods. However, following Dennis 

and Mor6 [6] with respect to quasi-Newton methods and Sorensen [11] with respect 
to his collinear scaling algorithm related to the BFGS method we shall demonstrate 
q-superlinear convergence of Iterations 3.1 and 3.2 assuming that {Xk} generated by 
the iterations converge to x ,  satisfying 

I lxk-x,  II < ~ .  (4.1) 
k=0 

In our analysis, we shall need to show uniform boundedness of  {11Bk II} and {11Bkl II} 
in the case of  Iteration 3.1 and of {[IHkll} and {llHk'll} in the case of  Iteration 3.2. 
We shall need the following two lemmas to do so. 

Lemma 4.1. Let ((~k} and {~k) be sequences of  nonnegative numbers such that 

4~k+1 ~< (1 + ak)4~k + ak 

and that 

Y. ak <oo. 
k = l  

Then {¢k} converges. 

Proof. See [6, pp. 555-556]. [] 

The following lemma is Lemma 5.5 of  Sorensen [11], where we have corrected 
a few typographical  errors in the original statement in [11]. 
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Lemma 4.2. Let  E c R ~ be positive definite. Let  u, v c R" be such that u, v # 0 and 

u T v # O. Define 

vv T Euu T E 
E+:= E-~ - -  uTv uTEu " 

I f  M ~ ~ is nonsingular, then 

]]E+ll~,2<~max{1, I I E I l . , 2 } + ( 1 / t o . ) E I I M v -  M 'u l I / I IM- 'u l l  + , / 1  - to~,]  

where t o ,  := luTvl/(llMvll IIM lull) and I[Qll.,=:= IIMQMII for  any Q c R  "×". 

Proof. See [11, pp. 107-108]. [] 

With these preliminaries out of our way we are now ready to estimate the rates 
of  convergence of Iterations 3.1 and 3.2. We shall first consider Iteration 3.1. The 
following theorem brings us almost to our objective of establishing the q-superlinear 
convergence of Iteration 3.1. 

Theorem 4.3. Let f :  X ~ R satisfy Assumption 3.4 and put  A :=f" (x , ) .  In addition 

assume that {xk} c X is a sequence that satisfies (4.1). Then there is a positive integer 

ko such that for  any positive definite Bko ~ ~ the following statements are true for  

quantities defined by formulae  in Iteration 3.1. 

(i) 
k>~ko. 

(ii) 
(iii) 
( iv)  

(v)  
(vi)  

Pk is real; Yk, vk, Yk and rk are well-defined; and B k is positive definite; for  all 

{IIA '/2 Bk l  A1/2N} is uniformly bounded. 

l i m k ~  IIA-'/2BkA-'/211 exists. 

l i m k ~  I1 - Vkl = 0. 
l i m k ~  I1 --Akl = 0. 
limk~ (l ink - f " ( x , )  ]~ll / l l~kl l)  = o. 

Proof. (4.1) implies convergence of  {xk} to x . .  Hence it is possible to choose a ko 
such that for k/> ko, Xk is in the neighborhood N mentioned in the hypotheses of 
Lemma 3.7, further restricted if necessary so that 

Crk := cr(Xk+l, Xk) ~< min{1/(3~:K), 4~/~/(9~/~ K)} (4.2) 

where ~':= Ila[[ and £:= HA 1][. Conclusion (i) immediately follows. Furthermore, 
since then (3.8) holds for k ~  > ko, Lemma 4.1 immediately leads to conclusion (iii). 

To establish conclusion (ii) we need to appeal to Lemma 4.2. We note that when 
Bk+l is as in Iteration 3.1, Bk11 = Bka+ " -T -X VkVk/ Ok rk -- Bk  I rkrT B k l /  rT Bk  l rk and apply 

Lemma 4.2 for k ~ k o  with M : = A  1/2, v:=vk, u:=rk ,  E : = B k  1, E + : = B k l l  and 

OJA1/2 : =  (.0 k : =  ~rk/(llaVZ~kll IlA-'/Zrkll). We get 

II B~+~ Ila'=,~ ~< max{ 1, II B~ IlIA~/z,e} 

+(1/ tok)[] lA1/2~k--A V2rkl[/llA 1/=rkll+'fl--to2k]. (4.3) 
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To estimate the second term on the r ight-hand side of  (4.3) we apply  [7, Lemma 
3.2]. To that end we note,  by (3.18), that  

IlA-'/2rk II/> II r~ II/.f~ ~> (8~/7/(9x/~)) [I t~k II. 

Therefore  

Il a a / ~ i/ 2rk ll <~ (9~/~/(8~/T)) Il rk -II ~k ll a ~k l[ 

<~ (9x/~/(8V~r))Kcr k <~ ½ (4.4) 

where the second and third inequalities follow from Lemma 3.6 and (4.2) respec- 
tively. When (4.4) holds,  [7, Lemma 3.2] gives 

IIm'/25k - A-a/2rk [I/IIA-'/2rk II ~< ( % f ~ / ( 8 x / r ) )  g(rk 

and 

1 - w 2 <~ [ 9 x / ~ / ( 8 ~ r )  Kcrk] 2 <~ 1. 

With these estimates (4.3) gives 

max{l ,  II B;+ ~ 111A'/2,2} ~< max{l ,  II Bk 111A1/2,2} -]- ( 3 6 K x / - ~ / ( 8 x / ~ ) )  o-k. 

Lemma 4.1 with ~bk := IIB;'114,,22 and 6k:=(36Kx/--~/(8V/~))O-k now yields the 
desired conclusion (ii). 

Conclus ion (iv) is almost  trivial since l 1 -  ~/~1 ~< MIIskll <~ 2M(r~, and (rk tends to 
zero since {Xk} converges to x .  by (4.1). 

To establish conclusion (v) note that  

where 

Ak+, -- 1 = [(1 -- yk)/3k]/[1 -- (1 -- yk)/3k] 

3 r T 1 t t T 1 t /3k := 1 -- ( 1 /ykAk) [ ( ( f  (Xk)) Bk+lf (Xk))/((f (Xk)) Bk f (Xk))] 

as in the p roo f  of  Lemma  3.8. Hence  ]flkl<~l+(1/]y3Ak[)llBk~+~]] IIBk][. NOW since 

Sk = --AkBk~f'(Xk) implying that  IAk]/> Ilskll/(llu21111/'(x011), by (3.4b, c) we get 

I (1-  3'D/3d <~ Mlls ,  II +8MIIBklII IIB, II IIB~'+,II IIf'(xk)ll for  all k ~  > k0. 

(ii), (iii) and the convergence of  {Xk} to X. now lead to conclusion (v). 
Once we have established part  (ii) and (3.8) the p roo f  of  (vi) proceeds  as the 

p roo f  of  Dennis  and Mor6 [6] of  part  (ii) of  their  Theorem 3.4: We observe that  if 
{Bk} does not  converge to A (otherwise (vi) trivially holds) then {Ok} converges to 
0 (where Ok := [[A-1/2(Bk--a)Vkll/([IBk--allallA~/2~kl[)) which leads to conclusion 
(vi) [] 

We invite the reader  to compare  Theorem 4.3 above with [6, Theorem 3.4]. As 
in the latter theorem,  {Xk} is any sequence converging to x ,  satisfying (4.1). Suppose  
now that {xk} converges to x ,  satisfying (4.1), say due to criteria in the line search 
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procedure LSP. Theorem 4.3 implies that then operations in Iteration 3.1 eventually 
become well-defined. Therefore if the direct iterate it specifies does not violate the 
criteria in LSP that force {xk} to converge to x , ,  then the direct iterate may be used 
as the next point. Theorem 4.4 below implies q-superlinear convergence of {Xk} to 

X, under these circumstances. 
Of  course the comments  in the previous paragraph apply to the DFP generalizer 

direct iterates in Iteration 3.1 and to the BFGS generalizer direct iterates in Iteration 
3.2 (after we have indicated pertinent results for Iteration 3.2). Nonetheless they 
form the basis for our comments in Step 2 of  Algorithmic Schemata 2.1 and 2.3 on 
the use of  direct iterates as the beginning trial point in LSP. 

Theorem 4.4. Let f : X ~  R satisfy Assumption 3.4. Let {xk} be defined by Iteration 
3.1 and suppose that {xk} converges to x ,  satisfying (4.1). Then {xk} converges 
q-superlinearly to x , .  

Proof. Note that Xk+l~-Xk--AkBklff(Xk), and that by part  (vi) of  Theorem 4.3, 

limk_~o~ (ll [Bk --f"(x,)](Xk+l -- Xk)II/IIX~+, -- X~ II) = 0. Part (v) of  Theorem 4.3 and [6, 
Corollary 2.3] now yield the desired result. [] 

We shall now concentrate on Iteration 3.2. The proof  of  q-superlinear convergence 
proceeds in a very similar manner  to that of  Iteration 3.1. First Lemma 3.10--the 
analogue of  Lemma 3 .7- -and Lemmas 4.1 and 4.2 are used to prove the analogue 
of  Theorem 4.3. This theorem provides us with all the results necessary to prove 
the q-superlinear convergence of Iteration 3.2 leading to a theorem analogous to 
Theorem 4.4. The proofs of  these results are independent of the proofs of  Theorems 

4.3 and 4.4. The methods of  proof  though are similar to those of Theorems 4.3 and 
4.4. In view of this and limitations of  space we first state the analogue of Theorem 
4.3 for Iteration 3.2 without proof. 

Theorem 4.5. Let f :  X -~ R satisfy Assumption 3.4 and put A := i f (x , ) .  In addition 
assume that {Xk } c X is a sequence that satisfies (4.1). Then there is a positive integer 
ko such that for any positive definite Hko c ~nvn the following statements are true for 

quantities defined by formulae in Iteration 3.2. 

(i) Pk is real, Yk, Vk, Yk and r k are well-defined, and Hk is positive definite, for all 
k ~  ko. 

(ii) { I IA-1 /2Hk lA  '/21[ } is uniformly bounded. 

(iii) limk~o~ JJA '/2 HkA '/21I exists. 

(iv) limk~o~ I1 -- Ykl = O. 
(V) l i m k ~  I1 --Ak] =0 .  

(vi) l i m k ~  (]lEHk--(ff(X,))-']rk]]/llrkl]) =0.  [] 

Once Theorem 4.5 is established the p roof  of  q-superlinear convergence of 
Iteration 3.2 proceeds in a very similar manner  to that of  Dennis and Mor6 



K.A. Ariyawansa / DFP- and BFGS-related collinear scaling algorithms 47 

[6, p. 559] o f  the q-superl inear convergence o f  the BFGS method  and to that o f  

Sorensen [11, pp. 109-110] o f  his BFGS-rela ted coll inear scaling algorithm. 

Theorem 4.6. Let f :  X-> R satisfy Assumption 3.4. Let  {Xk} be defined by Iteration 

3.2 and suppose that {Xk} converges to x ,  satisfying (4.1). Then {xk} converges 

q-superlinearly to x , .  

Proof. Consider  iterates k ~> k0 where ko is the positive integer ment ioned  in the 
hypotheses  o f  Theorem 4.5. Put A : = f " ( x . ) .  N o w  

[ H k - A  ']rk= Hkf ' (Xk+l ) - - (1 /y2k)Hkf ' ( xk ) - -A  'rk 

= H ~ f ' ( x k + , ) - A  ' ( r k - A G )  

+ [(Zk + (Yk + 1)/Y~)(Yk -- 1) + (Ak -- 1)] HtoC'(xk). 

Therefore by parts (ii), (iv), (v) and (vi) o f  Theorem 4.5, (3.4b) and (3.18), it follows 

that 

lim IIf'(xk+OII/llskll =0 .  (4.5) 
k ~ c o  

Dennis  and Mor6 [6, pp. 551-552] show that  (4.5) implies q-superl inear  convergence  

o f  {Xk} to X..  [] 
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